ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-2.0/src/brains/SimInfo.cpp
(Generate patch)

Comparing trunk/OOPSE-2.0/src/brains/SimInfo.cpp (file contents):
Revision 1492 by tim, Fri Sep 24 16:27:58 2004 UTC vs.
Revision 2252 by chuckv, Mon May 30 14:01:52 2005 UTC

# Line 1 | Line 1
1 < #include <stdlib.h>
2 < #include <string.h>
3 < #include <math.h>
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Acknowledgement of the program authors must be made in any
10 > *    publication of scientific results based in part on use of the
11 > *    program.  An acceptable form of acknowledgement is citation of
12 > *    the article in which the program was described (Matthew
13 > *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 > *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 > *    Parallel Simulation Engine for Molecular Dynamics,"
16 > *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 > *
18 > * 2. Redistributions of source code must retain the above copyright
19 > *    notice, this list of conditions and the following disclaimer.
20 > *
21 > * 3. Redistributions in binary form must reproduce the above copyright
22 > *    notice, this list of conditions and the following disclaimer in the
23 > *    documentation and/or other materials provided with the
24 > *    distribution.
25 > *
26 > * This software is provided "AS IS," without a warranty of any
27 > * kind. All express or implied conditions, representations and
28 > * warranties, including any implied warranty of merchantability,
29 > * fitness for a particular purpose or non-infringement, are hereby
30 > * excluded.  The University of Notre Dame and its licensors shall not
31 > * be liable for any damages suffered by licensee as a result of
32 > * using, modifying or distributing the software or its
33 > * derivatives. In no event will the University of Notre Dame or its
34 > * licensors be liable for any lost revenue, profit or data, or for
35 > * direct, indirect, special, consequential, incidental or punitive
36 > * damages, however caused and regardless of the theory of liability,
37 > * arising out of the use of or inability to use software, even if the
38 > * University of Notre Dame has been advised of the possibility of
39 > * such damages.
40 > */
41 >
42 > /**
43 > * @file SimInfo.cpp
44 > * @author    tlin
45 > * @date  11/02/2004
46 > * @version 1.0
47 > */
48  
49 < #include <iostream>
50 < using namespace std;
49 > #include <algorithm>
50 > #include <set>
51  
52   #include "brains/SimInfo.hpp"
53 < #define __C
54 < #include "brains/fSimulation.h"
53 > #include "math/Vector3.hpp"
54 > #include "primitives/Molecule.hpp"
55 > #include "UseTheForce/doForces_interface.h"
56 > #include "UseTheForce/notifyCutoffs_interface.h"
57 > #include "utils/MemoryUtils.hpp"
58   #include "utils/simError.h"
59 + #include "selection/SelectionManager.hpp"
60  
13 #include "UseTheForce/fortranWrappers.hpp"
14
15 #include "math/MatVec3.h"
16
61   #ifdef IS_MPI
62 < #include "brains/mpiSimulation.hpp"
63 < #endif
62 > #include "UseTheForce/mpiComponentPlan.h"
63 > #include "UseTheForce/DarkSide/simParallel_interface.h"
64 > #endif
65  
66 < inline double roundMe( double x ){
22 <  return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
23 < }
24 <          
25 < inline double min( double a, double b ){
26 <  return (a < b ) ? a : b;
27 < }
66 > namespace oopse {
67  
68 < SimInfo* currentInfo;
68 >  SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
69 >                   ForceField* ff, Globals* simParams) :
70 >    stamps_(stamps), forceField_(ff), simParams_(simParams),
71 >    ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
72 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
73 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
74 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
75 >    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
76 >    sman_(NULL), fortranInitialized_(false) {
77  
78 < SimInfo::SimInfo(){
78 >            
79 >      std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
80 >      MoleculeStamp* molStamp;
81 >      int nMolWithSameStamp;
82 >      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
83 >      int nGroups = 0;          //total cutoff groups defined in meta-data file
84 >      CutoffGroupStamp* cgStamp;    
85 >      RigidBodyStamp* rbStamp;
86 >      int nRigidAtoms = 0;
87 >    
88 >      for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
89 >        molStamp = i->first;
90 >        nMolWithSameStamp = i->second;
91 >        
92 >        addMoleculeStamp(molStamp, nMolWithSameStamp);
93  
94 <  n_constraints = 0;
95 <  nZconstraints = 0;
35 <  n_oriented = 0;
36 <  n_dipoles = 0;
37 <  ndf = 0;
38 <  ndfRaw = 0;
39 <  nZconstraints = 0;
40 <  the_integrator = NULL;
41 <  setTemp = 0;
42 <  thermalTime = 0.0;
43 <  currentTime = 0.0;
44 <  rCut = 0.0;
45 <  rSw = 0.0;
94 >        //calculate atoms in molecules
95 >        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
96  
47  haveRcut = 0;
48  haveRsw = 0;
49  boxIsInit = 0;
50  
51  resetTime = 1e99;
97  
98 <  orthoRhombic = 0;
99 <  orthoTolerance = 1E-6;
100 <  useInitXSstate = true;
98 >        //calculate atoms in cutoff groups
99 >        int nAtomsInGroups = 0;
100 >        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
101 >        
102 >        for (int j=0; j < nCutoffGroupsInStamp; j++) {
103 >          cgStamp = molStamp->getCutoffGroup(j);
104 >          nAtomsInGroups += cgStamp->getNMembers();
105 >        }
106  
107 <  usePBC = 0;
108 <  useLJ = 0;
59 <  useSticky = 0;
60 <  useCharges = 0;
61 <  useDipoles = 0;
62 <  useReactionField = 0;
63 <  useGB = 0;
64 <  useEAM = 0;
65 <  useSolidThermInt = 0;
66 <  useLiquidThermInt = 0;
107 >        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
108 >        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
109  
110 <  haveCutoffGroups = false;
110 >        //calculate atoms in rigid bodies
111 >        int nAtomsInRigidBodies = 0;
112 >        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
113 >        
114 >        for (int j=0; j < nRigidBodiesInStamp; j++) {
115 >          rbStamp = molStamp->getRigidBody(j);
116 >          nAtomsInRigidBodies += rbStamp->getNMembers();
117 >        }
118  
119 <  excludes = Exclude::Instance();
119 >        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
120 >        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
121 >        
122 >      }
123  
124 <  myConfiguration = new SimState();
124 >      //every free atom (atom does not belong to cutoff groups) is a cutoff group
125 >      //therefore the total number of cutoff groups in the system is equal to
126 >      //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
127 >      //file plus the number of cutoff groups defined in meta-data file
128 >      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
129  
130 <  has_minimizer = false;
131 <  the_minimizer =NULL;
130 >      //every free atom (atom does not belong to rigid bodies) is an integrable object
131 >      //therefore the total number of  integrable objects in the system is equal to
132 >      //the total number of atoms minus number of atoms belong to  rigid body defined in meta-data
133 >      //file plus the number of  rigid bodies defined in meta-data file
134 >      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
135  
136 <  ngroup = 0;
136 >      nGlobalMols_ = molStampIds_.size();
137  
138 <  wrapMeSimInfo( this );
139 < }
138 > #ifdef IS_MPI    
139 >      molToProcMap_.resize(nGlobalMols_);
140 > #endif
141  
142 +    }
143  
144 < SimInfo::~SimInfo(){
144 >  SimInfo::~SimInfo() {
145 >    std::map<int, Molecule*>::iterator i;
146 >    for (i = molecules_.begin(); i != molecules_.end(); ++i) {
147 >      delete i->second;
148 >    }
149 >    molecules_.clear();
150 >      
151 >    delete stamps_;
152 >    delete sman_;
153 >    delete simParams_;
154 >    delete forceField_;
155 >  }
156  
157 <  delete myConfiguration;
157 >  int SimInfo::getNGlobalConstraints() {
158 >    int nGlobalConstraints;
159 > #ifdef IS_MPI
160 >    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
161 >                  MPI_COMM_WORLD);    
162 > #else
163 >    nGlobalConstraints =  nConstraints_;
164 > #endif
165 >    return nGlobalConstraints;
166 >  }
167  
168 <  map<string, GenericData*>::iterator i;
169 <  
89 <  for(i = properties.begin(); i != properties.end(); i++)
90 <    delete (*i).second;
168 >  bool SimInfo::addMolecule(Molecule* mol) {
169 >    MoleculeIterator i;
170  
171 < }
171 >    i = molecules_.find(mol->getGlobalIndex());
172 >    if (i == molecules_.end() ) {
173  
174 < void SimInfo::setBox(double newBox[3]) {
175 <  
176 <  int i, j;
177 <  double tempMat[3][3];
178 <
179 <  for(i=0; i<3; i++)
180 <    for (j=0; j<3; j++) tempMat[i][j] = 0.0;;
174 >      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
175 >        
176 >      nAtoms_ += mol->getNAtoms();
177 >      nBonds_ += mol->getNBonds();
178 >      nBends_ += mol->getNBends();
179 >      nTorsions_ += mol->getNTorsions();
180 >      nRigidBodies_ += mol->getNRigidBodies();
181 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
182 >      nCutoffGroups_ += mol->getNCutoffGroups();
183 >      nConstraints_ += mol->getNConstraintPairs();
184  
185 <  tempMat[0][0] = newBox[0];
186 <  tempMat[1][1] = newBox[1];
187 <  tempMat[2][2] = newBox[2];
185 >      addExcludePairs(mol);
186 >        
187 >      return true;
188 >    } else {
189 >      return false;
190 >    }
191 >  }
192  
193 <  setBoxM( tempMat );
193 >  bool SimInfo::removeMolecule(Molecule* mol) {
194 >    MoleculeIterator i;
195 >    i = molecules_.find(mol->getGlobalIndex());
196  
197 < }
197 >    if (i != molecules_.end() ) {
198  
199 < void SimInfo::setBoxM( double theBox[3][3] ){
200 <  
201 <  int i, j;
202 <  double FortranHmat[9]; // to preserve compatibility with Fortran the
203 <                         // ordering in the array is as follows:
204 <                         // [ 0 3 6 ]
205 <                         // [ 1 4 7 ]
206 <                         // [ 2 5 8 ]
207 <  double FortranHmatInv[9]; // the inverted Hmat (for Fortran);
199 >      assert(mol == i->second);
200 >        
201 >      nAtoms_ -= mol->getNAtoms();
202 >      nBonds_ -= mol->getNBonds();
203 >      nBends_ -= mol->getNBends();
204 >      nTorsions_ -= mol->getNTorsions();
205 >      nRigidBodies_ -= mol->getNRigidBodies();
206 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
207 >      nCutoffGroups_ -= mol->getNCutoffGroups();
208 >      nConstraints_ -= mol->getNConstraintPairs();
209  
210 <  if( !boxIsInit ) boxIsInit = 1;
210 >      removeExcludePairs(mol);
211 >      molecules_.erase(mol->getGlobalIndex());
212  
213 <  for(i=0; i < 3; i++)
214 <    for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j];
215 <  
216 <  calcBoxL();
217 <  calcHmatInv();
127 <
128 <  for(i=0; i < 3; i++) {
129 <    for (j=0; j < 3; j++) {
130 <      FortranHmat[3*j + i] = Hmat[i][j];
131 <      FortranHmatInv[3*j + i] = HmatInv[i][j];
213 >      delete mol;
214 >        
215 >      return true;
216 >    } else {
217 >      return false;
218      }
133  }
219  
135  setFortranBoxSize(FortranHmat, FortranHmatInv, &orthoRhombic);
136
137 }
138
220  
221 < void SimInfo::getBoxM (double theBox[3][3]) {
221 >  }    
222  
223 <  int i, j;
224 <  for(i=0; i<3; i++)
225 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j];
226 < }
223 >        
224 >  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
225 >    i = molecules_.begin();
226 >    return i == molecules_.end() ? NULL : i->second;
227 >  }    
228  
229 +  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
230 +    ++i;
231 +    return i == molecules_.end() ? NULL : i->second;    
232 +  }
233  
148 void SimInfo::scaleBox(double scale) {
149  double theBox[3][3];
150  int i, j;
234  
235 <  // cerr << "Scaling box by " << scale << "\n";
235 >  void SimInfo::calcNdf() {
236 >    int ndf_local;
237 >    MoleculeIterator i;
238 >    std::vector<StuntDouble*>::iterator j;
239 >    Molecule* mol;
240 >    StuntDouble* integrableObject;
241  
242 <  for(i=0; i<3; i++)
243 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale;
242 >    ndf_local = 0;
243 >    
244 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
245 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
246 >           integrableObject = mol->nextIntegrableObject(j)) {
247  
248 <  setBoxM(theBox);
248 >        ndf_local += 3;
249  
250 < }
250 >        if (integrableObject->isDirectional()) {
251 >          if (integrableObject->isLinear()) {
252 >            ndf_local += 2;
253 >          } else {
254 >            ndf_local += 3;
255 >          }
256 >        }
257 >            
258 >      }//end for (integrableObject)
259 >    }// end for (mol)
260 >    
261 >    // n_constraints is local, so subtract them on each processor
262 >    ndf_local -= nConstraints_;
263  
264 < void SimInfo::calcHmatInv( void ) {
265 <  
266 <  int oldOrtho;
267 <  int i,j;
268 <  double smallDiag;
166 <  double tol;
167 <  double sanity[3][3];
264 > #ifdef IS_MPI
265 >    MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
266 > #else
267 >    ndf_ = ndf_local;
268 > #endif
269  
270 <  invertMat3( Hmat, HmatInv );
270 >    // nZconstraints_ is global, as are the 3 COM translations for the
271 >    // entire system:
272 >    ndf_ = ndf_ - 3 - nZconstraint_;
273  
274 <  // check to see if Hmat is orthorhombic
172 <  
173 <  oldOrtho = orthoRhombic;
274 >  }
275  
276 <  smallDiag = fabs(Hmat[0][0]);
277 <  if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]);
177 <  if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]);
178 <  tol = smallDiag * orthoTolerance;
276 >  void SimInfo::calcNdfRaw() {
277 >    int ndfRaw_local;
278  
279 <  orthoRhombic = 1;
280 <  
281 <  for (i = 0; i < 3; i++ ) {
282 <    for (j = 0 ; j < 3; j++) {
283 <      if (i != j) {
284 <        if (orthoRhombic) {
285 <          if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0;
286 <        }        
279 >    MoleculeIterator i;
280 >    std::vector<StuntDouble*>::iterator j;
281 >    Molecule* mol;
282 >    StuntDouble* integrableObject;
283 >
284 >    // Raw degrees of freedom that we have to set
285 >    ndfRaw_local = 0;
286 >    
287 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
288 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
289 >           integrableObject = mol->nextIntegrableObject(j)) {
290 >
291 >        ndfRaw_local += 3;
292 >
293 >        if (integrableObject->isDirectional()) {
294 >          if (integrableObject->isLinear()) {
295 >            ndfRaw_local += 2;
296 >          } else {
297 >            ndfRaw_local += 3;
298 >          }
299 >        }
300 >            
301        }
302      }
303 +    
304 + #ifdef IS_MPI
305 +    MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
306 + #else
307 +    ndfRaw_ = ndfRaw_local;
308 + #endif
309    }
310  
311 <  if( oldOrtho != orthoRhombic ){
312 <    
194 <    if( orthoRhombic ) {
195 <      sprintf( painCave.errMsg,
196 <               "OOPSE is switching from the default Non-Orthorhombic\n"
197 <               "\tto the faster Orthorhombic periodic boundary computations.\n"
198 <               "\tThis is usually a good thing, but if you wan't the\n"
199 <               "\tNon-Orthorhombic computations, make the orthoBoxTolerance\n"
200 <               "\tvariable ( currently set to %G ) smaller.\n",
201 <               orthoTolerance);
202 <      painCave.severity = OOPSE_INFO;
203 <      simError();
204 <    }
205 <    else {
206 <      sprintf( painCave.errMsg,
207 <               "OOPSE is switching from the faster Orthorhombic to the more\n"
208 <               "\tflexible Non-Orthorhombic periodic boundary computations.\n"
209 <               "\tThis is usually because the box has deformed under\n"
210 <               "\tNPTf integration. If you wan't to live on the edge with\n"
211 <               "\tthe Orthorhombic computations, make the orthoBoxTolerance\n"
212 <               "\tvariable ( currently set to %G ) larger.\n",
213 <               orthoTolerance);
214 <      painCave.severity = OOPSE_WARNING;
215 <      simError();
216 <    }
217 <  }
218 < }
311 >  void SimInfo::calcNdfTrans() {
312 >    int ndfTrans_local;
313  
314 < void SimInfo::calcBoxL( void ){
314 >    ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
315  
222  double dx, dy, dz, dsq;
316  
317 <  // boxVol = Determinant of Hmat
317 > #ifdef IS_MPI
318 >    MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
319 > #else
320 >    ndfTrans_ = ndfTrans_local;
321 > #endif
322  
323 <  boxVol = matDet3( Hmat );
323 >    ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
324 >
325 >  }
326  
327 <  // boxLx
328 <  
329 <  dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0];
330 <  dsq = dx*dx + dy*dy + dz*dz;
331 <  boxL[0] = sqrt( dsq );
332 <  //maxCutoff = 0.5 * boxL[0];
327 >  void SimInfo::addExcludePairs(Molecule* mol) {
328 >    std::vector<Bond*>::iterator bondIter;
329 >    std::vector<Bend*>::iterator bendIter;
330 >    std::vector<Torsion*>::iterator torsionIter;
331 >    Bond* bond;
332 >    Bend* bend;
333 >    Torsion* torsion;
334 >    int a;
335 >    int b;
336 >    int c;
337 >    int d;
338 >    
339 >    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
340 >      a = bond->getAtomA()->getGlobalIndex();
341 >      b = bond->getAtomB()->getGlobalIndex();        
342 >      exclude_.addPair(a, b);
343 >    }
344  
345 <  // boxLy
346 <  
347 <  dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1];
348 <  dsq = dx*dx + dy*dy + dz*dz;
239 <  boxL[1] = sqrt( dsq );
240 <  //if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1];
345 >    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
346 >      a = bend->getAtomA()->getGlobalIndex();
347 >      b = bend->getAtomB()->getGlobalIndex();        
348 >      c = bend->getAtomC()->getGlobalIndex();
349  
350 +      exclude_.addPair(a, b);
351 +      exclude_.addPair(a, c);
352 +      exclude_.addPair(b, c);        
353 +    }
354  
355 <  // boxLz
356 <  
357 <  dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2];
358 <  dsq = dx*dx + dy*dy + dz*dz;
359 <  boxL[2] = sqrt( dsq );
248 <  //if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2];
355 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
356 >      a = torsion->getAtomA()->getGlobalIndex();
357 >      b = torsion->getAtomB()->getGlobalIndex();        
358 >      c = torsion->getAtomC()->getGlobalIndex();        
359 >      d = torsion->getAtomD()->getGlobalIndex();        
360  
361 <  //calculate the max cutoff
362 <  maxCutoff =  calcMaxCutOff();
363 <  
364 <  checkCutOffs();
361 >      exclude_.addPair(a, b);
362 >      exclude_.addPair(a, c);
363 >      exclude_.addPair(a, d);
364 >      exclude_.addPair(b, c);
365 >      exclude_.addPair(b, d);
366 >      exclude_.addPair(c, d);        
367 >    }
368  
369 < }
369 >    Molecule::RigidBodyIterator rbIter;
370 >    RigidBody* rb;
371 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
372 >      std::vector<Atom*> atoms = rb->getAtoms();
373 >      for (int i = 0; i < atoms.size() -1 ; ++i) {
374 >        for (int j = i + 1; j < atoms.size(); ++j) {
375 >          a = atoms[i]->getGlobalIndex();
376 >          b = atoms[j]->getGlobalIndex();
377 >          exclude_.addPair(a, b);
378 >        }
379 >      }
380 >    }        
381  
382 +  }
383  
384 < double SimInfo::calcMaxCutOff(){
385 <
386 <  double ri[3], rj[3], rk[3];
387 <  double rij[3], rjk[3], rki[3];
388 <  double minDist;
389 <
390 <  ri[0] = Hmat[0][0];
391 <  ri[1] = Hmat[1][0];
392 <  ri[2] = Hmat[2][0];
393 <
394 <  rj[0] = Hmat[0][1];
269 <  rj[1] = Hmat[1][1];
270 <  rj[2] = Hmat[2][1];
271 <
272 <  rk[0] = Hmat[0][2];
273 <  rk[1] = Hmat[1][2];
274 <  rk[2] = Hmat[2][2];
384 >  void SimInfo::removeExcludePairs(Molecule* mol) {
385 >    std::vector<Bond*>::iterator bondIter;
386 >    std::vector<Bend*>::iterator bendIter;
387 >    std::vector<Torsion*>::iterator torsionIter;
388 >    Bond* bond;
389 >    Bend* bend;
390 >    Torsion* torsion;
391 >    int a;
392 >    int b;
393 >    int c;
394 >    int d;
395      
396 <  crossProduct3(ri, rj, rij);
397 <  distXY = dotProduct3(rk,rij) / norm3(rij);
396 >    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
397 >      a = bond->getAtomA()->getGlobalIndex();
398 >      b = bond->getAtomB()->getGlobalIndex();        
399 >      exclude_.removePair(a, b);
400 >    }
401  
402 <  crossProduct3(rj,rk, rjk);
403 <  distYZ = dotProduct3(ri,rjk) / norm3(rjk);
402 >    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
403 >      a = bend->getAtomA()->getGlobalIndex();
404 >      b = bend->getAtomB()->getGlobalIndex();        
405 >      c = bend->getAtomC()->getGlobalIndex();
406  
407 <  crossProduct3(rk,ri, rki);
408 <  distZX = dotProduct3(rj,rki) / norm3(rki);
407 >      exclude_.removePair(a, b);
408 >      exclude_.removePair(a, c);
409 >      exclude_.removePair(b, c);        
410 >    }
411  
412 <  minDist = min(min(distXY, distYZ), distZX);
413 <  return minDist/2;
414 <  
415 < }
412 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
413 >      a = torsion->getAtomA()->getGlobalIndex();
414 >      b = torsion->getAtomB()->getGlobalIndex();        
415 >      c = torsion->getAtomC()->getGlobalIndex();        
416 >      d = torsion->getAtomD()->getGlobalIndex();        
417  
418 < void SimInfo::wrapVector( double thePos[3] ){
418 >      exclude_.removePair(a, b);
419 >      exclude_.removePair(a, c);
420 >      exclude_.removePair(a, d);
421 >      exclude_.removePair(b, c);
422 >      exclude_.removePair(b, d);
423 >      exclude_.removePair(c, d);        
424 >    }
425  
426 <  int i;
427 <  double scaled[3];
426 >    Molecule::RigidBodyIterator rbIter;
427 >    RigidBody* rb;
428 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
429 >      std::vector<Atom*> atoms = rb->getAtoms();
430 >      for (int i = 0; i < atoms.size() -1 ; ++i) {
431 >        for (int j = i + 1; j < atoms.size(); ++j) {
432 >          a = atoms[i]->getGlobalIndex();
433 >          b = atoms[j]->getGlobalIndex();
434 >          exclude_.removePair(a, b);
435 >        }
436 >      }
437 >    }        
438  
295  if( !orthoRhombic ){
296    // calc the scaled coordinates.
297  
298
299    matVecMul3(HmatInv, thePos, scaled);
300    
301    for(i=0; i<3; i++)
302      scaled[i] -= roundMe(scaled[i]);
303    
304    // calc the wrapped real coordinates from the wrapped scaled coordinates
305    
306    matVecMul3(Hmat, scaled, thePos);
307
439    }
309  else{
310    // calc the scaled coordinates.
311    
312    for(i=0; i<3; i++)
313      scaled[i] = thePos[i]*HmatInv[i][i];
314    
315    // wrap the scaled coordinates
316    
317    for(i=0; i<3; i++)
318      scaled[i] -= roundMe(scaled[i]);
319    
320    // calc the wrapped real coordinates from the wrapped scaled coordinates
321    
322    for(i=0; i<3; i++)
323      thePos[i] = scaled[i]*Hmat[i][i];
324  }
325    
326 }
440  
441  
442 < int SimInfo::getNDF(){
443 <  int ndf_local;
442 >  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
443 >    int curStampId;
444  
445 <  ndf_local = 0;
446 <  
447 <  for(int i = 0; i < integrableObjects.size(); i++){
448 <    ndf_local += 3;
449 <    if (integrableObjects[i]->isDirectional()) {
337 <      if (integrableObjects[i]->isLinear())
338 <        ndf_local += 2;
339 <      else
340 <        ndf_local += 3;
341 <    }
445 >    //index from 0
446 >    curStampId = moleculeStamps_.size();
447 >
448 >    moleculeStamps_.push_back(molStamp);
449 >    molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
450    }
451  
452 <  // n_constraints is local, so subtract them on each processor:
452 >  void SimInfo::update() {
453  
454 <  ndf_local -= n_constraints;
454 >    setupSimType();
455  
456   #ifdef IS_MPI
457 <  MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
350 < #else
351 <  ndf = ndf_local;
457 >    setupFortranParallel();
458   #endif
459  
460 <  // nZconstraints is global, as are the 3 COM translations for the
355 <  // entire system:
460 >    setupFortranSim();
461  
462 <  ndf = ndf - 3 - nZconstraints;
462 >    //setup fortran force field
463 >    /** @deprecate */    
464 >    int isError = 0;
465 >    initFortranFF( &fInfo_.SIM_uses_RF , &isError );
466 >    if(isError){
467 >      sprintf( painCave.errMsg,
468 >               "ForceField error: There was an error initializing the forceField in fortran.\n" );
469 >      painCave.isFatal = 1;
470 >      simError();
471 >    }
472 >  
473 >    
474 >    setupCutoff();
475  
476 <  return ndf;
477 < }
476 >    calcNdf();
477 >    calcNdfRaw();
478 >    calcNdfTrans();
479  
480 < int SimInfo::getNDFraw() {
481 <  int ndfRaw_local;
480 >    fortranInitialized_ = true;
481 >  }
482  
483 <  // Raw degrees of freedom that we have to set
484 <  ndfRaw_local = 0;
483 >  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
484 >    SimInfo::MoleculeIterator mi;
485 >    Molecule* mol;
486 >    Molecule::AtomIterator ai;
487 >    Atom* atom;
488 >    std::set<AtomType*> atomTypes;
489  
490 <  for(int i = 0; i < integrableObjects.size(); i++){
491 <    ndfRaw_local += 3;
492 <    if (integrableObjects[i]->isDirectional()) {
493 <       if (integrableObjects[i]->isLinear())
494 <        ndfRaw_local += 2;
495 <      else
374 <        ndfRaw_local += 3;
490 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
491 >
492 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
493 >        atomTypes.insert(atom->getAtomType());
494 >      }
495 >        
496      }
497 +
498 +    return atomTypes;        
499    }
500 +
501 +  void SimInfo::setupSimType() {
502 +    std::set<AtomType*>::iterator i;
503 +    std::set<AtomType*> atomTypes;
504 +    atomTypes = getUniqueAtomTypes();
505      
506 < #ifdef IS_MPI
507 <  MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
508 < #else
509 <  ndfRaw = ndfRaw_local;
510 < #endif
506 >    int useLennardJones = 0;
507 >    int useElectrostatic = 0;
508 >    int useEAM = 0;
509 >    int useCharge = 0;
510 >    int useDirectional = 0;
511 >    int useDipole = 0;
512 >    int useGayBerne = 0;
513 >    int useSticky = 0;
514 >    int useStickyPower = 0;
515 >    int useShape = 0;
516 >    int useFLARB = 0; //it is not in AtomType yet
517 >    int useDirectionalAtom = 0;    
518 >    int useElectrostatics = 0;
519 >    //usePBC and useRF are from simParams
520 >    int usePBC = simParams_->getPBC();
521 >    int useRF = simParams_->getUseRF();
522  
523 <  return ndfRaw;
524 < }
523 >    //loop over all of the atom types
524 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
525 >      useLennardJones |= (*i)->isLennardJones();
526 >      useElectrostatic |= (*i)->isElectrostatic();
527 >      useEAM |= (*i)->isEAM();
528 >      useCharge |= (*i)->isCharge();
529 >      useDirectional |= (*i)->isDirectional();
530 >      useDipole |= (*i)->isDipole();
531 >      useGayBerne |= (*i)->isGayBerne();
532 >      useSticky |= (*i)->isSticky();
533 >      useStickyPower |= (*i)->isStickyPower();
534 >      useShape |= (*i)->isShape();
535 >    }
536  
537 < int SimInfo::getNDFtranslational() {
538 <  int ndfTrans_local;
537 >    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
538 >      useDirectionalAtom = 1;
539 >    }
540  
541 <  ndfTrans_local = 3 * integrableObjects.size() - n_constraints;
541 >    if (useCharge || useDipole) {
542 >      useElectrostatics = 1;
543 >    }
544  
545 + #ifdef IS_MPI    
546 +    int temp;
547  
548 < #ifdef IS_MPI
549 <  MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
550 < #else
551 <  ndfTrans = ndfTrans_local;
552 < #endif
548 >    temp = usePBC;
549 >    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
550 >
551 >    temp = useDirectionalAtom;
552 >    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
553  
554 <  ndfTrans = ndfTrans - 3 - nZconstraints;
554 >    temp = useLennardJones;
555 >    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
556  
557 <  return ndfTrans;
558 < }
557 >    temp = useElectrostatics;
558 >    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
559  
560 < int SimInfo::getTotIntegrableObjects() {
561 <  int nObjs_local;
406 <  int nObjs;
560 >    temp = useCharge;
561 >    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
562  
563 <  nObjs_local =  integrableObjects.size();
563 >    temp = useDipole;
564 >    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
565  
566 +    temp = useSticky;
567 +    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
568  
569 < #ifdef IS_MPI
570 <  MPI_Allreduce(&nObjs_local,&nObjs,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
571 < #else
572 <  nObjs = nObjs_local;
573 < #endif
569 >    temp = useStickyPower;
570 >    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
571 >    
572 >    temp = useGayBerne;
573 >    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
574  
575 +    temp = useEAM;
576 +    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
577  
578 <  return nObjs;
579 < }
578 >    temp = useShape;
579 >    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
580  
581 < void SimInfo::refreshSim(){
581 >    temp = useFLARB;
582 >    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
583  
584 <  simtype fInfo;
585 <  int isError;
586 <  int n_global;
587 <  int* excl;
584 >    temp = useRF;
585 >    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
586 >    
587 > #endif
588  
589 <  fInfo.dielect = 0.0;
589 >    fInfo_.SIM_uses_PBC = usePBC;    
590 >    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
591 >    fInfo_.SIM_uses_LennardJones = useLennardJones;
592 >    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
593 >    fInfo_.SIM_uses_Charges = useCharge;
594 >    fInfo_.SIM_uses_Dipoles = useDipole;
595 >    fInfo_.SIM_uses_Sticky = useSticky;
596 >    fInfo_.SIM_uses_StickyPower = useStickyPower;
597 >    fInfo_.SIM_uses_GayBerne = useGayBerne;
598 >    fInfo_.SIM_uses_EAM = useEAM;
599 >    fInfo_.SIM_uses_Shapes = useShape;
600 >    fInfo_.SIM_uses_FLARB = useFLARB;
601 >    fInfo_.SIM_uses_RF = useRF;
602  
603 <  if( useDipoles ){
604 <    if( useReactionField )fInfo.dielect = dielectric;
603 >    if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
604 >
605 >      if (simParams_->haveDielectric()) {
606 >        fInfo_.dielect = simParams_->getDielectric();
607 >      } else {
608 >        sprintf(painCave.errMsg,
609 >                "SimSetup Error: No Dielectric constant was set.\n"
610 >                "\tYou are trying to use Reaction Field without"
611 >                "\tsetting a dielectric constant!\n");
612 >        painCave.isFatal = 1;
613 >        simError();
614 >      }
615 >        
616 >    } else {
617 >      fInfo_.dielect = 0.0;
618 >    }
619 >
620    }
621  
622 <  fInfo.SIM_uses_PBC = usePBC;
623 <  //fInfo.SIM_uses_LJ = 0;
624 <  fInfo.SIM_uses_LJ = useLJ;
625 <  fInfo.SIM_uses_sticky = useSticky;
626 <  //fInfo.SIM_uses_sticky = 0;
627 <  fInfo.SIM_uses_charges = useCharges;
628 <  fInfo.SIM_uses_dipoles = useDipoles;
441 <  //fInfo.SIM_uses_dipoles = 0;
442 <  fInfo.SIM_uses_RF = useReactionField;
443 <  //fInfo.SIM_uses_RF = 0;
444 <  fInfo.SIM_uses_GB = useGB;
445 <  fInfo.SIM_uses_EAM = useEAM;
622 >  void SimInfo::setupFortranSim() {
623 >    int isError;
624 >    int nExclude;
625 >    std::vector<int> fortranGlobalGroupMembership;
626 >    
627 >    nExclude = exclude_.getSize();
628 >    isError = 0;
629  
630 <  n_exclude = excludes->getSize();
631 <  excl = excludes->getFortranArray();
632 <  
633 < #ifdef IS_MPI
451 <  n_global = mpiSim->getNAtomsGlobal();
452 < #else
453 <  n_global = n_atoms;
454 < #endif
455 <  
456 <  isError = 0;
457 <  
458 <  getFortranGroupArrays(this, FglobalGroupMembership, mfact);
459 <  //it may not be a good idea to pass the address of first element in vector
460 <  //since c++ standard does not require vector to be stored continuously in meomory
461 <  //Most of the compilers will organize the memory of vector continuously
462 <  setFsimulation( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl,
463 <                  &nGlobalExcludes, globalExcludes, molMembershipArray,
464 <                  &mfact[0], &ngroup, &FglobalGroupMembership[0], &isError);
630 >    //globalGroupMembership_ is filled by SimCreator    
631 >    for (int i = 0; i < nGlobalAtoms_; i++) {
632 >      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
633 >    }
634  
635 <  if( isError ){
635 >    //calculate mass ratio of cutoff group
636 >    std::vector<double> mfact;
637 >    SimInfo::MoleculeIterator mi;
638 >    Molecule* mol;
639 >    Molecule::CutoffGroupIterator ci;
640 >    CutoffGroup* cg;
641 >    Molecule::AtomIterator ai;
642 >    Atom* atom;
643 >    double totalMass;
644 >
645 >    //to avoid memory reallocation, reserve enough space for mfact
646 >    mfact.reserve(getNCutoffGroups());
647      
648 <    sprintf( painCave.errMsg,
649 <             "There was an error setting the simulation information in fortran.\n" );
470 <    painCave.isFatal = 1;
471 <    painCave.severity = OOPSE_ERROR;
472 <    simError();
473 <  }
474 <  
475 < #ifdef IS_MPI
476 <  sprintf( checkPointMsg,
477 <           "succesfully sent the simulation information to fortran.\n");
478 <  MPIcheckPoint();
479 < #endif // is_mpi
480 <  
481 <  this->ndf = this->getNDF();
482 <  this->ndfRaw = this->getNDFraw();
483 <  this->ndfTrans = this->getNDFtranslational();
484 < }
648 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
649 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
650  
651 < void SimInfo::setDefaultRcut( double theRcut ){
652 <  
653 <  haveRcut = 1;
654 <  rCut = theRcut;
490 <  rList = rCut + 1.0;
491 <  
492 <  notifyFortranCutOffs( &rCut, &rSw, &rList );
493 < }
651 >        totalMass = cg->getMass();
652 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
653 >          mfact.push_back(atom->getMass()/totalMass);
654 >        }
655  
656 < void SimInfo::setDefaultRcut( double theRcut, double theRsw ){
656 >      }      
657 >    }
658  
659 <  rSw = theRsw;
660 <  setDefaultRcut( theRcut );
499 < }
659 >    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
660 >    std::vector<int> identArray;
661  
662 +    //to avoid memory reallocation, reserve enough space identArray
663 +    identArray.reserve(getNAtoms());
664 +    
665 +    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
666 +      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
667 +        identArray.push_back(atom->getIdent());
668 +      }
669 +    }    
670  
671 < void SimInfo::checkCutOffs( void ){
672 <  
673 <  if( boxIsInit ){
671 >    //fill molMembershipArray
672 >    //molMembershipArray is filled by SimCreator    
673 >    std::vector<int> molMembershipArray(nGlobalAtoms_);
674 >    for (int i = 0; i < nGlobalAtoms_; i++) {
675 >      molMembershipArray[i] = globalMolMembership_[i] + 1;
676 >    }
677      
678 <    //we need to check cutOffs against the box
679 <    
680 <    if( rCut > maxCutoff ){
678 >    //setup fortran simulation
679 >    int nGlobalExcludes = 0;
680 >    int* globalExcludes = NULL;
681 >    int* excludeList = exclude_.getExcludeList();
682 >    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
683 >                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
684 >                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
685 >
686 >    if( isError ){
687 >
688        sprintf( painCave.errMsg,
689 <               "cutoffRadius is too large for the current periodic box.\n"
511 <               "\tCurrent Value of cutoffRadius = %G at time %G\n "
512 <               "\tThis is larger than half of at least one of the\n"
513 <               "\tperiodic box vectors.  Right now, the Box matrix is:\n"
514 <               "\n"
515 <               "\t[ %G %G %G ]\n"
516 <               "\t[ %G %G %G ]\n"
517 <               "\t[ %G %G %G ]\n",
518 <               rCut, currentTime,
519 <               Hmat[0][0], Hmat[0][1], Hmat[0][2],
520 <               Hmat[1][0], Hmat[1][1], Hmat[1][2],
521 <               Hmat[2][0], Hmat[2][1], Hmat[2][2]);
522 <      painCave.severity = OOPSE_ERROR;
689 >               "There was an error setting the simulation information in fortran.\n" );
690        painCave.isFatal = 1;
691 +      painCave.severity = OOPSE_ERROR;
692        simError();
693 <    }    
526 <  } else {
527 <    // initialize this stuff before using it, OK?
528 <    sprintf( painCave.errMsg,
529 <             "Trying to check cutoffs without a box.\n"
530 <             "\tOOPSE should have better programmers than that.\n" );
531 <    painCave.severity = OOPSE_ERROR;
532 <    painCave.isFatal = 1;
533 <    simError();      
534 <  }
535 <  
536 < }
693 >    }
694  
695 < void SimInfo::addProperty(GenericData* prop){
696 <
697 <  map<string, GenericData*>::iterator result;
698 <  result = properties.find(prop->getID());
699 <  
543 <  //we can't simply use  properties[prop->getID()] = prop,
544 <  //it will cause memory leak if we already contain a propery which has the same name of prop
545 <  
546 <  if(result != properties.end()){
547 <    
548 <    delete (*result).second;
549 <    (*result).second = prop;
550 <      
695 > #ifdef IS_MPI
696 >    sprintf( checkPointMsg,
697 >             "succesfully sent the simulation information to fortran.\n");
698 >    MPIcheckPoint();
699 > #endif // is_mpi
700    }
552  else{
701  
554    properties[prop->getID()] = prop;
702  
703 <  }
703 > #ifdef IS_MPI
704 >  void SimInfo::setupFortranParallel() {
705      
706 < }
706 >    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
707 >    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
708 >    std::vector<int> localToGlobalCutoffGroupIndex;
709 >    SimInfo::MoleculeIterator mi;
710 >    Molecule::AtomIterator ai;
711 >    Molecule::CutoffGroupIterator ci;
712 >    Molecule* mol;
713 >    Atom* atom;
714 >    CutoffGroup* cg;
715 >    mpiSimData parallelData;
716 >    int isError;
717  
718 < GenericData* SimInfo::getProperty(const string& propName){
561 <
562 <  map<string, GenericData*>::iterator result;
563 <  
564 <  //string lowerCaseName = ();
565 <  
566 <  result = properties.find(propName);
567 <  
568 <  if(result != properties.end())
569 <    return (*result).second;  
570 <  else  
571 <    return NULL;  
572 < }
718 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
719  
720 +      //local index(index in DataStorge) of atom is important
721 +      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
722 +        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
723 +      }
724  
725 < void SimInfo::getFortranGroupArrays(SimInfo* info,
726 <                                    vector<int>& FglobalGroupMembership,
727 <                                    vector<double>& mfact){
728 <  
729 <  Molecule* myMols;
730 <  Atom** myAtoms;
581 <  int numAtom;
582 <  double mtot;
583 <  int numMol;
584 <  int numCutoffGroups;
585 <  CutoffGroup* myCutoffGroup;
586 <  vector<CutoffGroup*>::iterator iterCutoff;
587 <  Atom* cutoffAtom;
588 <  vector<Atom*>::iterator iterAtom;
589 <  int atomIndex;
590 <  double totalMass;
591 <  
592 <  mfact.clear();
593 <  FglobalGroupMembership.clear();
594 <  
725 >      //local index of cutoff group is trivial, it only depends on the order of travesing
726 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
727 >        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
728 >      }        
729 >        
730 >    }
731  
732 <  // Fix the silly fortran indexing problem
733 < #ifdef IS_MPI
734 <  numAtom = mpiSim->getNAtomsGlobal();
735 < #else
736 <  numAtom = n_atoms;
737 < #endif
738 <  for (int i = 0; i < numAtom; i++)
739 <    FglobalGroupMembership.push_back(globalGroupMembership[i] + 1);
740 <  
732 >    //fill up mpiSimData struct
733 >    parallelData.nMolGlobal = getNGlobalMolecules();
734 >    parallelData.nMolLocal = getNMolecules();
735 >    parallelData.nAtomsGlobal = getNGlobalAtoms();
736 >    parallelData.nAtomsLocal = getNAtoms();
737 >    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
738 >    parallelData.nGroupsLocal = getNCutoffGroups();
739 >    parallelData.myNode = worldRank;
740 >    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
741  
742 <  myMols = info->molecules;
743 <  numMol = info->n_mol;
744 <  for(int i  = 0; i < numMol; i++){
745 <    numCutoffGroups = myMols[i].getNCutoffGroups();
746 <    for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff);
747 <        myCutoffGroup != NULL;
748 <        myCutoffGroup =myMols[i].nextCutoffGroup(iterCutoff)){
749 <
750 <      totalMass = myCutoffGroup->getMass();
751 <      
616 <      for(cutoffAtom = myCutoffGroup->beginAtom(iterAtom);
617 <          cutoffAtom != NULL;
618 <          cutoffAtom = myCutoffGroup->nextAtom(iterAtom)){
619 <        mfact.push_back(cutoffAtom->getMass()/totalMass);
620 <      }  
742 >    //pass mpiSimData struct and index arrays to fortran
743 >    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
744 >                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
745 >                    &localToGlobalCutoffGroupIndex[0], &isError);
746 >
747 >    if (isError) {
748 >      sprintf(painCave.errMsg,
749 >              "mpiRefresh errror: fortran didn't like something we gave it.\n");
750 >      painCave.isFatal = 1;
751 >      simError();
752      }
753 +
754 +    sprintf(checkPointMsg, " mpiRefresh successful.\n");
755 +    MPIcheckPoint();
756 +
757 +
758    }
759  
760 < }
760 > #endif
761 >
762 >  double SimInfo::calcMaxCutoffRadius() {
763 >
764 >
765 >    std::set<AtomType*> atomTypes;
766 >    std::set<AtomType*>::iterator i;
767 >    std::vector<double> cutoffRadius;
768 >
769 >    //get the unique atom types
770 >    atomTypes = getUniqueAtomTypes();
771 >
772 >    //query the max cutoff radius among these atom types
773 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
774 >      cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
775 >    }
776 >
777 >    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
778 > #ifdef IS_MPI
779 >    //pick the max cutoff radius among the processors
780 > #endif
781 >
782 >    return maxCutoffRadius;
783 >  }
784 >
785 >  void SimInfo::getCutoff(double& rcut, double& rsw) {
786 >    
787 >    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
788 >        
789 >      if (!simParams_->haveRcut()){
790 >        sprintf(painCave.errMsg,
791 >                "SimCreator Warning: No value was set for the cutoffRadius.\n"
792 >                "\tOOPSE will use a default value of 15.0 angstroms"
793 >                "\tfor the cutoffRadius.\n");
794 >        painCave.isFatal = 0;
795 >        simError();
796 >        rcut = 15.0;
797 >      } else{
798 >        rcut = simParams_->getRcut();
799 >      }
800 >
801 >      if (!simParams_->haveRsw()){
802 >        sprintf(painCave.errMsg,
803 >                "SimCreator Warning: No value was set for switchingRadius.\n"
804 >                "\tOOPSE will use a default value of\n"
805 >                "\t0.95 * cutoffRadius for the switchingRadius\n");
806 >        painCave.isFatal = 0;
807 >        simError();
808 >        rsw = 0.95 * rcut;
809 >      } else{
810 >        rsw = simParams_->getRsw();
811 >      }
812 >
813 >    } else {
814 >      // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
815 >      //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
816 >        
817 >      if (simParams_->haveRcut()) {
818 >        rcut = simParams_->getRcut();
819 >      } else {
820 >        //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
821 >        rcut = calcMaxCutoffRadius();
822 >      }
823 >
824 >      if (simParams_->haveRsw()) {
825 >        rsw  = simParams_->getRsw();
826 >      } else {
827 >        rsw = rcut;
828 >      }
829 >    
830 >    }
831 >  }
832 >
833 >  void SimInfo::setupCutoff() {
834 >    getCutoff(rcut_, rsw_);    
835 >    double rnblist = rcut_ + 1; // skin of neighbor list
836 >
837 >    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
838 >    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist);
839 >  }
840 >
841 >  void SimInfo::addProperty(GenericData* genData) {
842 >    properties_.addProperty(genData);  
843 >  }
844 >
845 >  void SimInfo::removeProperty(const std::string& propName) {
846 >    properties_.removeProperty(propName);  
847 >  }
848 >
849 >  void SimInfo::clearProperties() {
850 >    properties_.clearProperties();
851 >  }
852 >
853 >  std::vector<std::string> SimInfo::getPropertyNames() {
854 >    return properties_.getPropertyNames();  
855 >  }
856 >      
857 >  std::vector<GenericData*> SimInfo::getProperties() {
858 >    return properties_.getProperties();
859 >  }
860 >
861 >  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
862 >    return properties_.getPropertyByName(propName);
863 >  }
864 >
865 >  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
866 >    if (sman_ == sman) {
867 >      return;
868 >    }    
869 >    delete sman_;
870 >    sman_ = sman;
871 >
872 >    Molecule* mol;
873 >    RigidBody* rb;
874 >    Atom* atom;
875 >    SimInfo::MoleculeIterator mi;
876 >    Molecule::RigidBodyIterator rbIter;
877 >    Molecule::AtomIterator atomIter;;
878 >
879 >    for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
880 >        
881 >      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
882 >        atom->setSnapshotManager(sman_);
883 >      }
884 >        
885 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
886 >        rb->setSnapshotManager(sman_);
887 >      }
888 >    }    
889 >    
890 >  }
891 >
892 >  Vector3d SimInfo::getComVel(){
893 >    SimInfo::MoleculeIterator i;
894 >    Molecule* mol;
895 >
896 >    Vector3d comVel(0.0);
897 >    double totalMass = 0.0;
898 >    
899 >
900 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
901 >      double mass = mol->getMass();
902 >      totalMass += mass;
903 >      comVel += mass * mol->getComVel();
904 >    }  
905 >
906 > #ifdef IS_MPI
907 >    double tmpMass = totalMass;
908 >    Vector3d tmpComVel(comVel);    
909 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
910 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
911 > #endif
912 >
913 >    comVel /= totalMass;
914 >
915 >    return comVel;
916 >  }
917 >
918 >  Vector3d SimInfo::getCom(){
919 >    SimInfo::MoleculeIterator i;
920 >    Molecule* mol;
921 >
922 >    Vector3d com(0.0);
923 >    double totalMass = 0.0;
924 >    
925 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
926 >      double mass = mol->getMass();
927 >      totalMass += mass;
928 >      com += mass * mol->getCom();
929 >    }  
930 >
931 > #ifdef IS_MPI
932 >    double tmpMass = totalMass;
933 >    Vector3d tmpCom(com);    
934 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
935 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
936 > #endif
937 >
938 >    com /= totalMass;
939 >
940 >    return com;
941 >
942 >  }        
943 >
944 >  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
945 >
946 >    return o;
947 >  }
948 >  
949 >  
950 >   /*
951 >   Returns center of mass and center of mass velocity in one function call.
952 >   */
953 >  
954 >   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
955 >      SimInfo::MoleculeIterator i;
956 >      Molecule* mol;
957 >      
958 >    
959 >      double totalMass = 0.0;
960 >    
961 >
962 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
963 >         double mass = mol->getMass();
964 >         totalMass += mass;
965 >         com += mass * mol->getCom();
966 >         comVel += mass * mol->getComVel();          
967 >      }  
968 >      
969 > #ifdef IS_MPI
970 >      double tmpMass = totalMass;
971 >      Vector3d tmpCom(com);  
972 >      Vector3d tmpComVel(comVel);
973 >      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
974 >      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
975 >      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
976 > #endif
977 >      
978 >      com /= totalMass;
979 >      comVel /= totalMass;
980 >   }        
981 >  
982 >   /*
983 >   Return intertia tensor for entire system and angular momentum Vector.
984 >    */
985 >
986 >   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
987 >      
988 >
989 >      double xx = 0.0;
990 >      double yy = 0.0;
991 >      double zz = 0.0;
992 >      double xy = 0.0;
993 >      double xz = 0.0;
994 >      double yz = 0.0;
995 >      Vector3d com(0.0);
996 >      Vector3d comVel(0.0);
997 >      
998 >      getComAll(com, comVel);
999 >      
1000 >      SimInfo::MoleculeIterator i;
1001 >      Molecule* mol;
1002 >      
1003 >      Vector3d thisq(0.0);
1004 >      Vector3d thisv(0.0);
1005 >
1006 >      double thisMass = 0.0;
1007 >    
1008 >      
1009 >      
1010 >  
1011 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1012 >        
1013 >         thisq = mol->getCom()-com;
1014 >         thisv = mol->getComVel()-comVel;
1015 >         thisMass = mol->getMass();
1016 >         // Compute moment of intertia coefficients.
1017 >         xx += thisq[0]*thisq[0]*thisMass;
1018 >         yy += thisq[1]*thisq[1]*thisMass;
1019 >         zz += thisq[2]*thisq[2]*thisMass;
1020 >        
1021 >         // compute products of intertia
1022 >         xy += thisq[0]*thisq[1]*thisMass;
1023 >         xz += thisq[0]*thisq[2]*thisMass;
1024 >         yz += thisq[1]*thisq[2]*thisMass;
1025 >            
1026 >         angularMomentum += cross( thisq, thisv ) * thisMass;
1027 >            
1028 >      }  
1029 >      
1030 >      
1031 >      inertiaTensor(0,0) = yy + zz;
1032 >      inertiaTensor(0,1) = -xy;
1033 >      inertiaTensor(0,2) = -xz;
1034 >      inertiaTensor(1,0) = -xy;
1035 >      inertiaTensor(2,0) = xx + zz;
1036 >      inertiaTensor(1,2) = -yz;
1037 >      inertiaTensor(2,0) = -xz;
1038 >      inertiaTensor(2,1) = -yz;
1039 >      inertiaTensor(2,2) = xx + yy;
1040 >      
1041 > #ifdef IS_MPI
1042 >      Mat3x3d tmpI(inertiaTensor);
1043 >      Vector3d tmpAngMom;
1044 >      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1045 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1046 > #endif
1047 >              
1048 >      return;
1049 >   }
1050 >
1051 >   //Returns the angular momentum of the system
1052 >   Vector3d SimInfo::getAngularMomentum(){
1053 >      
1054 >      Vector3d com(0.0);
1055 >      Vector3d comVel(0.0);
1056 >      Vector3d angularMomentum(0.0);
1057 >      
1058 >      getComAll(com,comVel);
1059 >      
1060 >      SimInfo::MoleculeIterator i;
1061 >      Molecule* mol;
1062 >      
1063 >      Vector3d thisq(0.0);
1064 >      Vector3d thisv(0.0);
1065 >      
1066 >      double thisMass = 0.0;
1067 >      
1068 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1069 >         thisq = mol->getCom()-com;
1070 >         thisv = mol->getComVel()-comVel;
1071 >         thisMass = mol->getMass();
1072 >         angularMomentum += cross( thisq, thisv ) * thisMass;
1073 >        
1074 >      }  
1075 >      
1076 > #ifdef IS_MPI
1077 >      Vector3d tmpAngMom;
1078 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1079 > #endif
1080 >      
1081 >      return angularMomentum;
1082 >   }
1083 >  
1084 >  
1085 > }//end namespace oopse
1086 >

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines