ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-2.0/src/brains/SimInfo.cpp
(Generate patch)

Comparing trunk/OOPSE-2.0/src/brains/SimInfo.cpp (file contents):
Revision 1636 by chrisfen, Fri Oct 22 22:54:01 2004 UTC vs.
Revision 2297 by chrisfen, Thu Sep 15 00:14:35 2005 UTC

# Line 1 | Line 1
1 < #include <stdlib.h>
2 < #include <string.h>
3 < #include <math.h>
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Acknowledgement of the program authors must be made in any
10 > *    publication of scientific results based in part on use of the
11 > *    program.  An acceptable form of acknowledgement is citation of
12 > *    the article in which the program was described (Matthew
13 > *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 > *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 > *    Parallel Simulation Engine for Molecular Dynamics,"
16 > *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 > *
18 > * 2. Redistributions of source code must retain the above copyright
19 > *    notice, this list of conditions and the following disclaimer.
20 > *
21 > * 3. Redistributions in binary form must reproduce the above copyright
22 > *    notice, this list of conditions and the following disclaimer in the
23 > *    documentation and/or other materials provided with the
24 > *    distribution.
25 > *
26 > * This software is provided "AS IS," without a warranty of any
27 > * kind. All express or implied conditions, representations and
28 > * warranties, including any implied warranty of merchantability,
29 > * fitness for a particular purpose or non-infringement, are hereby
30 > * excluded.  The University of Notre Dame and its licensors shall not
31 > * be liable for any damages suffered by licensee as a result of
32 > * using, modifying or distributing the software or its
33 > * derivatives. In no event will the University of Notre Dame or its
34 > * licensors be liable for any lost revenue, profit or data, or for
35 > * direct, indirect, special, consequential, incidental or punitive
36 > * damages, however caused and regardless of the theory of liability,
37 > * arising out of the use of or inability to use software, even if the
38 > * University of Notre Dame has been advised of the possibility of
39 > * such damages.
40 > */
41 >
42 > /**
43 > * @file SimInfo.cpp
44 > * @author    tlin
45 > * @date  11/02/2004
46 > * @version 1.0
47 > */
48  
49 < #include <iostream>
50 < using namespace std;
49 > #include <algorithm>
50 > #include <set>
51  
52   #include "brains/SimInfo.hpp"
53 < #define __C
54 < #include "brains/fSimulation.h"
55 < #include "utils/simError.h"
56 < #include "UseTheForce/DarkSide/simulation_interface.h"
53 > #include "math/Vector3.hpp"
54 > #include "primitives/Molecule.hpp"
55 > #include "UseTheForce/fCutoffPolicy.h"
56 > #include "UseTheForce/fCoulombicCorrection.h"
57 > #include "UseTheForce/doForces_interface.h"
58   #include "UseTheForce/notifyCutoffs_interface.h"
59 + #include "utils/MemoryUtils.hpp"
60 + #include "utils/simError.h"
61 + #include "selection/SelectionManager.hpp"
62  
15 //#include "UseTheForce/fortranWrappers.hpp"
16
17 #include "math/MatVec3.h"
18
63   #ifdef IS_MPI
64 < #include "brains/mpiSimulation.hpp"
65 < #endif
64 > #include "UseTheForce/mpiComponentPlan.h"
65 > #include "UseTheForce/DarkSide/simParallel_interface.h"
66 > #endif
67  
68 < inline double roundMe( double x ){
24 <  return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
25 < }
26 <          
27 < inline double min( double a, double b ){
28 <  return (a < b ) ? a : b;
29 < }
68 > namespace oopse {
69  
70 < SimInfo* currentInfo;
70 >  SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
71 >                   ForceField* ff, Globals* simParams) :
72 >    stamps_(stamps), forceField_(ff), simParams_(simParams),
73 >    ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
74 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
75 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
76 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
77 >    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
78 >    sman_(NULL), fortranInitialized_(false) {
79  
80 < SimInfo::SimInfo(){
80 >            
81 >      std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
82 >      MoleculeStamp* molStamp;
83 >      int nMolWithSameStamp;
84 >      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
85 >      int nGroups = 0;          //total cutoff groups defined in meta-data file
86 >      CutoffGroupStamp* cgStamp;    
87 >      RigidBodyStamp* rbStamp;
88 >      int nRigidAtoms = 0;
89 >    
90 >      for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
91 >        molStamp = i->first;
92 >        nMolWithSameStamp = i->second;
93 >        
94 >        addMoleculeStamp(molStamp, nMolWithSameStamp);
95  
96 <  n_constraints = 0;
97 <  nZconstraints = 0;
37 <  n_oriented = 0;
38 <  n_dipoles = 0;
39 <  ndf = 0;
40 <  ndfRaw = 0;
41 <  nZconstraints = 0;
42 <  the_integrator = NULL;
43 <  setTemp = 0;
44 <  thermalTime = 0.0;
45 <  currentTime = 0.0;
46 <  rCut = 0.0;
47 <  rSw = 0.0;
96 >        //calculate atoms in molecules
97 >        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
98  
49  haveRcut = 0;
50  haveRsw = 0;
51  boxIsInit = 0;
52  
53  resetTime = 1e99;
99  
100 <  orthoRhombic = 0;
101 <  orthoTolerance = 1E-6;
102 <  useInitXSstate = true;
100 >        //calculate atoms in cutoff groups
101 >        int nAtomsInGroups = 0;
102 >        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
103 >        
104 >        for (int j=0; j < nCutoffGroupsInStamp; j++) {
105 >          cgStamp = molStamp->getCutoffGroup(j);
106 >          nAtomsInGroups += cgStamp->getNMembers();
107 >        }
108  
109 <  usePBC = 0;
110 <  useDirectionalAtoms = 0;
61 <  useLennardJones = 0;
62 <  useElectrostatics = 0;
63 <  useCharges = 0;
64 <  useDipoles = 0;
65 <  useSticky = 0;
66 <  useGayBerne = 0;
67 <  useEAM = 0;
68 <  useShapes = 0;
69 <  useFLARB = 0;
109 >        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
110 >        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
111  
112 <  useSolidThermInt = 0;
113 <  useLiquidThermInt = 0;
112 >        //calculate atoms in rigid bodies
113 >        int nAtomsInRigidBodies = 0;
114 >        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
115 >        
116 >        for (int j=0; j < nRigidBodiesInStamp; j++) {
117 >          rbStamp = molStamp->getRigidBody(j);
118 >          nAtomsInRigidBodies += rbStamp->getNMembers();
119 >        }
120  
121 <  haveCutoffGroups = false;
121 >        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
122 >        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
123 >        
124 >      }
125  
126 <  excludes = Exclude::Instance();
126 >      //every free atom (atom does not belong to cutoff groups) is a cutoff group
127 >      //therefore the total number of cutoff groups in the system is equal to
128 >      //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
129 >      //file plus the number of cutoff groups defined in meta-data file
130 >      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
131  
132 <  myConfiguration = new SimState();
132 >      //every free atom (atom does not belong to rigid bodies) is an integrable object
133 >      //therefore the total number of  integrable objects in the system is equal to
134 >      //the total number of atoms minus number of atoms belong to  rigid body defined in meta-data
135 >      //file plus the number of  rigid bodies defined in meta-data file
136 >      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
137  
138 <  has_minimizer = false;
81 <  the_minimizer =NULL;
138 >      nGlobalMols_ = molStampIds_.size();
139  
140 <  ngroup = 0;
140 > #ifdef IS_MPI    
141 >      molToProcMap_.resize(nGlobalMols_);
142 > #endif
143  
144 < }
144 >    }
145  
146 +  SimInfo::~SimInfo() {
147 +    std::map<int, Molecule*>::iterator i;
148 +    for (i = molecules_.begin(); i != molecules_.end(); ++i) {
149 +      delete i->second;
150 +    }
151 +    molecules_.clear();
152 +      
153 +    delete stamps_;
154 +    delete sman_;
155 +    delete simParams_;
156 +    delete forceField_;
157 +  }
158  
159 < SimInfo::~SimInfo(){
159 >  int SimInfo::getNGlobalConstraints() {
160 >    int nGlobalConstraints;
161 > #ifdef IS_MPI
162 >    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
163 >                  MPI_COMM_WORLD);    
164 > #else
165 >    nGlobalConstraints =  nConstraints_;
166 > #endif
167 >    return nGlobalConstraints;
168 >  }
169  
170 <  delete myConfiguration;
170 >  bool SimInfo::addMolecule(Molecule* mol) {
171 >    MoleculeIterator i;
172  
173 <  map<string, GenericData*>::iterator i;
174 <  
94 <  for(i = properties.begin(); i != properties.end(); i++)
95 <    delete (*i).second;
173 >    i = molecules_.find(mol->getGlobalIndex());
174 >    if (i == molecules_.end() ) {
175  
176 < }
176 >      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
177 >        
178 >      nAtoms_ += mol->getNAtoms();
179 >      nBonds_ += mol->getNBonds();
180 >      nBends_ += mol->getNBends();
181 >      nTorsions_ += mol->getNTorsions();
182 >      nRigidBodies_ += mol->getNRigidBodies();
183 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
184 >      nCutoffGroups_ += mol->getNCutoffGroups();
185 >      nConstraints_ += mol->getNConstraintPairs();
186  
187 < void SimInfo::setBox(double newBox[3]) {
188 <  
189 <  int i, j;
190 <  double tempMat[3][3];
191 <
104 <  for(i=0; i<3; i++)
105 <    for (j=0; j<3; j++) tempMat[i][j] = 0.0;;
106 <
107 <  tempMat[0][0] = newBox[0];
108 <  tempMat[1][1] = newBox[1];
109 <  tempMat[2][2] = newBox[2];
110 <
111 <  setBoxM( tempMat );
112 <
113 < }
114 <
115 < void SimInfo::setBoxM( double theBox[3][3] ){
116 <  
117 <  int i, j;
118 <  double FortranHmat[9]; // to preserve compatibility with Fortran the
119 <                         // ordering in the array is as follows:
120 <                         // [ 0 3 6 ]
121 <                         // [ 1 4 7 ]
122 <                         // [ 2 5 8 ]
123 <  double FortranHmatInv[9]; // the inverted Hmat (for Fortran);
124 <
125 <  if( !boxIsInit ) boxIsInit = 1;
126 <
127 <  for(i=0; i < 3; i++)
128 <    for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j];
129 <  
130 <  calcBoxL();
131 <  calcHmatInv();
132 <
133 <  for(i=0; i < 3; i++) {
134 <    for (j=0; j < 3; j++) {
135 <      FortranHmat[3*j + i] = Hmat[i][j];
136 <      FortranHmatInv[3*j + i] = HmatInv[i][j];
187 >      addExcludePairs(mol);
188 >        
189 >      return true;
190 >    } else {
191 >      return false;
192      }
193    }
194  
195 <  setFortranBox(FortranHmat, FortranHmatInv, &orthoRhombic);
196 <
197 < }
143 <
195 >  bool SimInfo::removeMolecule(Molecule* mol) {
196 >    MoleculeIterator i;
197 >    i = molecules_.find(mol->getGlobalIndex());
198  
199 < void SimInfo::getBoxM (double theBox[3][3]) {
199 >    if (i != molecules_.end() ) {
200  
201 <  int i, j;
202 <  for(i=0; i<3; i++)
203 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j];
204 < }
201 >      assert(mol == i->second);
202 >        
203 >      nAtoms_ -= mol->getNAtoms();
204 >      nBonds_ -= mol->getNBonds();
205 >      nBends_ -= mol->getNBends();
206 >      nTorsions_ -= mol->getNTorsions();
207 >      nRigidBodies_ -= mol->getNRigidBodies();
208 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
209 >      nCutoffGroups_ -= mol->getNCutoffGroups();
210 >      nConstraints_ -= mol->getNConstraintPairs();
211  
212 +      removeExcludePairs(mol);
213 +      molecules_.erase(mol->getGlobalIndex());
214  
215 < void SimInfo::scaleBox(double scale) {
216 <  double theBox[3][3];
217 <  int i, j;
215 >      delete mol;
216 >        
217 >      return true;
218 >    } else {
219 >      return false;
220 >    }
221  
157  // cerr << "Scaling box by " << scale << "\n";
222  
223 <  for(i=0; i<3; i++)
160 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale;
223 >  }    
224  
225 <  setBoxM(theBox);
225 >        
226 >  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
227 >    i = molecules_.begin();
228 >    return i == molecules_.end() ? NULL : i->second;
229 >  }    
230  
231 < }
231 >  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
232 >    ++i;
233 >    return i == molecules_.end() ? NULL : i->second;    
234 >  }
235  
166 void SimInfo::calcHmatInv( void ) {
167  
168  int oldOrtho;
169  int i,j;
170  double smallDiag;
171  double tol;
172  double sanity[3][3];
236  
237 <  invertMat3( Hmat, HmatInv );
237 >  void SimInfo::calcNdf() {
238 >    int ndf_local;
239 >    MoleculeIterator i;
240 >    std::vector<StuntDouble*>::iterator j;
241 >    Molecule* mol;
242 >    StuntDouble* integrableObject;
243  
244 <  // check to see if Hmat is orthorhombic
245 <  
246 <  oldOrtho = orthoRhombic;
244 >    ndf_local = 0;
245 >    
246 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
247 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
248 >           integrableObject = mol->nextIntegrableObject(j)) {
249  
250 <  smallDiag = fabs(Hmat[0][0]);
181 <  if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]);
182 <  if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]);
183 <  tol = smallDiag * orthoTolerance;
250 >        ndf_local += 3;
251  
252 <  orthoRhombic = 1;
253 <  
254 <  for (i = 0; i < 3; i++ ) {
255 <    for (j = 0 ; j < 3; j++) {
256 <      if (i != j) {
257 <        if (orthoRhombic) {
258 <          if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0;
259 <        }        
260 <      }
261 <    }
195 <  }
196 <
197 <  if( oldOrtho != orthoRhombic ){
252 >        if (integrableObject->isDirectional()) {
253 >          if (integrableObject->isLinear()) {
254 >            ndf_local += 2;
255 >          } else {
256 >            ndf_local += 3;
257 >          }
258 >        }
259 >            
260 >      }//end for (integrableObject)
261 >    }// end for (mol)
262      
263 <    if( orthoRhombic ) {
264 <      sprintf( painCave.errMsg,
201 <               "OOPSE is switching from the default Non-Orthorhombic\n"
202 <               "\tto the faster Orthorhombic periodic boundary computations.\n"
203 <               "\tThis is usually a good thing, but if you wan't the\n"
204 <               "\tNon-Orthorhombic computations, make the orthoBoxTolerance\n"
205 <               "\tvariable ( currently set to %G ) smaller.\n",
206 <               orthoTolerance);
207 <      painCave.severity = OOPSE_INFO;
208 <      simError();
209 <    }
210 <    else {
211 <      sprintf( painCave.errMsg,
212 <               "OOPSE is switching from the faster Orthorhombic to the more\n"
213 <               "\tflexible Non-Orthorhombic periodic boundary computations.\n"
214 <               "\tThis is usually because the box has deformed under\n"
215 <               "\tNPTf integration. If you wan't to live on the edge with\n"
216 <               "\tthe Orthorhombic computations, make the orthoBoxTolerance\n"
217 <               "\tvariable ( currently set to %G ) larger.\n",
218 <               orthoTolerance);
219 <      painCave.severity = OOPSE_WARNING;
220 <      simError();
221 <    }
222 <  }
223 < }
263 >    // n_constraints is local, so subtract them on each processor
264 >    ndf_local -= nConstraints_;
265  
266 < void SimInfo::calcBoxL( void ){
266 > #ifdef IS_MPI
267 >    MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
268 > #else
269 >    ndf_ = ndf_local;
270 > #endif
271  
272 <  double dx, dy, dz, dsq;
272 >    // nZconstraints_ is global, as are the 3 COM translations for the
273 >    // entire system:
274 >    ndf_ = ndf_ - 3 - nZconstraint_;
275  
276 <  // boxVol = Determinant of Hmat
276 >  }
277  
278 <  boxVol = matDet3( Hmat );
278 >  void SimInfo::calcNdfRaw() {
279 >    int ndfRaw_local;
280  
281 <  // boxLx
282 <  
283 <  dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0];
284 <  dsq = dx*dx + dy*dy + dz*dz;
237 <  boxL[0] = sqrt( dsq );
238 <  //maxCutoff = 0.5 * boxL[0];
281 >    MoleculeIterator i;
282 >    std::vector<StuntDouble*>::iterator j;
283 >    Molecule* mol;
284 >    StuntDouble* integrableObject;
285  
286 <  // boxLy
287 <  
288 <  dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1];
289 <  dsq = dx*dx + dy*dy + dz*dz;
290 <  boxL[1] = sqrt( dsq );
291 <  //if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1];
286 >    // Raw degrees of freedom that we have to set
287 >    ndfRaw_local = 0;
288 >    
289 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
290 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
291 >           integrableObject = mol->nextIntegrableObject(j)) {
292  
293 +        ndfRaw_local += 3;
294  
295 <  // boxLz
296 <  
297 <  dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2];
298 <  dsq = dx*dx + dy*dy + dz*dz;
299 <  boxL[2] = sqrt( dsq );
300 <  //if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2];
295 >        if (integrableObject->isDirectional()) {
296 >          if (integrableObject->isLinear()) {
297 >            ndfRaw_local += 2;
298 >          } else {
299 >            ndfRaw_local += 3;
300 >          }
301 >        }
302 >            
303 >      }
304 >    }
305 >    
306 > #ifdef IS_MPI
307 >    MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
308 > #else
309 >    ndfRaw_ = ndfRaw_local;
310 > #endif
311 >  }
312  
313 <  //calculate the max cutoff
314 <  maxCutoff =  calcMaxCutOff();
257 <  
258 <  checkCutOffs();
313 >  void SimInfo::calcNdfTrans() {
314 >    int ndfTrans_local;
315  
316 < }
316 >    ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
317  
318  
319 < double SimInfo::calcMaxCutOff(){
319 > #ifdef IS_MPI
320 >    MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
321 > #else
322 >    ndfTrans_ = ndfTrans_local;
323 > #endif
324  
325 <  double ri[3], rj[3], rk[3];
326 <  double rij[3], rjk[3], rki[3];
327 <  double minDist;
325 >    ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
326 >
327 >  }
328  
329 <  ri[0] = Hmat[0][0];
330 <  ri[1] = Hmat[1][0];
331 <  ri[2] = Hmat[2][0];
332 <
333 <  rj[0] = Hmat[0][1];
334 <  rj[1] = Hmat[1][1];
335 <  rj[2] = Hmat[2][1];
336 <
337 <  rk[0] = Hmat[0][2];
338 <  rk[1] = Hmat[1][2];
339 <  rk[2] = Hmat[2][2];
329 >  void SimInfo::addExcludePairs(Molecule* mol) {
330 >    std::vector<Bond*>::iterator bondIter;
331 >    std::vector<Bend*>::iterator bendIter;
332 >    std::vector<Torsion*>::iterator torsionIter;
333 >    Bond* bond;
334 >    Bend* bend;
335 >    Torsion* torsion;
336 >    int a;
337 >    int b;
338 >    int c;
339 >    int d;
340      
341 <  crossProduct3(ri, rj, rij);
342 <  distXY = dotProduct3(rk,rij) / norm3(rij);
341 >    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
342 >      a = bond->getAtomA()->getGlobalIndex();
343 >      b = bond->getAtomB()->getGlobalIndex();        
344 >      exclude_.addPair(a, b);
345 >    }
346  
347 <  crossProduct3(rj,rk, rjk);
348 <  distYZ = dotProduct3(ri,rjk) / norm3(rjk);
347 >    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
348 >      a = bend->getAtomA()->getGlobalIndex();
349 >      b = bend->getAtomB()->getGlobalIndex();        
350 >      c = bend->getAtomC()->getGlobalIndex();
351  
352 <  crossProduct3(rk,ri, rki);
353 <  distZX = dotProduct3(rj,rki) / norm3(rki);
352 >      exclude_.addPair(a, b);
353 >      exclude_.addPair(a, c);
354 >      exclude_.addPair(b, c);        
355 >    }
356  
357 <  minDist = min(min(distXY, distYZ), distZX);
358 <  return minDist/2;
359 <  
360 < }
357 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
358 >      a = torsion->getAtomA()->getGlobalIndex();
359 >      b = torsion->getAtomB()->getGlobalIndex();        
360 >      c = torsion->getAtomC()->getGlobalIndex();        
361 >      d = torsion->getAtomD()->getGlobalIndex();        
362  
363 < void SimInfo::wrapVector( double thePos[3] ){
363 >      exclude_.addPair(a, b);
364 >      exclude_.addPair(a, c);
365 >      exclude_.addPair(a, d);
366 >      exclude_.addPair(b, c);
367 >      exclude_.addPair(b, d);
368 >      exclude_.addPair(c, d);        
369 >    }
370  
371 <  int i;
372 <  double scaled[3];
371 >    Molecule::RigidBodyIterator rbIter;
372 >    RigidBody* rb;
373 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
374 >      std::vector<Atom*> atoms = rb->getAtoms();
375 >      for (int i = 0; i < atoms.size() -1 ; ++i) {
376 >        for (int j = i + 1; j < atoms.size(); ++j) {
377 >          a = atoms[i]->getGlobalIndex();
378 >          b = atoms[j]->getGlobalIndex();
379 >          exclude_.addPair(a, b);
380 >        }
381 >      }
382 >    }        
383  
384 <  if( !orthoRhombic ){
301 <    // calc the scaled coordinates.
302 <  
384 >  }
385  
386 <    matVecMul3(HmatInv, thePos, scaled);
386 >  void SimInfo::removeExcludePairs(Molecule* mol) {
387 >    std::vector<Bond*>::iterator bondIter;
388 >    std::vector<Bend*>::iterator bendIter;
389 >    std::vector<Torsion*>::iterator torsionIter;
390 >    Bond* bond;
391 >    Bend* bend;
392 >    Torsion* torsion;
393 >    int a;
394 >    int b;
395 >    int c;
396 >    int d;
397      
398 <    for(i=0; i<3; i++)
399 <      scaled[i] -= roundMe(scaled[i]);
400 <    
401 <    // calc the wrapped real coordinates from the wrapped scaled coordinates
402 <    
311 <    matVecMul3(Hmat, scaled, thePos);
398 >    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
399 >      a = bond->getAtomA()->getGlobalIndex();
400 >      b = bond->getAtomB()->getGlobalIndex();        
401 >      exclude_.removePair(a, b);
402 >    }
403  
404 <  }
405 <  else{
406 <    // calc the scaled coordinates.
407 <    
317 <    for(i=0; i<3; i++)
318 <      scaled[i] = thePos[i]*HmatInv[i][i];
319 <    
320 <    // wrap the scaled coordinates
321 <    
322 <    for(i=0; i<3; i++)
323 <      scaled[i] -= roundMe(scaled[i]);
324 <    
325 <    // calc the wrapped real coordinates from the wrapped scaled coordinates
326 <    
327 <    for(i=0; i<3; i++)
328 <      thePos[i] = scaled[i]*Hmat[i][i];
329 <  }
330 <    
331 < }
404 >    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
405 >      a = bend->getAtomA()->getGlobalIndex();
406 >      b = bend->getAtomB()->getGlobalIndex();        
407 >      c = bend->getAtomC()->getGlobalIndex();
408  
409 +      exclude_.removePair(a, b);
410 +      exclude_.removePair(a, c);
411 +      exclude_.removePair(b, c);        
412 +    }
413  
414 < int SimInfo::getNDF(){
415 <  int ndf_local;
414 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
415 >      a = torsion->getAtomA()->getGlobalIndex();
416 >      b = torsion->getAtomB()->getGlobalIndex();        
417 >      c = torsion->getAtomC()->getGlobalIndex();        
418 >      d = torsion->getAtomD()->getGlobalIndex();        
419  
420 <  ndf_local = 0;
421 <  
422 <  for(int i = 0; i < integrableObjects.size(); i++){
423 <    ndf_local += 3;
424 <    if (integrableObjects[i]->isDirectional()) {
425 <      if (integrableObjects[i]->isLinear())
343 <        ndf_local += 2;
344 <      else
345 <        ndf_local += 3;
420 >      exclude_.removePair(a, b);
421 >      exclude_.removePair(a, c);
422 >      exclude_.removePair(a, d);
423 >      exclude_.removePair(b, c);
424 >      exclude_.removePair(b, d);
425 >      exclude_.removePair(c, d);        
426      }
427 +
428 +    Molecule::RigidBodyIterator rbIter;
429 +    RigidBody* rb;
430 +    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
431 +      std::vector<Atom*> atoms = rb->getAtoms();
432 +      for (int i = 0; i < atoms.size() -1 ; ++i) {
433 +        for (int j = i + 1; j < atoms.size(); ++j) {
434 +          a = atoms[i]->getGlobalIndex();
435 +          b = atoms[j]->getGlobalIndex();
436 +          exclude_.removePair(a, b);
437 +        }
438 +      }
439 +    }        
440 +
441    }
442  
349  // n_constraints is local, so subtract them on each processor:
443  
444 <  ndf_local -= n_constraints;
444 >  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
445 >    int curStampId;
446  
447 < #ifdef IS_MPI
448 <  MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
355 < #else
356 <  ndf = ndf_local;
357 < #endif
447 >    //index from 0
448 >    curStampId = moleculeStamps_.size();
449  
450 <  // nZconstraints is global, as are the 3 COM translations for the
451 <  // entire system:
450 >    moleculeStamps_.push_back(molStamp);
451 >    molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
452 >  }
453  
454 <  ndf = ndf - 3 - nZconstraints;
454 >  void SimInfo::update() {
455  
456 <  return ndf;
365 < }
456 >    setupSimType();
457  
458 < int SimInfo::getNDFraw() {
459 <  int ndfRaw_local;
458 > #ifdef IS_MPI
459 >    setupFortranParallel();
460 > #endif
461  
462 <  // Raw degrees of freedom that we have to set
371 <  ndfRaw_local = 0;
462 >    setupFortranSim();
463  
464 <  for(int i = 0; i < integrableObjects.size(); i++){
465 <    ndfRaw_local += 3;
466 <    if (integrableObjects[i]->isDirectional()) {
467 <       if (integrableObjects[i]->isLinear())
468 <        ndfRaw_local += 2;
469 <      else
470 <        ndfRaw_local += 3;
464 >    //setup fortran force field
465 >    /** @deprecate */    
466 >    int isError = 0;
467 >    
468 >    setupCoulombicCorrection( isError );
469 >
470 >    if(isError){
471 >      sprintf( painCave.errMsg,
472 >               "ForceField error: There was an error initializing the forceField in fortran.\n" );
473 >      painCave.isFatal = 1;
474 >      simError();
475      }
476 <  }
476 >  
477      
478 < #ifdef IS_MPI
384 <  MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
385 < #else
386 <  ndfRaw = ndfRaw_local;
387 < #endif
478 >    setupCutoff();
479  
480 <  return ndfRaw;
481 < }
480 >    calcNdf();
481 >    calcNdfRaw();
482 >    calcNdfTrans();
483  
484 < int SimInfo::getNDFtranslational() {
485 <  int ndfTrans_local;
484 >    fortranInitialized_ = true;
485 >  }
486  
487 <  ndfTrans_local = 3 * integrableObjects.size() - n_constraints;
487 >  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
488 >    SimInfo::MoleculeIterator mi;
489 >    Molecule* mol;
490 >    Molecule::AtomIterator ai;
491 >    Atom* atom;
492 >    std::set<AtomType*> atomTypes;
493  
494 +    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
495  
496 < #ifdef IS_MPI
497 <  MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
498 < #else
499 <  ndfTrans = ndfTrans_local;
500 < #endif
496 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
497 >        atomTypes.insert(atom->getAtomType());
498 >      }
499 >        
500 >    }
501  
502 <  ndfTrans = ndfTrans - 3 - nZconstraints;
502 >    return atomTypes;        
503 >  }
504  
505 <  return ndfTrans;
506 < }
505 >  void SimInfo::setupSimType() {
506 >    std::set<AtomType*>::iterator i;
507 >    std::set<AtomType*> atomTypes;
508 >    atomTypes = getUniqueAtomTypes();
509 >    
510 >    int useLennardJones = 0;
511 >    int useElectrostatic = 0;
512 >    int useEAM = 0;
513 >    int useCharge = 0;
514 >    int useDirectional = 0;
515 >    int useDipole = 0;
516 >    int useGayBerne = 0;
517 >    int useSticky = 0;
518 >    int useStickyPower = 0;
519 >    int useShape = 0;
520 >    int useFLARB = 0; //it is not in AtomType yet
521 >    int useDirectionalAtom = 0;    
522 >    int useElectrostatics = 0;
523 >    //usePBC and useRF are from simParams
524 >    int usePBC = simParams_->getPBC();
525 >    int useRF = simParams_->getUseRF();
526  
527 < int SimInfo::getTotIntegrableObjects() {
528 <  int nObjs_local;
529 <  int nObjs;
527 >    //loop over all of the atom types
528 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
529 >      useLennardJones |= (*i)->isLennardJones();
530 >      useElectrostatic |= (*i)->isElectrostatic();
531 >      useEAM |= (*i)->isEAM();
532 >      useCharge |= (*i)->isCharge();
533 >      useDirectional |= (*i)->isDirectional();
534 >      useDipole |= (*i)->isDipole();
535 >      useGayBerne |= (*i)->isGayBerne();
536 >      useSticky |= (*i)->isSticky();
537 >      useStickyPower |= (*i)->isStickyPower();
538 >      useShape |= (*i)->isShape();
539 >    }
540  
541 <  nObjs_local =  integrableObjects.size();
541 >    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
542 >      useDirectionalAtom = 1;
543 >    }
544  
545 +    if (useCharge || useDipole) {
546 +      useElectrostatics = 1;
547 +    }
548  
549 < #ifdef IS_MPI
550 <  MPI_Allreduce(&nObjs_local,&nObjs,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
418 < #else
419 <  nObjs = nObjs_local;
420 < #endif
549 > #ifdef IS_MPI    
550 >    int temp;
551  
552 +    temp = usePBC;
553 +    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
554  
555 <  return nObjs;
556 < }
555 >    temp = useDirectionalAtom;
556 >    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
557  
558 < void SimInfo::refreshSim(){
558 >    temp = useLennardJones;
559 >    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
560  
561 <  simtype fInfo;
562 <  int isError;
430 <  int n_global;
431 <  int* excl;
561 >    temp = useElectrostatics;
562 >    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
563  
564 <  fInfo.dielect = 0.0;
564 >    temp = useCharge;
565 >    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
566 >
567 >    temp = useDipole;
568 >    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
569 >
570 >    temp = useSticky;
571 >    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
572  
573 <  if( useDipoles ){
574 <    if( useReactionField )fInfo.dielect = dielectric;
575 <  }
573 >    temp = useStickyPower;
574 >    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
575 >    
576 >    temp = useGayBerne;
577 >    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
578  
579 <  fInfo.SIM_uses_PBC = usePBC;
579 >    temp = useEAM;
580 >    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
581  
582 <  if (useSticky || useDipoles || useGayBerne || useShapes) {
583 <    useDirectionalAtoms = 1;
443 <    fInfo.SIM_uses_DirectionalAtoms = useDirectionalAtoms;
444 <  }
582 >    temp = useShape;
583 >    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
584  
585 <  fInfo.SIM_uses_LennardJones = useLennardJones;
585 >    temp = useFLARB;
586 >    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
587  
588 <  if (useCharges || useDipoles) {
589 <    useElectrostatics = 1;
450 <    fInfo.SIM_uses_Electrostatics = useElectrostatics;
451 <  }
588 >    temp = useRF;
589 >    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
590  
591 <  fInfo.SIM_uses_Charges = useCharges;
592 <  fInfo.SIM_uses_Dipoles = useDipoles;
455 <  fInfo.SIM_uses_Sticky = useSticky;
456 <  fInfo.SIM_uses_GayBerne = useGayBerne;
457 <  fInfo.SIM_uses_EAM = useEAM;
458 <  fInfo.SIM_uses_Shapes = useShapes;
459 <  fInfo.SIM_uses_FLARB = useFLARB;
460 <  fInfo.SIM_uses_RF = useReactionField;
591 >    temp = useUW;
592 >    MPI_Allreduce(&temp, &useUW, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
593  
594 <  n_exclude = excludes->getSize();
595 <  excl = excludes->getFortranArray();
596 <  
465 < #ifdef IS_MPI
466 <  n_global = mpiSim->getNAtomsGlobal();
467 < #else
468 <  n_global = n_atoms;
594 >    temp = useDW;
595 >    MPI_Allreduce(&temp, &useDW, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
596 >    
597   #endif
470  
471  isError = 0;
472  
473  getFortranGroupArrays(this, FglobalGroupMembership, mfact);
474  //it may not be a good idea to pass the address of first element in vector
475  //since c++ standard does not require vector to be stored continuously in meomory
476  //Most of the compilers will organize the memory of vector continuously
477  setFortranSim( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl,
478                  &nGlobalExcludes, globalExcludes, molMembershipArray,
479                  &mfact[0], &ngroup, &FglobalGroupMembership[0], &isError);
598  
599 <  if( isError ){
600 <    
601 <    sprintf( painCave.errMsg,
602 <             "There was an error setting the simulation information in fortran.\n" );
603 <    painCave.isFatal = 1;
604 <    painCave.severity = OOPSE_ERROR;
605 <    simError();
599 >    fInfo_.SIM_uses_PBC = usePBC;    
600 >    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
601 >    fInfo_.SIM_uses_LennardJones = useLennardJones;
602 >    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
603 >    fInfo_.SIM_uses_Charges = useCharge;
604 >    fInfo_.SIM_uses_Dipoles = useDipole;
605 >    fInfo_.SIM_uses_Sticky = useSticky;
606 >    fInfo_.SIM_uses_StickyPower = useStickyPower;
607 >    fInfo_.SIM_uses_GayBerne = useGayBerne;
608 >    fInfo_.SIM_uses_EAM = useEAM;
609 >    fInfo_.SIM_uses_Shapes = useShape;
610 >    fInfo_.SIM_uses_FLARB = useFLARB;
611 >    fInfo_.SIM_uses_RF = useRF;
612 >
613 >    if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
614 >
615 >      if (simParams_->haveDielectric()) {
616 >        fInfo_.dielect = simParams_->getDielectric();
617 >      } else {
618 >        sprintf(painCave.errMsg,
619 >                "SimSetup Error: No Dielectric constant was set.\n"
620 >                "\tYou are trying to use Reaction Field without"
621 >                "\tsetting a dielectric constant!\n");
622 >        painCave.isFatal = 1;
623 >        simError();
624 >      }
625 >        
626 >    } else {
627 >      fInfo_.dielect = 0.0;
628 >    }
629 >
630    }
489  
490 #ifdef IS_MPI
491  sprintf( checkPointMsg,
492           "succesfully sent the simulation information to fortran.\n");
493  MPIcheckPoint();
494 #endif // is_mpi
495  
496  this->ndf = this->getNDF();
497  this->ndfRaw = this->getNDFraw();
498  this->ndfTrans = this->getNDFtranslational();
499 }
631  
632 < void SimInfo::setDefaultRcut( double theRcut ){
633 <  
634 <  haveRcut = 1;
635 <  rCut = theRcut;
636 <  rList = rCut + 1.0;
637 <  
638 <  notifyFortranCutoffs( &rCut, &rSw, &rList );
508 < }
632 >  void SimInfo::setupFortranSim() {
633 >    int isError;
634 >    int nExclude;
635 >    std::vector<int> fortranGlobalGroupMembership;
636 >    
637 >    nExclude = exclude_.getSize();
638 >    isError = 0;
639  
640 < void SimInfo::setDefaultRcut( double theRcut, double theRsw ){
640 >    //globalGroupMembership_ is filled by SimCreator    
641 >    for (int i = 0; i < nGlobalAtoms_; i++) {
642 >      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
643 >    }
644  
645 <  rSw = theRsw;
646 <  setDefaultRcut( theRcut );
647 < }
645 >    //calculate mass ratio of cutoff group
646 >    std::vector<double> mfact;
647 >    SimInfo::MoleculeIterator mi;
648 >    Molecule* mol;
649 >    Molecule::CutoffGroupIterator ci;
650 >    CutoffGroup* cg;
651 >    Molecule::AtomIterator ai;
652 >    Atom* atom;
653 >    double totalMass;
654  
655 +    //to avoid memory reallocation, reserve enough space for mfact
656 +    mfact.reserve(getNCutoffGroups());
657 +    
658 +    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
659 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
660  
661 < void SimInfo::checkCutOffs( void ){
662 <  
663 <  if( boxIsInit ){
661 >        totalMass = cg->getMass();
662 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
663 >          mfact.push_back(atom->getMass()/totalMass);
664 >        }
665 >
666 >      }      
667 >    }
668 >
669 >    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
670 >    std::vector<int> identArray;
671 >
672 >    //to avoid memory reallocation, reserve enough space identArray
673 >    identArray.reserve(getNAtoms());
674      
675 <    //we need to check cutOffs against the box
675 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
676 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
677 >        identArray.push_back(atom->getIdent());
678 >      }
679 >    }    
680 >
681 >    //fill molMembershipArray
682 >    //molMembershipArray is filled by SimCreator    
683 >    std::vector<int> molMembershipArray(nGlobalAtoms_);
684 >    for (int i = 0; i < nGlobalAtoms_; i++) {
685 >      molMembershipArray[i] = globalMolMembership_[i] + 1;
686 >    }
687      
688 <    if( rCut > maxCutoff ){
688 >    //setup fortran simulation
689 >    int nGlobalExcludes = 0;
690 >    int* globalExcludes = NULL;
691 >    int* excludeList = exclude_.getExcludeList();
692 >    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
693 >                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
694 >                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
695 >
696 >    if( isError ){
697 >
698        sprintf( painCave.errMsg,
699 <               "cutoffRadius is too large for the current periodic box.\n"
526 <               "\tCurrent Value of cutoffRadius = %G at time %G\n "
527 <               "\tThis is larger than half of at least one of the\n"
528 <               "\tperiodic box vectors.  Right now, the Box matrix is:\n"
529 <               "\n"
530 <               "\t[ %G %G %G ]\n"
531 <               "\t[ %G %G %G ]\n"
532 <               "\t[ %G %G %G ]\n",
533 <               rCut, currentTime,
534 <               Hmat[0][0], Hmat[0][1], Hmat[0][2],
535 <               Hmat[1][0], Hmat[1][1], Hmat[1][2],
536 <               Hmat[2][0], Hmat[2][1], Hmat[2][2]);
537 <      painCave.severity = OOPSE_ERROR;
699 >               "There was an error setting the simulation information in fortran.\n" );
700        painCave.isFatal = 1;
701 +      painCave.severity = OOPSE_ERROR;
702        simError();
703 <    }    
704 <  } else {
705 <    // initialize this stuff before using it, OK?
706 <    sprintf( painCave.errMsg,
707 <             "Trying to check cutoffs without a box.\n"
708 <             "\tOOPSE should have better programmers than that.\n" );
709 <    painCave.severity = OOPSE_ERROR;
547 <    painCave.isFatal = 1;
548 <    simError();      
703 >    }
704 >
705 > #ifdef IS_MPI
706 >    sprintf( checkPointMsg,
707 >             "succesfully sent the simulation information to fortran.\n");
708 >    MPIcheckPoint();
709 > #endif // is_mpi
710    }
550  
551 }
711  
553 void SimInfo::addProperty(GenericData* prop){
712  
713 <  map<string, GenericData*>::iterator result;
714 <  result = properties.find(prop->getID());
557 <  
558 <  //we can't simply use  properties[prop->getID()] = prop,
559 <  //it will cause memory leak if we already contain a propery which has the same name of prop
560 <  
561 <  if(result != properties.end()){
713 > #ifdef IS_MPI
714 >  void SimInfo::setupFortranParallel() {
715      
716 <    delete (*result).second;
717 <    (*result).second = prop;
718 <      
719 <  }
720 <  else{
716 >    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
717 >    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
718 >    std::vector<int> localToGlobalCutoffGroupIndex;
719 >    SimInfo::MoleculeIterator mi;
720 >    Molecule::AtomIterator ai;
721 >    Molecule::CutoffGroupIterator ci;
722 >    Molecule* mol;
723 >    Atom* atom;
724 >    CutoffGroup* cg;
725 >    mpiSimData parallelData;
726 >    int isError;
727  
728 <    properties[prop->getID()] = prop;
728 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
729  
730 +      //local index(index in DataStorge) of atom is important
731 +      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
732 +        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
733 +      }
734 +
735 +      //local index of cutoff group is trivial, it only depends on the order of travesing
736 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
737 +        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
738 +      }        
739 +        
740 +    }
741 +
742 +    //fill up mpiSimData struct
743 +    parallelData.nMolGlobal = getNGlobalMolecules();
744 +    parallelData.nMolLocal = getNMolecules();
745 +    parallelData.nAtomsGlobal = getNGlobalAtoms();
746 +    parallelData.nAtomsLocal = getNAtoms();
747 +    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
748 +    parallelData.nGroupsLocal = getNCutoffGroups();
749 +    parallelData.myNode = worldRank;
750 +    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
751 +
752 +    //pass mpiSimData struct and index arrays to fortran
753 +    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
754 +                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
755 +                    &localToGlobalCutoffGroupIndex[0], &isError);
756 +
757 +    if (isError) {
758 +      sprintf(painCave.errMsg,
759 +              "mpiRefresh errror: fortran didn't like something we gave it.\n");
760 +      painCave.isFatal = 1;
761 +      simError();
762 +    }
763 +
764 +    sprintf(checkPointMsg, " mpiRefresh successful.\n");
765 +    MPIcheckPoint();
766 +
767 +
768    }
572    
573 }
769  
770 < GenericData* SimInfo::getProperty(const string& propName){
576 <
577 <  map<string, GenericData*>::iterator result;
578 <  
579 <  //string lowerCaseName = ();
580 <  
581 <  result = properties.find(propName);
582 <  
583 <  if(result != properties.end())
584 <    return (*result).second;  
585 <  else  
586 <    return NULL;  
587 < }
770 > #endif
771  
772 +  double SimInfo::calcMaxCutoffRadius() {
773  
590 void SimInfo::getFortranGroupArrays(SimInfo* info,
591                                    vector<int>& FglobalGroupMembership,
592                                    vector<double>& mfact){
593  
594  Molecule* myMols;
595  Atom** myAtoms;
596  int numAtom;
597  double mtot;
598  int numMol;
599  int numCutoffGroups;
600  CutoffGroup* myCutoffGroup;
601  vector<CutoffGroup*>::iterator iterCutoff;
602  Atom* cutoffAtom;
603  vector<Atom*>::iterator iterAtom;
604  int atomIndex;
605  double totalMass;
606  
607  mfact.clear();
608  FglobalGroupMembership.clear();
609  
774  
775 <  // Fix the silly fortran indexing problem
775 >    std::set<AtomType*> atomTypes;
776 >    std::set<AtomType*>::iterator i;
777 >    std::vector<double> cutoffRadius;
778 >
779 >    //get the unique atom types
780 >    atomTypes = getUniqueAtomTypes();
781 >
782 >    //query the max cutoff radius among these atom types
783 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
784 >      cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
785 >    }
786 >
787 >    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
788   #ifdef IS_MPI
789 <  numAtom = mpiSim->getNAtomsGlobal();
614 < #else
615 <  numAtom = n_atoms;
789 >    //pick the max cutoff radius among the processors
790   #endif
617  for (int i = 0; i < numAtom; i++)
618    FglobalGroupMembership.push_back(globalGroupMembership[i] + 1);
619  
791  
792 <  myMols = info->molecules;
793 <  numMol = info->n_mol;
623 <  for(int i  = 0; i < numMol; i++){
624 <    numCutoffGroups = myMols[i].getNCutoffGroups();
625 <    for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff);
626 <        myCutoffGroup != NULL;
627 <        myCutoffGroup =myMols[i].nextCutoffGroup(iterCutoff)){
792 >    return maxCutoffRadius;
793 >  }
794  
795 <      totalMass = myCutoffGroup->getMass();
796 <      
797 <      for(cutoffAtom = myCutoffGroup->beginAtom(iterAtom);
798 <          cutoffAtom != NULL;
799 <          cutoffAtom = myCutoffGroup->nextAtom(iterAtom)){
800 <        mfact.push_back(cutoffAtom->getMass()/totalMass);
801 <      }  
795 >  void SimInfo::getCutoff(double& rcut, double& rsw) {
796 >    
797 >    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
798 >        
799 >      if (!simParams_->haveRcut()){
800 >        sprintf(painCave.errMsg,
801 >                "SimCreator Warning: No value was set for the cutoffRadius.\n"
802 >                "\tOOPSE will use a default value of 15.0 angstroms"
803 >                "\tfor the cutoffRadius.\n");
804 >        painCave.isFatal = 0;
805 >        simError();
806 >        rcut = 15.0;
807 >      } else{
808 >        rcut = simParams_->getRcut();
809 >      }
810 >
811 >      if (!simParams_->haveRsw()){
812 >        sprintf(painCave.errMsg,
813 >                "SimCreator Warning: No value was set for switchingRadius.\n"
814 >                "\tOOPSE will use a default value of\n"
815 >                "\t0.95 * cutoffRadius for the switchingRadius\n");
816 >        painCave.isFatal = 0;
817 >        simError();
818 >        rsw = 0.95 * rcut;
819 >      } else{
820 >        rsw = simParams_->getRsw();
821 >      }
822 >
823 >    } else {
824 >      // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
825 >      //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
826 >        
827 >      if (simParams_->haveRcut()) {
828 >        rcut = simParams_->getRcut();
829 >      } else {
830 >        //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
831 >        rcut = calcMaxCutoffRadius();
832 >      }
833 >
834 >      if (simParams_->haveRsw()) {
835 >        rsw  = simParams_->getRsw();
836 >      } else {
837 >        rsw = rcut;
838 >      }
839 >    
840      }
841    }
842  
843 < }
843 >  void SimInfo::setupCutoff() {    
844 >    getCutoff(rcut_, rsw_);    
845 >    double rnblist = rcut_ + 1; // skin of neighbor list
846 >
847 >    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
848 >    
849 >    int cp =  TRADITIONAL_CUTOFF_POLICY;
850 >    if (simParams_->haveCutoffPolicy()) {
851 >      std::string myPolicy = simParams_->getCutoffPolicy();
852 >      if (myPolicy == "MIX") {
853 >        cp = MIX_CUTOFF_POLICY;
854 >      } else {
855 >        if (myPolicy == "MAX") {
856 >          cp = MAX_CUTOFF_POLICY;
857 >        } else {
858 >          if (myPolicy == "TRADITIONAL") {            
859 >            cp = TRADITIONAL_CUTOFF_POLICY;
860 >          } else {
861 >            // throw error        
862 >            sprintf( painCave.errMsg,
863 >                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
864 >            painCave.isFatal = 1;
865 >            simError();
866 >          }    
867 >        }          
868 >      }
869 >    }
870 >    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist, &cp);
871 >  }
872 >
873 >  void SimInfo::setupCoulombicCorrection( int isError ) {    
874 >    
875 >    int errorOut;
876 >    int cc =  NONE;
877 >    double alphaVal;
878 >
879 >    errorOut = isError;
880 >
881 >    if (simParams_->haveCoulombicCorrection()) {
882 >      std::string myCorrection = simParams_->getCoulombicCorrection();
883 >      if (myCorrection == "NONE") {
884 >        cc = NONE;
885 >      } else {
886 >        if (myCorrection == "UNDAMPED_WOLF") {
887 >          cc = UNDAMPED_WOLF;
888 >        } else {
889 >          if (myCorrection == "WOLF") {            
890 >            cc = WOLF;
891 >            if (!simParams_->haveDampingAlpha()) {
892 >              //throw error
893 >              sprintf( painCave.errMsg,
894 >                       "SimInfo warning: dampingAlpha was not specified in the input file. A default value of %f (1/ang) will be used for the Wolf Coulombic Correction.", simParams_->getDampingAlpha());
895 >              painCave.isFatal = 0;
896 >              simError();
897 >            }
898 >            alphaVal = simParams_->getDampingAlpha();
899 >          } else {
900 >            if (myCorrection == "REACTION_FIELD") {
901 >              cc = REACTION_FIELD;
902 >            } else {
903 >              // throw error        
904 >              sprintf( painCave.errMsg,
905 >                       "SimInfo error: Unknown coulombicCorrection. (Input file specified %s .)\n\tcoulombicCorrection must be one of: \"none\", \"undamped_wolf\", \"wolf\", or \"reaction_field\".", myCorrection.c_str() );
906 >              painCave.isFatal = 1;
907 >              simError();
908 >            }    
909 >          }          
910 >        }
911 >      }
912 >    }
913 >    initFortranFF( &fInfo_.SIM_uses_RF, &cc, &alphaVal, &errorOut );
914 >  }
915 >
916 >  void SimInfo::addProperty(GenericData* genData) {
917 >    properties_.addProperty(genData);  
918 >  }
919 >
920 >  void SimInfo::removeProperty(const std::string& propName) {
921 >    properties_.removeProperty(propName);  
922 >  }
923 >
924 >  void SimInfo::clearProperties() {
925 >    properties_.clearProperties();
926 >  }
927 >
928 >  std::vector<std::string> SimInfo::getPropertyNames() {
929 >    return properties_.getPropertyNames();  
930 >  }
931 >      
932 >  std::vector<GenericData*> SimInfo::getProperties() {
933 >    return properties_.getProperties();
934 >  }
935 >
936 >  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
937 >    return properties_.getPropertyByName(propName);
938 >  }
939 >
940 >  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
941 >    if (sman_ == sman) {
942 >      return;
943 >    }    
944 >    delete sman_;
945 >    sman_ = sman;
946 >
947 >    Molecule* mol;
948 >    RigidBody* rb;
949 >    Atom* atom;
950 >    SimInfo::MoleculeIterator mi;
951 >    Molecule::RigidBodyIterator rbIter;
952 >    Molecule::AtomIterator atomIter;;
953 >
954 >    for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
955 >        
956 >      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
957 >        atom->setSnapshotManager(sman_);
958 >      }
959 >        
960 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
961 >        rb->setSnapshotManager(sman_);
962 >      }
963 >    }    
964 >    
965 >  }
966 >
967 >  Vector3d SimInfo::getComVel(){
968 >    SimInfo::MoleculeIterator i;
969 >    Molecule* mol;
970 >
971 >    Vector3d comVel(0.0);
972 >    double totalMass = 0.0;
973 >    
974 >
975 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
976 >      double mass = mol->getMass();
977 >      totalMass += mass;
978 >      comVel += mass * mol->getComVel();
979 >    }  
980 >
981 > #ifdef IS_MPI
982 >    double tmpMass = totalMass;
983 >    Vector3d tmpComVel(comVel);    
984 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
985 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
986 > #endif
987 >
988 >    comVel /= totalMass;
989 >
990 >    return comVel;
991 >  }
992 >
993 >  Vector3d SimInfo::getCom(){
994 >    SimInfo::MoleculeIterator i;
995 >    Molecule* mol;
996 >
997 >    Vector3d com(0.0);
998 >    double totalMass = 0.0;
999 >    
1000 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1001 >      double mass = mol->getMass();
1002 >      totalMass += mass;
1003 >      com += mass * mol->getCom();
1004 >    }  
1005 >
1006 > #ifdef IS_MPI
1007 >    double tmpMass = totalMass;
1008 >    Vector3d tmpCom(com);    
1009 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1010 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1011 > #endif
1012 >
1013 >    com /= totalMass;
1014 >
1015 >    return com;
1016 >
1017 >  }        
1018 >
1019 >  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1020 >
1021 >    return o;
1022 >  }
1023 >  
1024 >  
1025 >   /*
1026 >   Returns center of mass and center of mass velocity in one function call.
1027 >   */
1028 >  
1029 >   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1030 >      SimInfo::MoleculeIterator i;
1031 >      Molecule* mol;
1032 >      
1033 >    
1034 >      double totalMass = 0.0;
1035 >    
1036 >
1037 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1038 >         double mass = mol->getMass();
1039 >         totalMass += mass;
1040 >         com += mass * mol->getCom();
1041 >         comVel += mass * mol->getComVel();          
1042 >      }  
1043 >      
1044 > #ifdef IS_MPI
1045 >      double tmpMass = totalMass;
1046 >      Vector3d tmpCom(com);  
1047 >      Vector3d tmpComVel(comVel);
1048 >      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1049 >      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1050 >      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1051 > #endif
1052 >      
1053 >      com /= totalMass;
1054 >      comVel /= totalMass;
1055 >   }        
1056 >  
1057 >   /*
1058 >   Return intertia tensor for entire system and angular momentum Vector.
1059 >
1060 >
1061 >       [  Ixx -Ixy  -Ixz ]
1062 >  J =| -Iyx  Iyy  -Iyz |
1063 >       [ -Izx -Iyz   Izz ]
1064 >    */
1065 >
1066 >   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1067 >      
1068 >
1069 >      double xx = 0.0;
1070 >      double yy = 0.0;
1071 >      double zz = 0.0;
1072 >      double xy = 0.0;
1073 >      double xz = 0.0;
1074 >      double yz = 0.0;
1075 >      Vector3d com(0.0);
1076 >      Vector3d comVel(0.0);
1077 >      
1078 >      getComAll(com, comVel);
1079 >      
1080 >      SimInfo::MoleculeIterator i;
1081 >      Molecule* mol;
1082 >      
1083 >      Vector3d thisq(0.0);
1084 >      Vector3d thisv(0.0);
1085 >
1086 >      double thisMass = 0.0;
1087 >    
1088 >      
1089 >      
1090 >  
1091 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1092 >        
1093 >         thisq = mol->getCom()-com;
1094 >         thisv = mol->getComVel()-comVel;
1095 >         thisMass = mol->getMass();
1096 >         // Compute moment of intertia coefficients.
1097 >         xx += thisq[0]*thisq[0]*thisMass;
1098 >         yy += thisq[1]*thisq[1]*thisMass;
1099 >         zz += thisq[2]*thisq[2]*thisMass;
1100 >        
1101 >         // compute products of intertia
1102 >         xy += thisq[0]*thisq[1]*thisMass;
1103 >         xz += thisq[0]*thisq[2]*thisMass;
1104 >         yz += thisq[1]*thisq[2]*thisMass;
1105 >            
1106 >         angularMomentum += cross( thisq, thisv ) * thisMass;
1107 >            
1108 >      }  
1109 >      
1110 >      
1111 >      inertiaTensor(0,0) = yy + zz;
1112 >      inertiaTensor(0,1) = -xy;
1113 >      inertiaTensor(0,2) = -xz;
1114 >      inertiaTensor(1,0) = -xy;
1115 >      inertiaTensor(1,1) = xx + zz;
1116 >      inertiaTensor(1,2) = -yz;
1117 >      inertiaTensor(2,0) = -xz;
1118 >      inertiaTensor(2,1) = -yz;
1119 >      inertiaTensor(2,2) = xx + yy;
1120 >      
1121 > #ifdef IS_MPI
1122 >      Mat3x3d tmpI(inertiaTensor);
1123 >      Vector3d tmpAngMom;
1124 >      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1125 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1126 > #endif
1127 >              
1128 >      return;
1129 >   }
1130 >
1131 >   //Returns the angular momentum of the system
1132 >   Vector3d SimInfo::getAngularMomentum(){
1133 >      
1134 >      Vector3d com(0.0);
1135 >      Vector3d comVel(0.0);
1136 >      Vector3d angularMomentum(0.0);
1137 >      
1138 >      getComAll(com,comVel);
1139 >      
1140 >      SimInfo::MoleculeIterator i;
1141 >      Molecule* mol;
1142 >      
1143 >      Vector3d thisr(0.0);
1144 >      Vector3d thisp(0.0);
1145 >      
1146 >      double thisMass;
1147 >      
1148 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1149 >        thisMass = mol->getMass();
1150 >        thisr = mol->getCom()-com;
1151 >        thisp = (mol->getComVel()-comVel)*thisMass;
1152 >        
1153 >        angularMomentum += cross( thisr, thisp );
1154 >        
1155 >      }  
1156 >      
1157 > #ifdef IS_MPI
1158 >      Vector3d tmpAngMom;
1159 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1160 > #endif
1161 >      
1162 >      return angularMomentum;
1163 >   }
1164 >  
1165 >  
1166 > }//end namespace oopse
1167 >

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines