ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-2.0/src/brains/SimInfo.cpp
(Generate patch)

Comparing trunk/OOPSE-2.0/src/brains/SimInfo.cpp (file contents):
Revision 2082 by tim, Mon Mar 7 22:39:33 2005 UTC vs.
Revision 2328 by chuckv, Mon Sep 26 15:58:17 2005 UTC

# Line 1 | Line 1
1 < /*
1 > /*
2   * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
4   * The University of Notre Dame grants you ("Licensee") a
# Line 52 | Line 52
52   #include "brains/SimInfo.hpp"
53   #include "math/Vector3.hpp"
54   #include "primitives/Molecule.hpp"
55 + #include "UseTheForce/fCutoffPolicy.h"
56 + #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
57   #include "UseTheForce/doForces_interface.h"
58 + #include "UseTheForce/DarkSide/electrostatic_interface.h"
59   #include "UseTheForce/notifyCutoffs_interface.h"
60   #include "utils/MemoryUtils.hpp"
61   #include "utils/simError.h"
# Line 65 | Line 68 | SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*,
68  
69   namespace oopse {
70  
71 < SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
72 <                                ForceField* ff, Globals* simParams) :
73 <                                forceField_(ff), simParams_(simParams),
74 <                                ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
75 <                                nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
76 <                                nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
77 <                                nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
78 <                                nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
79 <                                sman_(NULL), fortranInitialized_(false), selectMan_(NULL) {
71 >  SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
72 >                   ForceField* ff, Globals* simParams) :
73 >    stamps_(stamps), forceField_(ff), simParams_(simParams),
74 >    ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
75 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
76 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
77 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
78 >    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
79 >    sman_(NULL), fortranInitialized_(false) {
80  
81              
82 <    std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
83 <    MoleculeStamp* molStamp;
84 <    int nMolWithSameStamp;
85 <    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
86 <    int nGroups = 0;          //total cutoff groups defined in meta-data file
87 <    CutoffGroupStamp* cgStamp;    
88 <    RigidBodyStamp* rbStamp;
89 <    int nRigidAtoms = 0;
82 >      std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
83 >      MoleculeStamp* molStamp;
84 >      int nMolWithSameStamp;
85 >      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
86 >      int nGroups = 0;          //total cutoff groups defined in meta-data file
87 >      CutoffGroupStamp* cgStamp;    
88 >      RigidBodyStamp* rbStamp;
89 >      int nRigidAtoms = 0;
90      
91 <    for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
91 >      for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
92          molStamp = i->first;
93          nMolWithSameStamp = i->second;
94          
# Line 100 | Line 103 | SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*,
103          int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
104          
105          for (int j=0; j < nCutoffGroupsInStamp; j++) {
106 <            cgStamp = molStamp->getCutoffGroup(j);
107 <            nAtomsInGroups += cgStamp->getNMembers();
106 >          cgStamp = molStamp->getCutoffGroup(j);
107 >          nAtomsInGroups += cgStamp->getNMembers();
108          }
109  
110          nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
# Line 112 | Line 115 | SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*,
115          int nRigidBodiesInStamp = molStamp->getNRigidBodies();
116          
117          for (int j=0; j < nRigidBodiesInStamp; j++) {
118 <            rbStamp = molStamp->getRigidBody(j);
119 <            nAtomsInRigidBodies += rbStamp->getNMembers();
118 >          rbStamp = molStamp->getRigidBody(j);
119 >          nAtomsInRigidBodies += rbStamp->getNMembers();
120          }
121  
122          nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
123          nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
124          
125 <    }
125 >      }
126  
127 <    //every free atom (atom does not belong to cutoff groups) is a cutoff group
128 <    //therefore the total number of cutoff groups in the system is equal to
129 <    //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
130 <    //file plus the number of cutoff groups defined in meta-data file
131 <    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
127 >      //every free atom (atom does not belong to cutoff groups) is a cutoff group
128 >      //therefore the total number of cutoff groups in the system is equal to
129 >      //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
130 >      //file plus the number of cutoff groups defined in meta-data file
131 >      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
132  
133 <    //every free atom (atom does not belong to rigid bodies) is an integrable object
134 <    //therefore the total number of  integrable objects in the system is equal to
135 <    //the total number of atoms minus number of atoms belong to  rigid body defined in meta-data
136 <    //file plus the number of  rigid bodies defined in meta-data file
137 <    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
133 >      //every free atom (atom does not belong to rigid bodies) is an integrable object
134 >      //therefore the total number of  integrable objects in the system is equal to
135 >      //the total number of atoms minus number of atoms belong to  rigid body defined in meta-data
136 >      //file plus the number of  rigid bodies defined in meta-data file
137 >      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
138  
139 <    nGlobalMols_ = molStampIds_.size();
139 >      nGlobalMols_ = molStampIds_.size();
140  
141   #ifdef IS_MPI    
142 <    molToProcMap_.resize(nGlobalMols_);
142 >      molToProcMap_.resize(nGlobalMols_);
143   #endif
144  
145 <    selectMan_ = new SelectionManager(this);
143 <    selectMan_->selectAll();
144 < }
145 >    }
146  
147 < SimInfo::~SimInfo() {
147 >  SimInfo::~SimInfo() {
148      std::map<int, Molecule*>::iterator i;
149      for (i = molecules_.begin(); i != molecules_.end(); ++i) {
150 <        delete i->second;
150 >      delete i->second;
151      }
152      molecules_.clear();
153 <    
154 <    MemoryUtils::deletePointers(moleculeStamps_);
154 <    
153 >      
154 >    delete stamps_;
155      delete sman_;
156      delete simParams_;
157      delete forceField_;
158 <    delete selectMan_;
159 < }
158 >  }
159  
160 < int SimInfo::getNGlobalConstraints() {
160 >  int SimInfo::getNGlobalConstraints() {
161      int nGlobalConstraints;
162   #ifdef IS_MPI
163      MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
# Line 167 | Line 166 | int SimInfo::getNGlobalConstraints() {
166      nGlobalConstraints =  nConstraints_;
167   #endif
168      return nGlobalConstraints;
169 < }
169 >  }
170  
171 < bool SimInfo::addMolecule(Molecule* mol) {
171 >  bool SimInfo::addMolecule(Molecule* mol) {
172      MoleculeIterator i;
173  
174      i = molecules_.find(mol->getGlobalIndex());
175      if (i == molecules_.end() ) {
176  
177 <        molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
177 >      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
178          
179 <        nAtoms_ += mol->getNAtoms();
180 <        nBonds_ += mol->getNBonds();
181 <        nBends_ += mol->getNBends();
182 <        nTorsions_ += mol->getNTorsions();
183 <        nRigidBodies_ += mol->getNRigidBodies();
184 <        nIntegrableObjects_ += mol->getNIntegrableObjects();
185 <        nCutoffGroups_ += mol->getNCutoffGroups();
186 <        nConstraints_ += mol->getNConstraintPairs();
179 >      nAtoms_ += mol->getNAtoms();
180 >      nBonds_ += mol->getNBonds();
181 >      nBends_ += mol->getNBends();
182 >      nTorsions_ += mol->getNTorsions();
183 >      nRigidBodies_ += mol->getNRigidBodies();
184 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
185 >      nCutoffGroups_ += mol->getNCutoffGroups();
186 >      nConstraints_ += mol->getNConstraintPairs();
187  
188 <        addExcludePairs(mol);
188 >      addExcludePairs(mol);
189          
190 <        return true;
190 >      return true;
191      } else {
192 <        return false;
192 >      return false;
193      }
194 < }
194 >  }
195  
196 < bool SimInfo::removeMolecule(Molecule* mol) {
196 >  bool SimInfo::removeMolecule(Molecule* mol) {
197      MoleculeIterator i;
198      i = molecules_.find(mol->getGlobalIndex());
199  
200      if (i != molecules_.end() ) {
201  
202 <        assert(mol == i->second);
202 >      assert(mol == i->second);
203          
204 <        nAtoms_ -= mol->getNAtoms();
205 <        nBonds_ -= mol->getNBonds();
206 <        nBends_ -= mol->getNBends();
207 <        nTorsions_ -= mol->getNTorsions();
208 <        nRigidBodies_ -= mol->getNRigidBodies();
209 <        nIntegrableObjects_ -= mol->getNIntegrableObjects();
210 <        nCutoffGroups_ -= mol->getNCutoffGroups();
211 <        nConstraints_ -= mol->getNConstraintPairs();
213 <
214 <        removeExcludePairs(mol);
215 <        molecules_.erase(mol->getGlobalIndex());
204 >      nAtoms_ -= mol->getNAtoms();
205 >      nBonds_ -= mol->getNBonds();
206 >      nBends_ -= mol->getNBends();
207 >      nTorsions_ -= mol->getNTorsions();
208 >      nRigidBodies_ -= mol->getNRigidBodies();
209 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
210 >      nCutoffGroups_ -= mol->getNCutoffGroups();
211 >      nConstraints_ -= mol->getNConstraintPairs();
212  
213 <        delete mol;
213 >      removeExcludePairs(mol);
214 >      molecules_.erase(mol->getGlobalIndex());
215 >
216 >      delete mol;
217          
218 <        return true;
218 >      return true;
219      } else {
220 <        return false;
220 >      return false;
221      }
222  
223  
224 < }    
224 >  }    
225  
226          
227 < Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
227 >  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
228      i = molecules_.begin();
229      return i == molecules_.end() ? NULL : i->second;
230 < }    
230 >  }    
231  
232 < Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
232 >  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
233      ++i;
234      return i == molecules_.end() ? NULL : i->second;    
235 < }
235 >  }
236  
237  
238 < void SimInfo::calcNdf() {
238 >  void SimInfo::calcNdf() {
239      int ndf_local;
240      MoleculeIterator i;
241      std::vector<StuntDouble*>::iterator j;
# Line 246 | Line 245 | void SimInfo::calcNdf() {
245      ndf_local = 0;
246      
247      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
248 <        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
249 <               integrableObject = mol->nextIntegrableObject(j)) {
248 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
249 >           integrableObject = mol->nextIntegrableObject(j)) {
250  
251 <            ndf_local += 3;
251 >        ndf_local += 3;
252  
253 <            if (integrableObject->isDirectional()) {
254 <                if (integrableObject->isLinear()) {
255 <                    ndf_local += 2;
256 <                } else {
257 <                    ndf_local += 3;
258 <                }
259 <            }
253 >        if (integrableObject->isDirectional()) {
254 >          if (integrableObject->isLinear()) {
255 >            ndf_local += 2;
256 >          } else {
257 >            ndf_local += 3;
258 >          }
259 >        }
260              
261 <        }//end for (integrableObject)
261 >      }//end for (integrableObject)
262      }// end for (mol)
263      
264      // n_constraints is local, so subtract them on each processor
# Line 275 | Line 274 | void SimInfo::calcNdf() {
274      // entire system:
275      ndf_ = ndf_ - 3 - nZconstraint_;
276  
277 < }
277 >  }
278  
279 < void SimInfo::calcNdfRaw() {
279 >  void SimInfo::calcNdfRaw() {
280      int ndfRaw_local;
281  
282      MoleculeIterator i;
# Line 289 | Line 288 | void SimInfo::calcNdfRaw() {
288      ndfRaw_local = 0;
289      
290      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
291 <        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
292 <               integrableObject = mol->nextIntegrableObject(j)) {
291 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
292 >           integrableObject = mol->nextIntegrableObject(j)) {
293  
294 <            ndfRaw_local += 3;
294 >        ndfRaw_local += 3;
295  
296 <            if (integrableObject->isDirectional()) {
297 <                if (integrableObject->isLinear()) {
298 <                    ndfRaw_local += 2;
299 <                } else {
300 <                    ndfRaw_local += 3;
301 <                }
302 <            }
296 >        if (integrableObject->isDirectional()) {
297 >          if (integrableObject->isLinear()) {
298 >            ndfRaw_local += 2;
299 >          } else {
300 >            ndfRaw_local += 3;
301 >          }
302 >        }
303              
304 <        }
304 >      }
305      }
306      
307   #ifdef IS_MPI
# Line 310 | Line 309 | void SimInfo::calcNdfRaw() {
309   #else
310      ndfRaw_ = ndfRaw_local;
311   #endif
312 < }
312 >  }
313  
314 < void SimInfo::calcNdfTrans() {
314 >  void SimInfo::calcNdfTrans() {
315      int ndfTrans_local;
316  
317      ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
# Line 326 | Line 325 | void SimInfo::calcNdfTrans() {
325  
326      ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
327  
328 < }
328 >  }
329  
330 < void SimInfo::addExcludePairs(Molecule* mol) {
330 >  void SimInfo::addExcludePairs(Molecule* mol) {
331      std::vector<Bond*>::iterator bondIter;
332      std::vector<Bend*>::iterator bendIter;
333      std::vector<Torsion*>::iterator torsionIter;
# Line 341 | Line 340 | void SimInfo::addExcludePairs(Molecule* mol) {
340      int d;
341      
342      for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
343 <        a = bond->getAtomA()->getGlobalIndex();
344 <        b = bond->getAtomB()->getGlobalIndex();        
345 <        exclude_.addPair(a, b);
343 >      a = bond->getAtomA()->getGlobalIndex();
344 >      b = bond->getAtomB()->getGlobalIndex();        
345 >      exclude_.addPair(a, b);
346      }
347  
348      for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
349 <        a = bend->getAtomA()->getGlobalIndex();
350 <        b = bend->getAtomB()->getGlobalIndex();        
351 <        c = bend->getAtomC()->getGlobalIndex();
349 >      a = bend->getAtomA()->getGlobalIndex();
350 >      b = bend->getAtomB()->getGlobalIndex();        
351 >      c = bend->getAtomC()->getGlobalIndex();
352  
353 <        exclude_.addPair(a, b);
354 <        exclude_.addPair(a, c);
355 <        exclude_.addPair(b, c);        
353 >      exclude_.addPair(a, b);
354 >      exclude_.addPair(a, c);
355 >      exclude_.addPair(b, c);        
356      }
357  
358      for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
359 <        a = torsion->getAtomA()->getGlobalIndex();
360 <        b = torsion->getAtomB()->getGlobalIndex();        
361 <        c = torsion->getAtomC()->getGlobalIndex();        
362 <        d = torsion->getAtomD()->getGlobalIndex();        
359 >      a = torsion->getAtomA()->getGlobalIndex();
360 >      b = torsion->getAtomB()->getGlobalIndex();        
361 >      c = torsion->getAtomC()->getGlobalIndex();        
362 >      d = torsion->getAtomD()->getGlobalIndex();        
363  
364 <        exclude_.addPair(a, b);
365 <        exclude_.addPair(a, c);
366 <        exclude_.addPair(a, d);
367 <        exclude_.addPair(b, c);
368 <        exclude_.addPair(b, d);
369 <        exclude_.addPair(c, d);        
364 >      exclude_.addPair(a, b);
365 >      exclude_.addPair(a, c);
366 >      exclude_.addPair(a, d);
367 >      exclude_.addPair(b, c);
368 >      exclude_.addPair(b, d);
369 >      exclude_.addPair(c, d);        
370      }
371  
372 <    
373 < }
372 >    Molecule::RigidBodyIterator rbIter;
373 >    RigidBody* rb;
374 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
375 >      std::vector<Atom*> atoms = rb->getAtoms();
376 >      for (int i = 0; i < atoms.size() -1 ; ++i) {
377 >        for (int j = i + 1; j < atoms.size(); ++j) {
378 >          a = atoms[i]->getGlobalIndex();
379 >          b = atoms[j]->getGlobalIndex();
380 >          exclude_.addPair(a, b);
381 >        }
382 >      }
383 >    }        
384  
385 < void SimInfo::removeExcludePairs(Molecule* mol) {
385 >  }
386 >
387 >  void SimInfo::removeExcludePairs(Molecule* mol) {
388      std::vector<Bond*>::iterator bondIter;
389      std::vector<Bend*>::iterator bendIter;
390      std::vector<Torsion*>::iterator torsionIter;
# Line 386 | Line 397 | void SimInfo::removeExcludePairs(Molecule* mol) {
397      int d;
398      
399      for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
400 <        a = bond->getAtomA()->getGlobalIndex();
401 <        b = bond->getAtomB()->getGlobalIndex();        
402 <        exclude_.removePair(a, b);
400 >      a = bond->getAtomA()->getGlobalIndex();
401 >      b = bond->getAtomB()->getGlobalIndex();        
402 >      exclude_.removePair(a, b);
403      }
404  
405      for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
406 <        a = bend->getAtomA()->getGlobalIndex();
407 <        b = bend->getAtomB()->getGlobalIndex();        
408 <        c = bend->getAtomC()->getGlobalIndex();
406 >      a = bend->getAtomA()->getGlobalIndex();
407 >      b = bend->getAtomB()->getGlobalIndex();        
408 >      c = bend->getAtomC()->getGlobalIndex();
409  
410 <        exclude_.removePair(a, b);
411 <        exclude_.removePair(a, c);
412 <        exclude_.removePair(b, c);        
410 >      exclude_.removePair(a, b);
411 >      exclude_.removePair(a, c);
412 >      exclude_.removePair(b, c);        
413      }
414  
415      for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
416 <        a = torsion->getAtomA()->getGlobalIndex();
417 <        b = torsion->getAtomB()->getGlobalIndex();        
418 <        c = torsion->getAtomC()->getGlobalIndex();        
419 <        d = torsion->getAtomD()->getGlobalIndex();        
416 >      a = torsion->getAtomA()->getGlobalIndex();
417 >      b = torsion->getAtomB()->getGlobalIndex();        
418 >      c = torsion->getAtomC()->getGlobalIndex();        
419 >      d = torsion->getAtomD()->getGlobalIndex();        
420  
421 <        exclude_.removePair(a, b);
422 <        exclude_.removePair(a, c);
423 <        exclude_.removePair(a, d);
424 <        exclude_.removePair(b, c);
425 <        exclude_.removePair(b, d);
426 <        exclude_.removePair(c, d);        
421 >      exclude_.removePair(a, b);
422 >      exclude_.removePair(a, c);
423 >      exclude_.removePair(a, d);
424 >      exclude_.removePair(b, c);
425 >      exclude_.removePair(b, d);
426 >      exclude_.removePair(c, d);        
427      }
428  
429 < }
429 >    Molecule::RigidBodyIterator rbIter;
430 >    RigidBody* rb;
431 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
432 >      std::vector<Atom*> atoms = rb->getAtoms();
433 >      for (int i = 0; i < atoms.size() -1 ; ++i) {
434 >        for (int j = i + 1; j < atoms.size(); ++j) {
435 >          a = atoms[i]->getGlobalIndex();
436 >          b = atoms[j]->getGlobalIndex();
437 >          exclude_.removePair(a, b);
438 >        }
439 >      }
440 >    }        
441  
442 +  }
443  
444 < void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
444 >
445 >  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
446      int curStampId;
447  
448      //index from 0
# Line 426 | Line 450 | void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp
450  
451      moleculeStamps_.push_back(molStamp);
452      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
453 < }
453 >  }
454  
455 < void SimInfo::update() {
455 >  void SimInfo::update() {
456  
457      setupSimType();
458  
# Line 441 | Line 465 | void SimInfo::update() {
465      //setup fortran force field
466      /** @deprecate */    
467      int isError = 0;
468 <    initFortranFF( &fInfo_.SIM_uses_RF , &isError );
468 >    
469 >    setupElectrostaticSummationMethod( isError );
470 >
471      if(isError){
472 <        sprintf( painCave.errMsg,
473 <         "ForceField error: There was an error initializing the forceField in fortran.\n" );
474 <        painCave.isFatal = 1;
475 <        simError();
472 >      sprintf( painCave.errMsg,
473 >               "ForceField error: There was an error initializing the forceField in fortran.\n" );
474 >      painCave.isFatal = 1;
475 >      simError();
476      }
477    
478      
# Line 457 | Line 483 | void SimInfo::update() {
483      calcNdfTrans();
484  
485      fortranInitialized_ = true;
486 < }
486 >  }
487  
488 < std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
488 >  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
489      SimInfo::MoleculeIterator mi;
490      Molecule* mol;
491      Molecule::AtomIterator ai;
# Line 468 | Line 494 | std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
494  
495      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
496  
497 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
498 <            atomTypes.insert(atom->getAtomType());
499 <        }
497 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
498 >        atomTypes.insert(atom->getAtomType());
499 >      }
500          
501      }
502  
503      return atomTypes;        
504 < }
504 >  }
505  
506 < void SimInfo::setupSimType() {
506 >  void SimInfo::setupSimType() {
507      std::set<AtomType*>::iterator i;
508      std::set<AtomType*> atomTypes;
509      atomTypes = getUniqueAtomTypes();
# Line 490 | Line 516 | void SimInfo::setupSimType() {
516      int useDipole = 0;
517      int useGayBerne = 0;
518      int useSticky = 0;
519 +    int useStickyPower = 0;
520      int useShape = 0;
521      int useFLARB = 0; //it is not in AtomType yet
522      int useDirectionalAtom = 0;    
523      int useElectrostatics = 0;
524      //usePBC and useRF are from simParams
525      int usePBC = simParams_->getPBC();
526 <    int useRF = simParams_->getUseRF();
526 >    int useRF;
527  
528 +    // set the useRF logical
529 +    std::string myMethod = simParams_->getElectrostaticSummationMethod();
530 +    if (myMethod == "REACTION_FIELD")
531 +      useRF = 1;
532 +    else
533 +      useRF = 0;
534 +
535      //loop over all of the atom types
536      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
537 <        useLennardJones |= (*i)->isLennardJones();
538 <        useElectrostatic |= (*i)->isElectrostatic();
539 <        useEAM |= (*i)->isEAM();
540 <        useCharge |= (*i)->isCharge();
541 <        useDirectional |= (*i)->isDirectional();
542 <        useDipole |= (*i)->isDipole();
543 <        useGayBerne |= (*i)->isGayBerne();
544 <        useSticky |= (*i)->isSticky();
545 <        useShape |= (*i)->isShape();
537 >      useLennardJones |= (*i)->isLennardJones();
538 >      useElectrostatic |= (*i)->isElectrostatic();
539 >      useEAM |= (*i)->isEAM();
540 >      useCharge |= (*i)->isCharge();
541 >      useDirectional |= (*i)->isDirectional();
542 >      useDipole |= (*i)->isDipole();
543 >      useGayBerne |= (*i)->isGayBerne();
544 >      useSticky |= (*i)->isSticky();
545 >      useStickyPower |= (*i)->isStickyPower();
546 >      useShape |= (*i)->isShape();
547      }
548  
549 <    if (useSticky || useDipole || useGayBerne || useShape) {
550 <        useDirectionalAtom = 1;
549 >    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
550 >      useDirectionalAtom = 1;
551      }
552  
553      if (useCharge || useDipole) {
554 <        useElectrostatics = 1;
554 >      useElectrostatics = 1;
555      }
556  
557   #ifdef IS_MPI    
# Line 543 | Line 578 | void SimInfo::setupSimType() {
578      temp = useSticky;
579      MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
580  
581 +    temp = useStickyPower;
582 +    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
583 +    
584      temp = useGayBerne;
585      MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
586  
# Line 557 | Line 595 | void SimInfo::setupSimType() {
595  
596      temp = useRF;
597      MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
598 <    
598 >
599   #endif
600  
601      fInfo_.SIM_uses_PBC = usePBC;    
# Line 567 | Line 605 | void SimInfo::setupSimType() {
605      fInfo_.SIM_uses_Charges = useCharge;
606      fInfo_.SIM_uses_Dipoles = useDipole;
607      fInfo_.SIM_uses_Sticky = useSticky;
608 +    fInfo_.SIM_uses_StickyPower = useStickyPower;
609      fInfo_.SIM_uses_GayBerne = useGayBerne;
610      fInfo_.SIM_uses_EAM = useEAM;
611      fInfo_.SIM_uses_Shapes = useShape;
612      fInfo_.SIM_uses_FLARB = useFLARB;
613      fInfo_.SIM_uses_RF = useRF;
614  
615 <    if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
615 >    if( fInfo_.SIM_uses_Dipoles && myMethod == "REACTION_FIELD") {
616  
617 <        if (simParams_->haveDielectric()) {
618 <            fInfo_.dielect = simParams_->getDielectric();
619 <        } else {
620 <            sprintf(painCave.errMsg,
621 <                    "SimSetup Error: No Dielectric constant was set.\n"
622 <                    "\tYou are trying to use Reaction Field without"
623 <                    "\tsetting a dielectric constant!\n");
624 <            painCave.isFatal = 1;
625 <            simError();
626 <        }
617 >      if (simParams_->haveDielectric()) {
618 >        fInfo_.dielect = simParams_->getDielectric();
619 >      } else {
620 >        sprintf(painCave.errMsg,
621 >                "SimSetup Error: No Dielectric constant was set.\n"
622 >                "\tYou are trying to use Reaction Field without"
623 >                "\tsetting a dielectric constant!\n");
624 >        painCave.isFatal = 1;
625 >        simError();
626 >      }
627          
628      } else {
629 <        fInfo_.dielect = 0.0;
629 >      fInfo_.dielect = 0.0;
630      }
631  
632 < }
632 >  }
633  
634 < void SimInfo::setupFortranSim() {
634 >  void SimInfo::setupFortranSim() {
635      int isError;
636      int nExclude;
637      std::vector<int> fortranGlobalGroupMembership;
# Line 602 | Line 641 | void SimInfo::setupFortranSim() {
641  
642      //globalGroupMembership_ is filled by SimCreator    
643      for (int i = 0; i < nGlobalAtoms_; i++) {
644 <        fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
644 >      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
645      }
646  
647      //calculate mass ratio of cutoff group
# Line 619 | Line 658 | void SimInfo::setupFortranSim() {
658      mfact.reserve(getNCutoffGroups());
659      
660      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
661 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
661 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
662  
663 <            totalMass = cg->getMass();
664 <            for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
665 <                        mfact.push_back(atom->getMass()/totalMass);
666 <            }
663 >        totalMass = cg->getMass();
664 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
665 >          mfact.push_back(atom->getMass()/totalMass);
666 >        }
667  
668 <        }      
668 >      }      
669      }
670  
671      //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
# Line 636 | Line 675 | void SimInfo::setupFortranSim() {
675      identArray.reserve(getNAtoms());
676      
677      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
678 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
679 <            identArray.push_back(atom->getIdent());
680 <        }
678 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
679 >        identArray.push_back(atom->getIdent());
680 >      }
681      }    
682  
683      //fill molMembershipArray
684      //molMembershipArray is filled by SimCreator    
685      std::vector<int> molMembershipArray(nGlobalAtoms_);
686      for (int i = 0; i < nGlobalAtoms_; i++) {
687 <        molMembershipArray[i] = globalMolMembership_[i] + 1;
687 >      molMembershipArray[i] = globalMolMembership_[i] + 1;
688      }
689      
690      //setup fortran simulation
652    //gloalExcludes and molMembershipArray should go away (They are never used)
653    //why the hell fortran need to know molecule?
654    //OOPSE = Object-Obfuscated Parallel Simulation Engine
691      int nGlobalExcludes = 0;
692      int* globalExcludes = NULL;
693      int* excludeList = exclude_.getExcludeList();
694      setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
695 <                  &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
696 <                  &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
695 >                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
696 >                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
697  
698      if( isError ){
699  
700 <        sprintf( painCave.errMsg,
701 <                 "There was an error setting the simulation information in fortran.\n" );
702 <        painCave.isFatal = 1;
703 <        painCave.severity = OOPSE_ERROR;
704 <        simError();
700 >      sprintf( painCave.errMsg,
701 >               "There was an error setting the simulation information in fortran.\n" );
702 >      painCave.isFatal = 1;
703 >      painCave.severity = OOPSE_ERROR;
704 >      simError();
705      }
706  
707   #ifdef IS_MPI
708      sprintf( checkPointMsg,
709 <       "succesfully sent the simulation information to fortran.\n");
709 >             "succesfully sent the simulation information to fortran.\n");
710      MPIcheckPoint();
711   #endif // is_mpi
712 < }
712 >  }
713  
714  
715   #ifdef IS_MPI
716 < void SimInfo::setupFortranParallel() {
716 >  void SimInfo::setupFortranParallel() {
717      
718      //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
719      std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
# Line 693 | Line 729 | void SimInfo::setupFortranParallel() {
729  
730      for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
731  
732 <        //local index(index in DataStorge) of atom is important
733 <        for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
734 <            localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
735 <        }
732 >      //local index(index in DataStorge) of atom is important
733 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
734 >        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
735 >      }
736  
737 <        //local index of cutoff group is trivial, it only depends on the order of travesing
738 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
739 <            localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
740 <        }        
737 >      //local index of cutoff group is trivial, it only depends on the order of travesing
738 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
739 >        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
740 >      }        
741          
742      }
743  
# Line 721 | Line 757 | void SimInfo::setupFortranParallel() {
757                      &localToGlobalCutoffGroupIndex[0], &isError);
758  
759      if (isError) {
760 <        sprintf(painCave.errMsg,
761 <                "mpiRefresh errror: fortran didn't like something we gave it.\n");
762 <        painCave.isFatal = 1;
763 <        simError();
760 >      sprintf(painCave.errMsg,
761 >              "mpiRefresh errror: fortran didn't like something we gave it.\n");
762 >      painCave.isFatal = 1;
763 >      simError();
764      }
765  
766      sprintf(checkPointMsg, " mpiRefresh successful.\n");
767      MPIcheckPoint();
768  
769  
770 < }
770 >  }
771  
772   #endif
773  
774 < double SimInfo::calcMaxCutoffRadius() {
774 >  double SimInfo::calcMaxCutoffRadius() {
775  
776  
777      std::set<AtomType*> atomTypes;
# Line 747 | Line 783 | double SimInfo::calcMaxCutoffRadius() {
783  
784      //query the max cutoff radius among these atom types
785      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
786 <        cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
786 >      cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
787      }
788  
789      double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
# Line 756 | Line 792 | double SimInfo::calcMaxCutoffRadius() {
792   #endif
793  
794      return maxCutoffRadius;
795 < }
795 >  }
796  
797 < void SimInfo::getCutoff(double& rcut, double& rsw) {
797 >  void SimInfo::getCutoff(double& rcut, double& rsw) {
798      
799      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
800          
801 <        if (!simParams_->haveRcut()){
802 <            sprintf(painCave.errMsg,
801 >      if (!simParams_->haveRcut()){
802 >        sprintf(painCave.errMsg,
803                  "SimCreator Warning: No value was set for the cutoffRadius.\n"
804                  "\tOOPSE will use a default value of 15.0 angstroms"
805                  "\tfor the cutoffRadius.\n");
806 <            painCave.isFatal = 0;
807 <            simError();
808 <            rcut = 15.0;
809 <        } else{
810 <            rcut = simParams_->getRcut();
811 <        }
806 >        painCave.isFatal = 0;
807 >        simError();
808 >        rcut = 15.0;
809 >      } else{
810 >        rcut = simParams_->getRcut();
811 >      }
812  
813 <        if (!simParams_->haveRsw()){
814 <            sprintf(painCave.errMsg,
813 >      if (!simParams_->haveRsw()){
814 >        sprintf(painCave.errMsg,
815                  "SimCreator Warning: No value was set for switchingRadius.\n"
816                  "\tOOPSE will use a default value of\n"
817                  "\t0.95 * cutoffRadius for the switchingRadius\n");
818 <            painCave.isFatal = 0;
819 <            simError();
820 <            rsw = 0.95 * rcut;
821 <        } else{
822 <            rsw = simParams_->getRsw();
823 <        }
818 >        painCave.isFatal = 0;
819 >        simError();
820 >        rsw = 0.95 * rcut;
821 >      } else{
822 >        rsw = simParams_->getRsw();
823 >      }
824  
825      } else {
826 <        // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
827 <        //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
826 >      // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
827 >      //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
828          
829 <        if (simParams_->haveRcut()) {
830 <            rcut = simParams_->getRcut();
831 <        } else {
832 <            //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
833 <            rcut = calcMaxCutoffRadius();
834 <        }
829 >      if (simParams_->haveRcut()) {
830 >        rcut = simParams_->getRcut();
831 >      } else {
832 >        //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
833 >        rcut = calcMaxCutoffRadius();
834 >      }
835  
836 <        if (simParams_->haveRsw()) {
837 <            rsw  = simParams_->getRsw();
838 <        } else {
839 <            rsw = rcut;
840 <        }
836 >      if (simParams_->haveRsw()) {
837 >        rsw  = simParams_->getRsw();
838 >      } else {
839 >        rsw = rcut;
840 >      }
841      
842      }
843 < }
843 >  }
844  
845 < void SimInfo::setupCutoff() {
845 >  void SimInfo::setupCutoff() {    
846      getCutoff(rcut_, rsw_);    
847      double rnblist = rcut_ + 1; // skin of neighbor list
848  
849      //Pass these cutoff radius etc. to fortran. This function should be called once and only once
850 <    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist);
851 < }
850 >    
851 >    int cp =  TRADITIONAL_CUTOFF_POLICY;
852 >    if (simParams_->haveCutoffPolicy()) {
853 >      std::string myPolicy = simParams_->getCutoffPolicy();
854 >      if (myPolicy == "MIX") {
855 >        cp = MIX_CUTOFF_POLICY;
856 >      } else {
857 >        if (myPolicy == "MAX") {
858 >          cp = MAX_CUTOFF_POLICY;
859 >        } else {
860 >          if (myPolicy == "TRADITIONAL") {            
861 >            cp = TRADITIONAL_CUTOFF_POLICY;
862 >          } else {
863 >            // throw error        
864 >            sprintf( painCave.errMsg,
865 >                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
866 >            painCave.isFatal = 1;
867 >            simError();
868 >          }    
869 >        }          
870 >      }
871 >    }
872  
873 < void SimInfo::addProperty(GenericData* genData) {
873 >
874 >    if (simParams_->haveSkinThickness()) {
875 >      double skinThickness = simParams_->getSkinThickness();
876 >    }
877 >
878 >    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist, &cp);
879 >    // also send cutoff notification to electrostatics
880 >    setElectrostaticCutoffRadius(&rcut_);
881 >  }
882 >
883 >  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
884 >    
885 >    int errorOut;
886 >    int esm =  NONE;
887 >    double alphaVal;
888 >    double dielectric;
889 >
890 >    errorOut = isError;
891 >    alphaVal = simParams_->getDampingAlpha();
892 >    dielectric = simParams_->getDielectric();
893 >
894 >    if (simParams_->haveElectrostaticSummationMethod()) {
895 >      std::string myMethod = simParams_->getElectrostaticSummationMethod();
896 >      if (myMethod == "NONE") {
897 >        esm = NONE;
898 >      } else {
899 >        if (myMethod == "UNDAMPED_WOLF") {
900 >          esm = UNDAMPED_WOLF;
901 >        } else {
902 >          if (myMethod == "DAMPED_WOLF") {            
903 >            esm = DAMPED_WOLF;
904 >            if (!simParams_->haveDampingAlpha()) {
905 >              //throw error
906 >              sprintf( painCave.errMsg,
907 >                       "SimInfo warning: dampingAlpha was not specified in the input file. A default value of %f (1/ang) will be used for the Damped Wolf Method.", alphaVal);
908 >              painCave.isFatal = 0;
909 >              simError();
910 >            }
911 >          } else {
912 >            if (myMethod == "REACTION_FIELD") {
913 >              esm = REACTION_FIELD;
914 >            } else {
915 >              // throw error        
916 >              sprintf( painCave.errMsg,
917 >                       "SimInfo error: Unknown electrostaticSummationMethod. (Input file specified %s .)\n\telectrostaticSummationMethod must be one of: \"none\", \"undamped_wolf\", \"damped_wolf\", or \"reaction_field\".", myMethod.c_str() );
918 >              painCave.isFatal = 1;
919 >              simError();
920 >            }    
921 >          }          
922 >        }
923 >      }
924 >    }
925 >    // let's pass some summation method variables to fortran
926 >    setElectrostaticSummationMethod( &esm );
927 >    setDampedWolfAlpha( &alphaVal );
928 >    setReactionFieldDielectric( &dielectric );
929 >    initFortranFF( &esm, &errorOut );
930 >  }
931 >
932 >  void SimInfo::addProperty(GenericData* genData) {
933      properties_.addProperty(genData);  
934 < }
934 >  }
935  
936 < void SimInfo::removeProperty(const std::string& propName) {
936 >  void SimInfo::removeProperty(const std::string& propName) {
937      properties_.removeProperty(propName);  
938 < }
938 >  }
939  
940 < void SimInfo::clearProperties() {
940 >  void SimInfo::clearProperties() {
941      properties_.clearProperties();
942 < }
942 >  }
943  
944 < std::vector<std::string> SimInfo::getPropertyNames() {
944 >  std::vector<std::string> SimInfo::getPropertyNames() {
945      return properties_.getPropertyNames();  
946 < }
946 >  }
947        
948 < std::vector<GenericData*> SimInfo::getProperties() {
948 >  std::vector<GenericData*> SimInfo::getProperties() {
949      return properties_.getProperties();
950 < }
950 >  }
951  
952 < GenericData* SimInfo::getPropertyByName(const std::string& propName) {
952 >  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
953      return properties_.getPropertyByName(propName);
954 < }
954 >  }
955  
956 < void SimInfo::setSnapshotManager(SnapshotManager* sman) {
957 <    //if (sman_ == sman_) {
958 <    //    return;
959 <    //}
960 <    
846 <    //delete sman_;
956 >  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
957 >    if (sman_ == sman) {
958 >      return;
959 >    }    
960 >    delete sman_;
961      sman_ = sman;
962  
963      Molecule* mol;
# Line 855 | Line 969 | void SimInfo::setSnapshotManager(SnapshotManager* sman
969  
970      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
971          
972 <        for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
973 <            atom->setSnapshotManager(sman_);
974 <        }
972 >      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
973 >        atom->setSnapshotManager(sman_);
974 >      }
975          
976 <        for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
977 <            rb->setSnapshotManager(sman_);
978 <        }
976 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
977 >        rb->setSnapshotManager(sman_);
978 >      }
979      }    
980      
981 < }
981 >  }
982  
983 < Vector3d SimInfo::getComVel(){
983 >  Vector3d SimInfo::getComVel(){
984      SimInfo::MoleculeIterator i;
985      Molecule* mol;
986  
# Line 875 | Line 989 | Vector3d SimInfo::getComVel(){
989      
990  
991      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
992 <        double mass = mol->getMass();
993 <        totalMass += mass;
994 <        comVel += mass * mol->getComVel();
992 >      double mass = mol->getMass();
993 >      totalMass += mass;
994 >      comVel += mass * mol->getComVel();
995      }  
996  
997   #ifdef IS_MPI
# Line 890 | Line 1004 | Vector3d SimInfo::getComVel(){
1004      comVel /= totalMass;
1005  
1006      return comVel;
1007 < }
1007 >  }
1008  
1009 < Vector3d SimInfo::getCom(){
1009 >  Vector3d SimInfo::getCom(){
1010      SimInfo::MoleculeIterator i;
1011      Molecule* mol;
1012  
# Line 900 | Line 1014 | Vector3d SimInfo::getCom(){
1014      double totalMass = 0.0;
1015      
1016      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1017 <        double mass = mol->getMass();
1018 <        totalMass += mass;
1019 <        com += mass * mol->getCom();
1017 >      double mass = mol->getMass();
1018 >      totalMass += mass;
1019 >      com += mass * mol->getCom();
1020      }  
1021  
1022   #ifdef IS_MPI
# Line 916 | Line 1030 | Vector3d SimInfo::getCom(){
1030  
1031      return com;
1032  
1033 < }        
1033 >  }        
1034  
1035 < std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1035 >  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1036  
1037      return o;
1038 < }
1038 >  }
1039 >  
1040 >  
1041 >   /*
1042 >   Returns center of mass and center of mass velocity in one function call.
1043 >   */
1044 >  
1045 >   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1046 >      SimInfo::MoleculeIterator i;
1047 >      Molecule* mol;
1048 >      
1049 >    
1050 >      double totalMass = 0.0;
1051 >    
1052  
1053 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1054 +         double mass = mol->getMass();
1055 +         totalMass += mass;
1056 +         com += mass * mol->getCom();
1057 +         comVel += mass * mol->getComVel();          
1058 +      }  
1059 +      
1060 + #ifdef IS_MPI
1061 +      double tmpMass = totalMass;
1062 +      Vector3d tmpCom(com);  
1063 +      Vector3d tmpComVel(comVel);
1064 +      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1065 +      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1066 +      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1067 + #endif
1068 +      
1069 +      com /= totalMass;
1070 +      comVel /= totalMass;
1071 +   }        
1072 +  
1073 +   /*
1074 +   Return intertia tensor for entire system and angular momentum Vector.
1075 +
1076 +
1077 +       [  Ixx -Ixy  -Ixz ]
1078 +  J =| -Iyx  Iyy  -Iyz |
1079 +       [ -Izx -Iyz   Izz ]
1080 +    */
1081 +
1082 +   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1083 +      
1084 +
1085 +      double xx = 0.0;
1086 +      double yy = 0.0;
1087 +      double zz = 0.0;
1088 +      double xy = 0.0;
1089 +      double xz = 0.0;
1090 +      double yz = 0.0;
1091 +      Vector3d com(0.0);
1092 +      Vector3d comVel(0.0);
1093 +      
1094 +      getComAll(com, comVel);
1095 +      
1096 +      SimInfo::MoleculeIterator i;
1097 +      Molecule* mol;
1098 +      
1099 +      Vector3d thisq(0.0);
1100 +      Vector3d thisv(0.0);
1101 +
1102 +      double thisMass = 0.0;
1103 +    
1104 +      
1105 +      
1106 +  
1107 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1108 +        
1109 +         thisq = mol->getCom()-com;
1110 +         thisv = mol->getComVel()-comVel;
1111 +         thisMass = mol->getMass();
1112 +         // Compute moment of intertia coefficients.
1113 +         xx += thisq[0]*thisq[0]*thisMass;
1114 +         yy += thisq[1]*thisq[1]*thisMass;
1115 +         zz += thisq[2]*thisq[2]*thisMass;
1116 +        
1117 +         // compute products of intertia
1118 +         xy += thisq[0]*thisq[1]*thisMass;
1119 +         xz += thisq[0]*thisq[2]*thisMass;
1120 +         yz += thisq[1]*thisq[2]*thisMass;
1121 +            
1122 +         angularMomentum += cross( thisq, thisv ) * thisMass;
1123 +            
1124 +      }  
1125 +      
1126 +      
1127 +      inertiaTensor(0,0) = yy + zz;
1128 +      inertiaTensor(0,1) = -xy;
1129 +      inertiaTensor(0,2) = -xz;
1130 +      inertiaTensor(1,0) = -xy;
1131 +      inertiaTensor(1,1) = xx + zz;
1132 +      inertiaTensor(1,2) = -yz;
1133 +      inertiaTensor(2,0) = -xz;
1134 +      inertiaTensor(2,1) = -yz;
1135 +      inertiaTensor(2,2) = xx + yy;
1136 +      
1137 + #ifdef IS_MPI
1138 +      Mat3x3d tmpI(inertiaTensor);
1139 +      Vector3d tmpAngMom;
1140 +      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1141 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1142 + #endif
1143 +              
1144 +      return;
1145 +   }
1146 +
1147 +   //Returns the angular momentum of the system
1148 +   Vector3d SimInfo::getAngularMomentum(){
1149 +      
1150 +      Vector3d com(0.0);
1151 +      Vector3d comVel(0.0);
1152 +      Vector3d angularMomentum(0.0);
1153 +      
1154 +      getComAll(com,comVel);
1155 +      
1156 +      SimInfo::MoleculeIterator i;
1157 +      Molecule* mol;
1158 +      
1159 +      Vector3d thisr(0.0);
1160 +      Vector3d thisp(0.0);
1161 +      
1162 +      double thisMass;
1163 +      
1164 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1165 +        thisMass = mol->getMass();
1166 +        thisr = mol->getCom()-com;
1167 +        thisp = (mol->getComVel()-comVel)*thisMass;
1168 +        
1169 +        angularMomentum += cross( thisr, thisp );
1170 +        
1171 +      }  
1172 +      
1173 + #ifdef IS_MPI
1174 +      Vector3d tmpAngMom;
1175 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1176 + #endif
1177 +      
1178 +      return angularMomentum;
1179 +   }
1180 +  
1181 +  
1182   }//end namespace oopse
1183  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines