ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-2.0/src/brains/SimInfo.cpp
(Generate patch)

Comparing trunk/OOPSE-2.0/src/brains/SimInfo.cpp (file contents):
Revision 2000 by tim, Fri Feb 11 22:41:02 2005 UTC vs.
Revision 2533 by chuckv, Fri Dec 30 23:15:59 2005 UTC

# Line 1 | Line 1
1 < /*
1 > /*
2   * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
4   * The University of Notre Dame grants you ("Licensee") a
# Line 48 | Line 48
48  
49   #include <algorithm>
50   #include <set>
51 + #include <map>
52  
53   #include "brains/SimInfo.hpp"
54   #include "math/Vector3.hpp"
55   #include "primitives/Molecule.hpp"
56 + #include "UseTheForce/fCutoffPolicy.h"
57 + #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
58 + #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
59 + #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
60   #include "UseTheForce/doForces_interface.h"
61 < #include "UseTheForce/notifyCutoffs_interface.h"
61 > #include "UseTheForce/DarkSide/electrostatic_interface.h"
62 > #include "UseTheForce/DarkSide/switcheroo_interface.h"
63   #include "utils/MemoryUtils.hpp"
64   #include "utils/simError.h"
65   #include "selection/SelectionManager.hpp"
66 + #include "io/ForceFieldOptions.hpp"
67 + #include "UseTheForce/ForceField.hpp"
68  
69   #ifdef IS_MPI
70   #include "UseTheForce/mpiComponentPlan.h"
# Line 64 | Line 72 | namespace oopse {
72   #endif
73  
74   namespace oopse {
75 +  std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
76 +    std::map<int, std::set<int> >::iterator i = container.find(index);
77 +    std::set<int> result;
78 +    if (i != container.end()) {
79 +        result = i->second;
80 +    }
81  
82 < SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
83 <                                ForceField* ff, Globals* simParams) :
84 <                                forceField_(ff), simParams_(simParams),
85 <                                ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
86 <                                nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
87 <                                nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
88 <                                nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
89 <                                nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
90 <                                sman_(NULL), fortranInitialized_(false), selectMan_(NULL) {
82 >    return result;
83 >  }
84 >  
85 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
86 >    forceField_(ff), simParams_(simParams),
87 >    ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
88 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
89 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
90 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
91 >    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
92 >    sman_(NULL), fortranInitialized_(false) {
93  
94 <            
95 <    std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
96 <    MoleculeStamp* molStamp;
97 <    int nMolWithSameStamp;
98 <    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
99 <    int nGroups = 0;          //total cutoff groups defined in meta-data file
100 <    CutoffGroupStamp* cgStamp;    
101 <    RigidBodyStamp* rbStamp;
102 <    int nRigidAtoms = 0;
103 <    
104 <    for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
105 <        molStamp = i->first;
90 <        nMolWithSameStamp = i->second;
94 >      MoleculeStamp* molStamp;
95 >      int nMolWithSameStamp;
96 >      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
97 >      int nGroups = 0;      //total cutoff groups defined in meta-data file
98 >      CutoffGroupStamp* cgStamp;    
99 >      RigidBodyStamp* rbStamp;
100 >      int nRigidAtoms = 0;
101 >      std::vector<Component*> components = simParams->getComponents();
102 >      
103 >      for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
104 >        molStamp = (*i)->getMoleculeStamp();
105 >        nMolWithSameStamp = (*i)->getNMol();
106          
107          addMoleculeStamp(molStamp, nMolWithSameStamp);
108  
109          //calculate atoms in molecules
110          nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
111  
97
112          //calculate atoms in cutoff groups
113          int nAtomsInGroups = 0;
114          int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
115          
116          for (int j=0; j < nCutoffGroupsInStamp; j++) {
117 <            cgStamp = molStamp->getCutoffGroup(j);
118 <            nAtomsInGroups += cgStamp->getNMembers();
117 >          cgStamp = molStamp->getCutoffGroupStamp(j);
118 >          nAtomsInGroups += cgStamp->getNMembers();
119          }
120  
121          nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
122 +
123          nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
124  
125          //calculate atoms in rigid bodies
# Line 112 | Line 127 | SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*,
127          int nRigidBodiesInStamp = molStamp->getNRigidBodies();
128          
129          for (int j=0; j < nRigidBodiesInStamp; j++) {
130 <            rbStamp = molStamp->getRigidBody(j);
131 <            nAtomsInRigidBodies += rbStamp->getNMembers();
130 >          rbStamp = molStamp->getRigidBodyStamp(j);
131 >          nAtomsInRigidBodies += rbStamp->getNMembers();
132          }
133  
134          nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
135          nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
136          
137 <    }
137 >      }
138  
139 <    //every free atom (atom does not belong to cutoff groups) is a cutoff group
140 <    //therefore the total number of cutoff groups in the system is equal to
141 <    //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
142 <    //file plus the number of cutoff groups defined in meta-data file
143 <    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
139 >      //every free atom (atom does not belong to cutoff groups) is a cutoff
140 >      //group therefore the total number of cutoff groups in the system is
141 >      //equal to the total number of atoms minus number of atoms belong to
142 >      //cutoff group defined in meta-data file plus the number of cutoff
143 >      //groups defined in meta-data file
144 >      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
145  
146 <    //every free atom (atom does not belong to rigid bodies) is an integrable object
147 <    //therefore the total number of  integrable objects in the system is equal to
148 <    //the total number of atoms minus number of atoms belong to  rigid body defined in meta-data
149 <    //file plus the number of  rigid bodies defined in meta-data file
150 <    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
146 >      //every free atom (atom does not belong to rigid bodies) is an
147 >      //integrable object therefore the total number of integrable objects
148 >      //in the system is equal to the total number of atoms minus number of
149 >      //atoms belong to rigid body defined in meta-data file plus the number
150 >      //of rigid bodies defined in meta-data file
151 >      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
152 >                                                + nGlobalRigidBodies_;
153 >  
154 >      nGlobalMols_ = molStampIds_.size();
155  
136    nGlobalMols_ = molStampIds_.size();
137
156   #ifdef IS_MPI    
157 <    molToProcMap_.resize(nGlobalMols_);
157 >      molToProcMap_.resize(nGlobalMols_);
158   #endif
159  
160 <    selectMan_ = new SelectionManager(this);
143 <    selectMan_->selectAll();
144 < }
160 >    }
161  
162 < SimInfo::~SimInfo() {
163 <    //MemoryUtils::deleteVectorOfPointer(molecules_);
164 <
165 <    MemoryUtils::deleteVectorOfPointer(moleculeStamps_);
166 <    
162 >  SimInfo::~SimInfo() {
163 >    std::map<int, Molecule*>::iterator i;
164 >    for (i = molecules_.begin(); i != molecules_.end(); ++i) {
165 >      delete i->second;
166 >    }
167 >    molecules_.clear();
168 >      
169      delete sman_;
170      delete simParams_;
171      delete forceField_;
172 <    delete selectMan_;
155 < }
172 >  }
173  
174 < int SimInfo::getNGlobalConstraints() {
174 >  int SimInfo::getNGlobalConstraints() {
175      int nGlobalConstraints;
176   #ifdef IS_MPI
177      MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
# Line 163 | Line 180 | int SimInfo::getNGlobalConstraints() {
180      nGlobalConstraints =  nConstraints_;
181   #endif
182      return nGlobalConstraints;
183 < }
183 >  }
184  
185 < bool SimInfo::addMolecule(Molecule* mol) {
185 >  bool SimInfo::addMolecule(Molecule* mol) {
186      MoleculeIterator i;
187  
188      i = molecules_.find(mol->getGlobalIndex());
189      if (i == molecules_.end() ) {
190  
191 <        molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
191 >      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
192          
193 <        nAtoms_ += mol->getNAtoms();
194 <        nBonds_ += mol->getNBonds();
195 <        nBends_ += mol->getNBends();
196 <        nTorsions_ += mol->getNTorsions();
197 <        nRigidBodies_ += mol->getNRigidBodies();
198 <        nIntegrableObjects_ += mol->getNIntegrableObjects();
199 <        nCutoffGroups_ += mol->getNCutoffGroups();
200 <        nConstraints_ += mol->getNConstraintPairs();
193 >      nAtoms_ += mol->getNAtoms();
194 >      nBonds_ += mol->getNBonds();
195 >      nBends_ += mol->getNBends();
196 >      nTorsions_ += mol->getNTorsions();
197 >      nRigidBodies_ += mol->getNRigidBodies();
198 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
199 >      nCutoffGroups_ += mol->getNCutoffGroups();
200 >      nConstraints_ += mol->getNConstraintPairs();
201  
202 <        addExcludePairs(mol);
202 >      addExcludePairs(mol);
203          
204 <        return true;
204 >      return true;
205      } else {
206 <        return false;
206 >      return false;
207      }
208 < }
208 >  }
209  
210 < bool SimInfo::removeMolecule(Molecule* mol) {
210 >  bool SimInfo::removeMolecule(Molecule* mol) {
211      MoleculeIterator i;
212      i = molecules_.find(mol->getGlobalIndex());
213  
214      if (i != molecules_.end() ) {
215  
216 <        assert(mol == i->second);
216 >      assert(mol == i->second);
217          
218 <        nAtoms_ -= mol->getNAtoms();
219 <        nBonds_ -= mol->getNBonds();
220 <        nBends_ -= mol->getNBends();
221 <        nTorsions_ -= mol->getNTorsions();
222 <        nRigidBodies_ -= mol->getNRigidBodies();
223 <        nIntegrableObjects_ -= mol->getNIntegrableObjects();
224 <        nCutoffGroups_ -= mol->getNCutoffGroups();
225 <        nConstraints_ -= mol->getNConstraintPairs();
226 <
227 <        removeExcludePairs(mol);
228 <        molecules_.erase(mol->getGlobalIndex());
229 <
230 <        delete mol;
218 >      nAtoms_ -= mol->getNAtoms();
219 >      nBonds_ -= mol->getNBonds();
220 >      nBends_ -= mol->getNBends();
221 >      nTorsions_ -= mol->getNTorsions();
222 >      nRigidBodies_ -= mol->getNRigidBodies();
223 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
224 >      nCutoffGroups_ -= mol->getNCutoffGroups();
225 >      nConstraints_ -= mol->getNConstraintPairs();
226 >
227 >      removeExcludePairs(mol);
228 >      molecules_.erase(mol->getGlobalIndex());
229 >
230 >      delete mol;
231          
232 <        return true;
232 >      return true;
233      } else {
234 <        return false;
234 >      return false;
235      }
236  
237  
238 < }    
238 >  }    
239  
240          
241 < Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
241 >  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
242      i = molecules_.begin();
243      return i == molecules_.end() ? NULL : i->second;
244 < }    
244 >  }    
245  
246 < Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
246 >  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
247      ++i;
248      return i == molecules_.end() ? NULL : i->second;    
249 < }
249 >  }
250  
251  
252 < void SimInfo::calcNdf() {
252 >  void SimInfo::calcNdf() {
253      int ndf_local;
254      MoleculeIterator i;
255      std::vector<StuntDouble*>::iterator j;
# Line 242 | Line 259 | void SimInfo::calcNdf() {
259      ndf_local = 0;
260      
261      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
262 <        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
263 <               integrableObject = mol->nextIntegrableObject(j)) {
262 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
263 >           integrableObject = mol->nextIntegrableObject(j)) {
264  
265 <            ndf_local += 3;
265 >        ndf_local += 3;
266  
267 <            if (integrableObject->isDirectional()) {
268 <                if (integrableObject->isLinear()) {
269 <                    ndf_local += 2;
270 <                } else {
271 <                    ndf_local += 3;
272 <                }
273 <            }
267 >        if (integrableObject->isDirectional()) {
268 >          if (integrableObject->isLinear()) {
269 >            ndf_local += 2;
270 >          } else {
271 >            ndf_local += 3;
272 >          }
273 >        }
274              
275 <        }//end for (integrableObject)
276 <    }// end for (mol)
275 >      }
276 >    }
277      
278      // n_constraints is local, so subtract them on each processor
279      ndf_local -= nConstraints_;
# Line 271 | Line 288 | void SimInfo::calcNdf() {
288      // entire system:
289      ndf_ = ndf_ - 3 - nZconstraint_;
290  
291 < }
291 >  }
292  
293 < void SimInfo::calcNdfRaw() {
293 >  void SimInfo::calcNdfRaw() {
294      int ndfRaw_local;
295  
296      MoleculeIterator i;
# Line 285 | Line 302 | void SimInfo::calcNdfRaw() {
302      ndfRaw_local = 0;
303      
304      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
305 <        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
306 <               integrableObject = mol->nextIntegrableObject(j)) {
305 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
306 >           integrableObject = mol->nextIntegrableObject(j)) {
307  
308 <            ndfRaw_local += 3;
308 >        ndfRaw_local += 3;
309  
310 <            if (integrableObject->isDirectional()) {
311 <                if (integrableObject->isLinear()) {
312 <                    ndfRaw_local += 2;
313 <                } else {
314 <                    ndfRaw_local += 3;
315 <                }
316 <            }
310 >        if (integrableObject->isDirectional()) {
311 >          if (integrableObject->isLinear()) {
312 >            ndfRaw_local += 2;
313 >          } else {
314 >            ndfRaw_local += 3;
315 >          }
316 >        }
317              
318 <        }
318 >      }
319      }
320      
321   #ifdef IS_MPI
# Line 306 | Line 323 | void SimInfo::calcNdfRaw() {
323   #else
324      ndfRaw_ = ndfRaw_local;
325   #endif
326 < }
326 >  }
327  
328 < void SimInfo::calcNdfTrans() {
328 >  void SimInfo::calcNdfTrans() {
329      int ndfTrans_local;
330  
331      ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
# Line 322 | Line 339 | void SimInfo::calcNdfTrans() {
339  
340      ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
341  
342 < }
342 >  }
343  
344 < void SimInfo::addExcludePairs(Molecule* mol) {
344 >  void SimInfo::addExcludePairs(Molecule* mol) {
345      std::vector<Bond*>::iterator bondIter;
346      std::vector<Bend*>::iterator bendIter;
347      std::vector<Torsion*>::iterator torsionIter;
# Line 335 | Line 352 | void SimInfo::addExcludePairs(Molecule* mol) {
352      int b;
353      int c;
354      int d;
355 +
356 +    std::map<int, std::set<int> > atomGroups;
357 +
358 +    Molecule::RigidBodyIterator rbIter;
359 +    RigidBody* rb;
360 +    Molecule::IntegrableObjectIterator ii;
361 +    StuntDouble* integrableObject;
362      
363 +    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
364 +           integrableObject = mol->nextIntegrableObject(ii)) {
365 +
366 +      if (integrableObject->isRigidBody()) {
367 +          rb = static_cast<RigidBody*>(integrableObject);
368 +          std::vector<Atom*> atoms = rb->getAtoms();
369 +          std::set<int> rigidAtoms;
370 +          for (int i = 0; i < atoms.size(); ++i) {
371 +            rigidAtoms.insert(atoms[i]->getGlobalIndex());
372 +          }
373 +          for (int i = 0; i < atoms.size(); ++i) {
374 +            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
375 +          }      
376 +      } else {
377 +        std::set<int> oneAtomSet;
378 +        oneAtomSet.insert(integrableObject->getGlobalIndex());
379 +        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
380 +      }
381 +    }  
382 +
383 +    
384 +    
385      for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
386 <        a = bond->getAtomA()->getGlobalIndex();
387 <        b = bond->getAtomB()->getGlobalIndex();        
388 <        exclude_.addPair(a, b);
386 >      a = bond->getAtomA()->getGlobalIndex();
387 >      b = bond->getAtomB()->getGlobalIndex();        
388 >      exclude_.addPair(a, b);
389      }
390  
391      for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
392 <        a = bend->getAtomA()->getGlobalIndex();
393 <        b = bend->getAtomB()->getGlobalIndex();        
394 <        c = bend->getAtomC()->getGlobalIndex();
392 >      a = bend->getAtomA()->getGlobalIndex();
393 >      b = bend->getAtomB()->getGlobalIndex();        
394 >      c = bend->getAtomC()->getGlobalIndex();
395 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
396 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
397 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
398  
399 <        exclude_.addPair(a, b);
400 <        exclude_.addPair(a, c);
401 <        exclude_.addPair(b, c);        
399 >      exclude_.addPairs(rigidSetA, rigidSetB);
400 >      exclude_.addPairs(rigidSetA, rigidSetC);
401 >      exclude_.addPairs(rigidSetB, rigidSetC);
402 >      
403 >      //exclude_.addPair(a, b);
404 >      //exclude_.addPair(a, c);
405 >      //exclude_.addPair(b, c);        
406      }
407  
408      for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
409 <        a = torsion->getAtomA()->getGlobalIndex();
410 <        b = torsion->getAtomB()->getGlobalIndex();        
411 <        c = torsion->getAtomC()->getGlobalIndex();        
412 <        d = torsion->getAtomD()->getGlobalIndex();        
409 >      a = torsion->getAtomA()->getGlobalIndex();
410 >      b = torsion->getAtomB()->getGlobalIndex();        
411 >      c = torsion->getAtomC()->getGlobalIndex();        
412 >      d = torsion->getAtomD()->getGlobalIndex();        
413 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
414 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
415 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
416 >      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
417  
418 <        exclude_.addPair(a, b);
419 <        exclude_.addPair(a, c);
420 <        exclude_.addPair(a, d);
421 <        exclude_.addPair(b, c);
422 <        exclude_.addPair(b, d);
423 <        exclude_.addPair(c, d);        
418 >      exclude_.addPairs(rigidSetA, rigidSetB);
419 >      exclude_.addPairs(rigidSetA, rigidSetC);
420 >      exclude_.addPairs(rigidSetA, rigidSetD);
421 >      exclude_.addPairs(rigidSetB, rigidSetC);
422 >      exclude_.addPairs(rigidSetB, rigidSetD);
423 >      exclude_.addPairs(rigidSetC, rigidSetD);
424 >
425 >      /*
426 >      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
427 >      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
428 >      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
429 >      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
430 >      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
431 >      exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
432 >        
433 >      
434 >      exclude_.addPair(a, b);
435 >      exclude_.addPair(a, c);
436 >      exclude_.addPair(a, d);
437 >      exclude_.addPair(b, c);
438 >      exclude_.addPair(b, d);
439 >      exclude_.addPair(c, d);        
440 >      */
441      }
442  
443 <    
444 < }
443 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
444 >      std::vector<Atom*> atoms = rb->getAtoms();
445 >      for (int i = 0; i < atoms.size() -1 ; ++i) {
446 >        for (int j = i + 1; j < atoms.size(); ++j) {
447 >          a = atoms[i]->getGlobalIndex();
448 >          b = atoms[j]->getGlobalIndex();
449 >          exclude_.addPair(a, b);
450 >        }
451 >      }
452 >    }        
453  
454 < void SimInfo::removeExcludePairs(Molecule* mol) {
454 >  }
455 >
456 >  void SimInfo::removeExcludePairs(Molecule* mol) {
457      std::vector<Bond*>::iterator bondIter;
458      std::vector<Bend*>::iterator bendIter;
459      std::vector<Torsion*>::iterator torsionIter;
# Line 380 | Line 464 | void SimInfo::removeExcludePairs(Molecule* mol) {
464      int b;
465      int c;
466      int d;
467 +
468 +    std::map<int, std::set<int> > atomGroups;
469 +
470 +    Molecule::RigidBodyIterator rbIter;
471 +    RigidBody* rb;
472 +    Molecule::IntegrableObjectIterator ii;
473 +    StuntDouble* integrableObject;
474      
475 +    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
476 +           integrableObject = mol->nextIntegrableObject(ii)) {
477 +
478 +      if (integrableObject->isRigidBody()) {
479 +          rb = static_cast<RigidBody*>(integrableObject);
480 +          std::vector<Atom*> atoms = rb->getAtoms();
481 +          std::set<int> rigidAtoms;
482 +          for (int i = 0; i < atoms.size(); ++i) {
483 +            rigidAtoms.insert(atoms[i]->getGlobalIndex());
484 +          }
485 +          for (int i = 0; i < atoms.size(); ++i) {
486 +            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
487 +          }      
488 +      } else {
489 +        std::set<int> oneAtomSet;
490 +        oneAtomSet.insert(integrableObject->getGlobalIndex());
491 +        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
492 +      }
493 +    }  
494 +
495 +    
496      for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
497 <        a = bond->getAtomA()->getGlobalIndex();
498 <        b = bond->getAtomB()->getGlobalIndex();        
499 <        exclude_.removePair(a, b);
497 >      a = bond->getAtomA()->getGlobalIndex();
498 >      b = bond->getAtomB()->getGlobalIndex();        
499 >      exclude_.removePair(a, b);
500      }
501  
502      for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
503 <        a = bend->getAtomA()->getGlobalIndex();
504 <        b = bend->getAtomB()->getGlobalIndex();        
505 <        c = bend->getAtomC()->getGlobalIndex();
503 >      a = bend->getAtomA()->getGlobalIndex();
504 >      b = bend->getAtomB()->getGlobalIndex();        
505 >      c = bend->getAtomC()->getGlobalIndex();
506  
507 <        exclude_.removePair(a, b);
508 <        exclude_.removePair(a, c);
509 <        exclude_.removePair(b, c);        
507 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
508 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
509 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
510 >
511 >      exclude_.removePairs(rigidSetA, rigidSetB);
512 >      exclude_.removePairs(rigidSetA, rigidSetC);
513 >      exclude_.removePairs(rigidSetB, rigidSetC);
514 >      
515 >      //exclude_.removePair(a, b);
516 >      //exclude_.removePair(a, c);
517 >      //exclude_.removePair(b, c);        
518      }
519  
520      for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
521 <        a = torsion->getAtomA()->getGlobalIndex();
522 <        b = torsion->getAtomB()->getGlobalIndex();        
523 <        c = torsion->getAtomC()->getGlobalIndex();        
524 <        d = torsion->getAtomD()->getGlobalIndex();        
521 >      a = torsion->getAtomA()->getGlobalIndex();
522 >      b = torsion->getAtomB()->getGlobalIndex();        
523 >      c = torsion->getAtomC()->getGlobalIndex();        
524 >      d = torsion->getAtomD()->getGlobalIndex();        
525  
526 <        exclude_.removePair(a, b);
527 <        exclude_.removePair(a, c);
528 <        exclude_.removePair(a, d);
529 <        exclude_.removePair(b, c);
530 <        exclude_.removePair(b, d);
531 <        exclude_.removePair(c, d);        
526 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
527 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
528 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
529 >      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
530 >
531 >      exclude_.removePairs(rigidSetA, rigidSetB);
532 >      exclude_.removePairs(rigidSetA, rigidSetC);
533 >      exclude_.removePairs(rigidSetA, rigidSetD);
534 >      exclude_.removePairs(rigidSetB, rigidSetC);
535 >      exclude_.removePairs(rigidSetB, rigidSetD);
536 >      exclude_.removePairs(rigidSetC, rigidSetD);
537 >
538 >      /*
539 >      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
540 >      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
541 >      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
542 >      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
543 >      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
544 >      exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
545 >
546 >      
547 >      exclude_.removePair(a, b);
548 >      exclude_.removePair(a, c);
549 >      exclude_.removePair(a, d);
550 >      exclude_.removePair(b, c);
551 >      exclude_.removePair(b, d);
552 >      exclude_.removePair(c, d);        
553 >      */
554      }
555  
556 < }
556 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
557 >      std::vector<Atom*> atoms = rb->getAtoms();
558 >      for (int i = 0; i < atoms.size() -1 ; ++i) {
559 >        for (int j = i + 1; j < atoms.size(); ++j) {
560 >          a = atoms[i]->getGlobalIndex();
561 >          b = atoms[j]->getGlobalIndex();
562 >          exclude_.removePair(a, b);
563 >        }
564 >      }
565 >    }        
566  
567 +  }
568  
569 < void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
569 >
570 >  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
571      int curStampId;
572  
573      //index from 0
# Line 422 | Line 575 | void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp
575  
576      moleculeStamps_.push_back(molStamp);
577      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
578 < }
578 >  }
579  
580 < void SimInfo::update() {
580 >  void SimInfo::update() {
581  
582      setupSimType();
583  
# Line 437 | Line 590 | void SimInfo::update() {
590      //setup fortran force field
591      /** @deprecate */    
592      int isError = 0;
593 <    initFortranFF( &fInfo_.SIM_uses_RF , &isError );
593 >    
594 >    setupElectrostaticSummationMethod( isError );
595 >    setupSwitchingFunction();
596 >
597      if(isError){
598 <        sprintf( painCave.errMsg,
599 <         "ForceField error: There was an error initializing the forceField in fortran.\n" );
600 <        painCave.isFatal = 1;
601 <        simError();
598 >      sprintf( painCave.errMsg,
599 >               "ForceField error: There was an error initializing the forceField in fortran.\n" );
600 >      painCave.isFatal = 1;
601 >      simError();
602      }
603    
604      
# Line 453 | Line 609 | void SimInfo::update() {
609      calcNdfTrans();
610  
611      fortranInitialized_ = true;
612 < }
612 >  }
613  
614 < std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
614 >  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
615      SimInfo::MoleculeIterator mi;
616      Molecule* mol;
617      Molecule::AtomIterator ai;
# Line 464 | Line 620 | std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
620  
621      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
622  
623 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
624 <            atomTypes.insert(atom->getAtomType());
625 <        }
623 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
624 >        atomTypes.insert(atom->getAtomType());
625 >      }
626          
627      }
628  
629      return atomTypes;        
630 < }
630 >  }
631  
632 < void SimInfo::setupSimType() {
632 >  void SimInfo::setupSimType() {
633      std::set<AtomType*>::iterator i;
634      std::set<AtomType*> atomTypes;
635      atomTypes = getUniqueAtomTypes();
# Line 481 | Line 637 | void SimInfo::setupSimType() {
637      int useLennardJones = 0;
638      int useElectrostatic = 0;
639      int useEAM = 0;
640 +    int useSC = 0;
641      int useCharge = 0;
642      int useDirectional = 0;
643      int useDipole = 0;
644      int useGayBerne = 0;
645      int useSticky = 0;
646 +    int useStickyPower = 0;
647      int useShape = 0;
648      int useFLARB = 0; //it is not in AtomType yet
649      int useDirectionalAtom = 0;    
650      int useElectrostatics = 0;
651      //usePBC and useRF are from simParams
652 <    int usePBC = simParams_->getPBC();
653 <    int useRF = simParams_->getUseRF();
652 >    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
653 >    int useRF;
654 >    int useSF;
655 >    std::string myMethod;
656  
657 +    // set the useRF logical
658 +    useRF = 0;
659 +    useSF = 0;
660 +
661 +
662 +    if (simParams_->haveElectrostaticSummationMethod()) {
663 +      std::string myMethod = simParams_->getElectrostaticSummationMethod();
664 +      toUpper(myMethod);
665 +      if (myMethod == "REACTION_FIELD") {
666 +        useRF=1;
667 +      } else {
668 +        if (myMethod == "SHIFTED_FORCE") {
669 +          useSF = 1;
670 +        }
671 +      }
672 +    }
673 +
674      //loop over all of the atom types
675      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
676 <        useLennardJones |= (*i)->isLennardJones();
677 <        useElectrostatic |= (*i)->isElectrostatic();
678 <        useEAM |= (*i)->isEAM();
679 <        useCharge |= (*i)->isCharge();
680 <        useDirectional |= (*i)->isDirectional();
681 <        useDipole |= (*i)->isDipole();
682 <        useGayBerne |= (*i)->isGayBerne();
683 <        useSticky |= (*i)->isSticky();
684 <        useShape |= (*i)->isShape();
676 >      useLennardJones |= (*i)->isLennardJones();
677 >      useElectrostatic |= (*i)->isElectrostatic();
678 >      useEAM |= (*i)->isEAM();
679 >      useSC |= (*i)->isSC();
680 >      useCharge |= (*i)->isCharge();
681 >      useDirectional |= (*i)->isDirectional();
682 >      useDipole |= (*i)->isDipole();
683 >      useGayBerne |= (*i)->isGayBerne();
684 >      useSticky |= (*i)->isSticky();
685 >      useStickyPower |= (*i)->isStickyPower();
686 >      useShape |= (*i)->isShape();
687      }
688  
689 <    if (useSticky || useDipole || useGayBerne || useShape) {
690 <        useDirectionalAtom = 1;
689 >    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
690 >      useDirectionalAtom = 1;
691      }
692  
693      if (useCharge || useDipole) {
694 <        useElectrostatics = 1;
694 >      useElectrostatics = 1;
695      }
696  
697   #ifdef IS_MPI    
# Line 539 | Line 718 | void SimInfo::setupSimType() {
718      temp = useSticky;
719      MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
720  
721 +    temp = useStickyPower;
722 +    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
723 +    
724      temp = useGayBerne;
725      MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
726  
727      temp = useEAM;
728      MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
729  
730 +    temp = useSC;
731 +    MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
732 +    
733      temp = useShape;
734      MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
735  
# Line 553 | Line 738 | void SimInfo::setupSimType() {
738  
739      temp = useRF;
740      MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
741 <    
741 >
742 >    temp = useSF;
743 >    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
744 >
745   #endif
746  
747      fInfo_.SIM_uses_PBC = usePBC;    
# Line 563 | Line 751 | void SimInfo::setupSimType() {
751      fInfo_.SIM_uses_Charges = useCharge;
752      fInfo_.SIM_uses_Dipoles = useDipole;
753      fInfo_.SIM_uses_Sticky = useSticky;
754 +    fInfo_.SIM_uses_StickyPower = useStickyPower;
755      fInfo_.SIM_uses_GayBerne = useGayBerne;
756      fInfo_.SIM_uses_EAM = useEAM;
757 +    fInfo_.SIM_uses_SC = useSC;
758      fInfo_.SIM_uses_Shapes = useShape;
759      fInfo_.SIM_uses_FLARB = useFLARB;
760      fInfo_.SIM_uses_RF = useRF;
761 +    fInfo_.SIM_uses_SF = useSF;
762  
763 <    if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
764 <
765 <        if (simParams_->haveDielectric()) {
766 <            fInfo_.dielect = simParams_->getDielectric();
767 <        } else {
768 <            sprintf(painCave.errMsg,
769 <                    "SimSetup Error: No Dielectric constant was set.\n"
770 <                    "\tYou are trying to use Reaction Field without"
771 <                    "\tsetting a dielectric constant!\n");
772 <            painCave.isFatal = 1;
773 <            simError();
774 <        }
584 <        
585 <    } else {
586 <        fInfo_.dielect = 0.0;
763 >    if( myMethod == "REACTION_FIELD") {
764 >      
765 >      if (simParams_->haveDielectric()) {
766 >        fInfo_.dielect = simParams_->getDielectric();
767 >      } else {
768 >        sprintf(painCave.errMsg,
769 >                "SimSetup Error: No Dielectric constant was set.\n"
770 >                "\tYou are trying to use Reaction Field without"
771 >                "\tsetting a dielectric constant!\n");
772 >        painCave.isFatal = 1;
773 >        simError();
774 >      }      
775      }
776  
777 < }
777 >  }
778  
779 < void SimInfo::setupFortranSim() {
779 >  void SimInfo::setupFortranSim() {
780      int isError;
781      int nExclude;
782      std::vector<int> fortranGlobalGroupMembership;
# Line 598 | Line 786 | void SimInfo::setupFortranSim() {
786  
787      //globalGroupMembership_ is filled by SimCreator    
788      for (int i = 0; i < nGlobalAtoms_; i++) {
789 <        fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
789 >      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
790      }
791  
792      //calculate mass ratio of cutoff group
# Line 615 | Line 803 | void SimInfo::setupFortranSim() {
803      mfact.reserve(getNCutoffGroups());
804      
805      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
806 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
806 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
807  
808 <            totalMass = cg->getMass();
809 <            for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
810 <                        mfact.push_back(atom->getMass()/totalMass);
811 <            }
808 >        totalMass = cg->getMass();
809 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
810 >          // Check for massless groups - set mfact to 1 if true
811 >          if (totalMass != 0)
812 >            mfact.push_back(atom->getMass()/totalMass);
813 >          else
814 >            mfact.push_back( 1.0 );
815 >        }
816  
817 <        }      
817 >      }      
818      }
819  
820      //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
# Line 632 | Line 824 | void SimInfo::setupFortranSim() {
824      identArray.reserve(getNAtoms());
825      
826      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
827 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
828 <            identArray.push_back(atom->getIdent());
829 <        }
827 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
828 >        identArray.push_back(atom->getIdent());
829 >      }
830      }    
831  
832      //fill molMembershipArray
833      //molMembershipArray is filled by SimCreator    
834      std::vector<int> molMembershipArray(nGlobalAtoms_);
835      for (int i = 0; i < nGlobalAtoms_; i++) {
836 <        molMembershipArray[i] = globalMolMembership_[i] + 1;
836 >      molMembershipArray[i] = globalMolMembership_[i] + 1;
837      }
838      
839      //setup fortran simulation
648    //gloalExcludes and molMembershipArray should go away (They are never used)
649    //why the hell fortran need to know molecule?
650    //OOPSE = Object-Obfuscated Parallel Simulation Engine
840      int nGlobalExcludes = 0;
841      int* globalExcludes = NULL;
842      int* excludeList = exclude_.getExcludeList();
843      setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
844 <                  &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
845 <                  &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
844 >                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
845 >                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
846  
847      if( isError ){
848  
849 <        sprintf( painCave.errMsg,
850 <                 "There was an error setting the simulation information in fortran.\n" );
851 <        painCave.isFatal = 1;
852 <        painCave.severity = OOPSE_ERROR;
853 <        simError();
849 >      sprintf( painCave.errMsg,
850 >               "There was an error setting the simulation information in fortran.\n" );
851 >      painCave.isFatal = 1;
852 >      painCave.severity = OOPSE_ERROR;
853 >      simError();
854      }
855  
856   #ifdef IS_MPI
857      sprintf( checkPointMsg,
858 <       "succesfully sent the simulation information to fortran.\n");
858 >             "succesfully sent the simulation information to fortran.\n");
859      MPIcheckPoint();
860   #endif // is_mpi
861 < }
861 >  }
862  
863  
864   #ifdef IS_MPI
865 < void SimInfo::setupFortranParallel() {
865 >  void SimInfo::setupFortranParallel() {
866      
867      //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
868      std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
# Line 689 | Line 878 | void SimInfo::setupFortranParallel() {
878  
879      for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
880  
881 <        //local index(index in DataStorge) of atom is important
882 <        for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
883 <            localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
884 <        }
881 >      //local index(index in DataStorge) of atom is important
882 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
883 >        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
884 >      }
885  
886 <        //local index of cutoff group is trivial, it only depends on the order of travesing
887 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
888 <            localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
889 <        }        
886 >      //local index of cutoff group is trivial, it only depends on the order of travesing
887 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
888 >        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
889 >      }        
890          
891      }
892  
# Line 717 | Line 906 | void SimInfo::setupFortranParallel() {
906                      &localToGlobalCutoffGroupIndex[0], &isError);
907  
908      if (isError) {
909 <        sprintf(painCave.errMsg,
910 <                "mpiRefresh errror: fortran didn't like something we gave it.\n");
911 <        painCave.isFatal = 1;
912 <        simError();
909 >      sprintf(painCave.errMsg,
910 >              "mpiRefresh errror: fortran didn't like something we gave it.\n");
911 >      painCave.isFatal = 1;
912 >      simError();
913      }
914  
915      sprintf(checkPointMsg, " mpiRefresh successful.\n");
916      MPIcheckPoint();
917  
918  
919 < }
919 >  }
920  
921   #endif
922  
923 < double SimInfo::calcMaxCutoffRadius() {
923 >  void SimInfo::setupCutoff() {          
924 >    
925 >    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
926  
927 +    // Check the cutoff policy
928 +    int cp =  TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
929  
930 <    std::set<AtomType*> atomTypes;
931 <    std::set<AtomType*>::iterator i;
932 <    std::vector<double> cutoffRadius;
933 <
934 <    //get the unique atom types
742 <    atomTypes = getUniqueAtomTypes();
743 <
744 <    //query the max cutoff radius among these atom types
745 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
746 <        cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
930 >    std::string myPolicy;
931 >    if (forceFieldOptions_.haveCutoffPolicy()){
932 >      myPolicy = forceFieldOptions_.getCutoffPolicy();
933 >    }else if (simParams_->haveCutoffPolicy()) {
934 >      myPolicy = simParams_->getCutoffPolicy();
935      }
936  
937 <    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
938 < #ifdef IS_MPI
939 <    //pick the max cutoff radius among the processors
940 < #endif
937 >    if (!myPolicy.empty()){
938 >      toUpper(myPolicy);
939 >      if (myPolicy == "MIX") {
940 >        cp = MIX_CUTOFF_POLICY;
941 >      } else {
942 >        if (myPolicy == "MAX") {
943 >          cp = MAX_CUTOFF_POLICY;
944 >        } else {
945 >          if (myPolicy == "TRADITIONAL") {            
946 >            cp = TRADITIONAL_CUTOFF_POLICY;
947 >          } else {
948 >            // throw error        
949 >            sprintf( painCave.errMsg,
950 >                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
951 >            painCave.isFatal = 1;
952 >            simError();
953 >          }    
954 >        }          
955 >      }
956 >    }          
957 >    notifyFortranCutoffPolicy(&cp);
958  
959 <    return maxCutoffRadius;
960 < }
961 <
962 < void SimInfo::setupCutoff() {
963 <    double rcut_;  //cutoff radius
964 <    double rsw_; //switching radius
760 <    
761 <    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
959 >    // Check the Skin Thickness for neighborlists
960 >    double skin;
961 >    if (simParams_->haveSkinThickness()) {
962 >      skin = simParams_->getSkinThickness();
963 >      notifyFortranSkinThickness(&skin);
964 >    }            
965          
966 <        if (!simParams_->haveRcut()){
967 <            sprintf(painCave.errMsg,
966 >    // Check if the cutoff was set explicitly:
967 >    if (simParams_->haveCutoffRadius()) {
968 >      rcut_ = simParams_->getCutoffRadius();
969 >      if (simParams_->haveSwitchingRadius()) {
970 >        rsw_  = simParams_->getSwitchingRadius();
971 >      } else {
972 >        rsw_ = rcut_;
973 >      }
974 >      notifyFortranCutoffs(&rcut_, &rsw_);
975 >      
976 >    } else {
977 >      
978 >      // For electrostatic atoms, we'll assume a large safe value:
979 >      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
980 >        sprintf(painCave.errMsg,
981                  "SimCreator Warning: No value was set for the cutoffRadius.\n"
982                  "\tOOPSE will use a default value of 15.0 angstroms"
983                  "\tfor the cutoffRadius.\n");
984 <            painCave.isFatal = 0;
985 <            simError();
986 <            rcut_ = 15.0;
987 <        } else{
988 <            rcut_ = simParams_->getRcut();
984 >        painCave.isFatal = 0;
985 >        simError();
986 >        rcut_ = 15.0;
987 >      
988 >        if (simParams_->haveElectrostaticSummationMethod()) {
989 >          std::string myMethod = simParams_->getElectrostaticSummationMethod();
990 >          toUpper(myMethod);
991 >          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
992 >            if (simParams_->haveSwitchingRadius()){
993 >              sprintf(painCave.errMsg,
994 >                      "SimInfo Warning: A value was set for the switchingRadius\n"
995 >                      "\teven though the electrostaticSummationMethod was\n"
996 >                      "\tset to %s\n", myMethod.c_str());
997 >              painCave.isFatal = 1;
998 >              simError();            
999 >            }
1000 >          }
1001          }
1002 <
1003 <        if (!simParams_->haveRsw()){
1004 <            sprintf(painCave.errMsg,
1005 <                "SimCreator Warning: No value was set for switchingRadius.\n"
1006 <                "\tOOPSE will use a default value of\n"
1007 <                "\t0.95 * cutoffRadius for the switchingRadius\n");
1008 <            painCave.isFatal = 0;
1009 <            simError();
1010 <            rsw_ = 0.95 * rcut_;
1011 <        } else{
1012 <            rsw_ = simParams_->getRsw();
1002 >      
1003 >        if (simParams_->haveSwitchingRadius()){
1004 >          rsw_ = simParams_->getSwitchingRadius();
1005 >        } else {        
1006 >          sprintf(painCave.errMsg,
1007 >                  "SimCreator Warning: No value was set for switchingRadius.\n"
1008 >                  "\tOOPSE will use a default value of\n"
1009 >                  "\t0.85 * cutoffRadius for the switchingRadius\n");
1010 >          painCave.isFatal = 0;
1011 >          simError();
1012 >          rsw_ = 0.85 * rcut_;
1013          }
1014 <
1015 <    } else {
1016 <        // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
1017 <        //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
1014 >        notifyFortranCutoffs(&rcut_, &rsw_);
1015 >      } else {
1016 >        // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1017 >        // We'll punt and let fortran figure out the cutoffs later.
1018          
1019 <        if (simParams_->haveRcut()) {
792 <            rcut_ = simParams_->getRcut();
793 <        } else {
794 <            //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
795 <            rcut_ = calcMaxCutoffRadius();
796 <        }
1019 >        notifyFortranYouAreOnYourOwn();
1020  
1021 <        if (simParams_->haveRsw()) {
799 <            rsw_  = simParams_->getRsw();
800 <        } else {
801 <            rsw_ = rcut_;
802 <        }
803 <    
1021 >      }
1022      }
1023 <        
806 <    double rnblist = rcut_ + 1; // skin of neighbor list
1023 >  }
1024  
1025 <    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
1026 <    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist);
1027 < }
1025 >  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
1026 >    
1027 >    int errorOut;
1028 >    int esm =  NONE;
1029 >    int sm = UNDAMPED;
1030 >    double alphaVal;
1031 >    double dielectric;
1032  
1033 < void SimInfo::addProperty(GenericData* genData) {
1034 <    properties_.addProperty(genData);  
1035 < }
1033 >    errorOut = isError;
1034 >    alphaVal = simParams_->getDampingAlpha();
1035 >    dielectric = simParams_->getDielectric();
1036  
1037 < void SimInfo::removeProperty(const std::string& propName) {
1038 <    properties_.removeProperty(propName);  
1039 < }
1040 <
1041 < void SimInfo::clearProperties() {
1042 <    properties_.clearProperties();
1043 < }
1044 <
1045 < std::vector<std::string> SimInfo::getPropertyNames() {
1046 <    return properties_.getPropertyNames();  
1047 < }
1048 <      
1049 < std::vector<GenericData*> SimInfo::getProperties() {
1050 <    return properties_.getProperties();
1051 < }
1052 <
1053 < GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1054 <    return properties_.getPropertyByName(propName);
1055 < }
1037 >    if (simParams_->haveElectrostaticSummationMethod()) {
1038 >      std::string myMethod = simParams_->getElectrostaticSummationMethod();
1039 >      toUpper(myMethod);
1040 >      if (myMethod == "NONE") {
1041 >        esm = NONE;
1042 >      } else {
1043 >        if (myMethod == "SWITCHING_FUNCTION") {
1044 >          esm = SWITCHING_FUNCTION;
1045 >        } else {
1046 >          if (myMethod == "SHIFTED_POTENTIAL") {
1047 >            esm = SHIFTED_POTENTIAL;
1048 >          } else {
1049 >            if (myMethod == "SHIFTED_FORCE") {            
1050 >              esm = SHIFTED_FORCE;
1051 >            } else {
1052 >              if (myMethod == "REACTION_FIELD") {            
1053 >                esm = REACTION_FIELD;
1054 >              } else {
1055 >                // throw error        
1056 >                sprintf( painCave.errMsg,
1057 >                         "SimInfo error: Unknown electrostaticSummationMethod.\n"
1058 >                         "\t(Input file specified %s .)\n"
1059 >                         "\telectrostaticSummationMethod must be one of: \"none\",\n"
1060 >                         "\t\"shifted_potential\", \"shifted_force\", or \n"
1061 >                         "\t\"reaction_field\".\n", myMethod.c_str() );
1062 >                painCave.isFatal = 1;
1063 >                simError();
1064 >              }    
1065 >            }          
1066 >          }
1067 >        }
1068 >      }
1069 >    }
1070 >    
1071 >    if (simParams_->haveElectrostaticScreeningMethod()) {
1072 >      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1073 >      toUpper(myScreen);
1074 >      if (myScreen == "UNDAMPED") {
1075 >        sm = UNDAMPED;
1076 >      } else {
1077 >        if (myScreen == "DAMPED") {
1078 >          sm = DAMPED;
1079 >          if (!simParams_->haveDampingAlpha()) {
1080 >            //throw error
1081 >            sprintf( painCave.errMsg,
1082 >                     "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1083 >                     "\tA default value of %f (1/ang) will be used.\n", alphaVal);
1084 >            painCave.isFatal = 0;
1085 >            simError();
1086 >          }
1087 >        } else {
1088 >          // throw error        
1089 >          sprintf( painCave.errMsg,
1090 >                   "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1091 >                   "\t(Input file specified %s .)\n"
1092 >                   "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1093 >                   "or \"damped\".\n", myScreen.c_str() );
1094 >          painCave.isFatal = 1;
1095 >          simError();
1096 >        }
1097 >      }
1098 >    }
1099 >    
1100 >    // let's pass some summation method variables to fortran
1101 >    setElectrostaticSumMethod( &esm );
1102 >    setFortranElectrostaticMethod( &esm );
1103 >    setScreeningMethod( &sm );
1104 >    setDampingAlpha( &alphaVal );
1105 >    setReactionFieldDielectric( &dielectric );
1106 >    initFortranFF( &errorOut );
1107 >  }
1108  
1109 < void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1109 >  void SimInfo::setupSwitchingFunction() {    
1110 >    int ft = CUBIC;
1111 >
1112 >    if (simParams_->haveSwitchingFunctionType()) {
1113 >      std::string funcType = simParams_->getSwitchingFunctionType();
1114 >      toUpper(funcType);
1115 >      if (funcType == "CUBIC") {
1116 >        ft = CUBIC;
1117 >      } else {
1118 >        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1119 >          ft = FIFTH_ORDER_POLY;
1120 >        } else {
1121 >          // throw error        
1122 >          sprintf( painCave.errMsg,
1123 >                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1124 >          painCave.isFatal = 1;
1125 >          simError();
1126 >        }          
1127 >      }
1128 >    }
1129 >
1130 >    // send switching function notification to switcheroo
1131 >    setFunctionType(&ft);
1132 >
1133 >  }
1134 >
1135 >  void SimInfo::addProperty(GenericData* genData) {
1136 >    properties_.addProperty(genData);  
1137 >  }
1138 >
1139 >  void SimInfo::removeProperty(const std::string& propName) {
1140 >    properties_.removeProperty(propName);  
1141 >  }
1142 >
1143 >  void SimInfo::clearProperties() {
1144 >    properties_.clearProperties();
1145 >  }
1146 >
1147 >  std::vector<std::string> SimInfo::getPropertyNames() {
1148 >    return properties_.getPropertyNames();  
1149 >  }
1150 >      
1151 >  std::vector<GenericData*> SimInfo::getProperties() {
1152 >    return properties_.getProperties();
1153 >  }
1154 >
1155 >  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1156 >    return properties_.getPropertyByName(propName);
1157 >  }
1158 >
1159 >  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1160 >    if (sman_ == sman) {
1161 >      return;
1162 >    }    
1163 >    delete sman_;
1164      sman_ = sman;
1165  
1166      Molecule* mol;
# Line 845 | Line 1172 | void SimInfo::setSnapshotManager(SnapshotManager* sman
1172  
1173      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1174          
1175 <        for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1176 <            atom->setSnapshotManager(sman_);
1177 <        }
1175 >      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1176 >        atom->setSnapshotManager(sman_);
1177 >      }
1178          
1179 <        for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1180 <            rb->setSnapshotManager(sman_);
1181 <        }
1179 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1180 >        rb->setSnapshotManager(sman_);
1181 >      }
1182      }    
1183      
1184 < }
1184 >  }
1185  
1186 < Vector3d SimInfo::getComVel(){
1186 >  Vector3d SimInfo::getComVel(){
1187      SimInfo::MoleculeIterator i;
1188      Molecule* mol;
1189  
# Line 865 | Line 1192 | Vector3d SimInfo::getComVel(){
1192      
1193  
1194      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1195 <        double mass = mol->getMass();
1196 <        totalMass += mass;
1197 <        comVel += mass * mol->getComVel();
1195 >      double mass = mol->getMass();
1196 >      totalMass += mass;
1197 >      comVel += mass * mol->getComVel();
1198      }  
1199  
1200   #ifdef IS_MPI
# Line 880 | Line 1207 | Vector3d SimInfo::getComVel(){
1207      comVel /= totalMass;
1208  
1209      return comVel;
1210 < }
1210 >  }
1211  
1212 < Vector3d SimInfo::getCom(){
1212 >  Vector3d SimInfo::getCom(){
1213      SimInfo::MoleculeIterator i;
1214      Molecule* mol;
1215  
# Line 890 | Line 1217 | Vector3d SimInfo::getCom(){
1217      double totalMass = 0.0;
1218      
1219      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1220 <        double mass = mol->getMass();
1221 <        totalMass += mass;
1222 <        com += mass * mol->getCom();
1220 >      double mass = mol->getMass();
1221 >      totalMass += mass;
1222 >      com += mass * mol->getCom();
1223      }  
1224  
1225   #ifdef IS_MPI
# Line 906 | Line 1233 | Vector3d SimInfo::getCom(){
1233  
1234      return com;
1235  
1236 < }        
1236 >  }        
1237  
1238 < std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1238 >  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1239  
1240      return o;
1241 < }
1241 >  }
1242 >  
1243 >  
1244 >   /*
1245 >   Returns center of mass and center of mass velocity in one function call.
1246 >   */
1247 >  
1248 >   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1249 >      SimInfo::MoleculeIterator i;
1250 >      Molecule* mol;
1251 >      
1252 >    
1253 >      double totalMass = 0.0;
1254 >    
1255  
1256 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1257 +         double mass = mol->getMass();
1258 +         totalMass += mass;
1259 +         com += mass * mol->getCom();
1260 +         comVel += mass * mol->getComVel();          
1261 +      }  
1262 +      
1263 + #ifdef IS_MPI
1264 +      double tmpMass = totalMass;
1265 +      Vector3d tmpCom(com);  
1266 +      Vector3d tmpComVel(comVel);
1267 +      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1268 +      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1269 +      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1270 + #endif
1271 +      
1272 +      com /= totalMass;
1273 +      comVel /= totalMass;
1274 +   }        
1275 +  
1276 +   /*
1277 +   Return intertia tensor for entire system and angular momentum Vector.
1278 +
1279 +
1280 +       [  Ixx -Ixy  -Ixz ]
1281 +  J =| -Iyx  Iyy  -Iyz |
1282 +       [ -Izx -Iyz   Izz ]
1283 +    */
1284 +
1285 +   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1286 +      
1287 +
1288 +      double xx = 0.0;
1289 +      double yy = 0.0;
1290 +      double zz = 0.0;
1291 +      double xy = 0.0;
1292 +      double xz = 0.0;
1293 +      double yz = 0.0;
1294 +      Vector3d com(0.0);
1295 +      Vector3d comVel(0.0);
1296 +      
1297 +      getComAll(com, comVel);
1298 +      
1299 +      SimInfo::MoleculeIterator i;
1300 +      Molecule* mol;
1301 +      
1302 +      Vector3d thisq(0.0);
1303 +      Vector3d thisv(0.0);
1304 +
1305 +      double thisMass = 0.0;
1306 +    
1307 +      
1308 +      
1309 +  
1310 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1311 +        
1312 +         thisq = mol->getCom()-com;
1313 +         thisv = mol->getComVel()-comVel;
1314 +         thisMass = mol->getMass();
1315 +         // Compute moment of intertia coefficients.
1316 +         xx += thisq[0]*thisq[0]*thisMass;
1317 +         yy += thisq[1]*thisq[1]*thisMass;
1318 +         zz += thisq[2]*thisq[2]*thisMass;
1319 +        
1320 +         // compute products of intertia
1321 +         xy += thisq[0]*thisq[1]*thisMass;
1322 +         xz += thisq[0]*thisq[2]*thisMass;
1323 +         yz += thisq[1]*thisq[2]*thisMass;
1324 +            
1325 +         angularMomentum += cross( thisq, thisv ) * thisMass;
1326 +            
1327 +      }  
1328 +      
1329 +      
1330 +      inertiaTensor(0,0) = yy + zz;
1331 +      inertiaTensor(0,1) = -xy;
1332 +      inertiaTensor(0,2) = -xz;
1333 +      inertiaTensor(1,0) = -xy;
1334 +      inertiaTensor(1,1) = xx + zz;
1335 +      inertiaTensor(1,2) = -yz;
1336 +      inertiaTensor(2,0) = -xz;
1337 +      inertiaTensor(2,1) = -yz;
1338 +      inertiaTensor(2,2) = xx + yy;
1339 +      
1340 + #ifdef IS_MPI
1341 +      Mat3x3d tmpI(inertiaTensor);
1342 +      Vector3d tmpAngMom;
1343 +      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1344 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1345 + #endif
1346 +              
1347 +      return;
1348 +   }
1349 +
1350 +   //Returns the angular momentum of the system
1351 +   Vector3d SimInfo::getAngularMomentum(){
1352 +      
1353 +      Vector3d com(0.0);
1354 +      Vector3d comVel(0.0);
1355 +      Vector3d angularMomentum(0.0);
1356 +      
1357 +      getComAll(com,comVel);
1358 +      
1359 +      SimInfo::MoleculeIterator i;
1360 +      Molecule* mol;
1361 +      
1362 +      Vector3d thisr(0.0);
1363 +      Vector3d thisp(0.0);
1364 +      
1365 +      double thisMass;
1366 +      
1367 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1368 +        thisMass = mol->getMass();
1369 +        thisr = mol->getCom()-com;
1370 +        thisp = (mol->getComVel()-comVel)*thisMass;
1371 +        
1372 +        angularMomentum += cross( thisr, thisp );
1373 +        
1374 +      }  
1375 +      
1376 + #ifdef IS_MPI
1377 +      Vector3d tmpAngMom;
1378 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1379 + #endif
1380 +      
1381 +      return angularMomentum;
1382 +   }
1383 +  
1384 +  
1385   }//end namespace oopse
1386  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines