ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-2.0/src/brains/SimInfo.cpp
(Generate patch)

Comparing trunk/OOPSE-2.0/src/brains/SimInfo.cpp (file contents):
Revision 1617 by chuckv, Wed Oct 20 20:46:20 2004 UTC vs.
Revision 2307 by chrisfen, Fri Sep 16 21:07:45 2005 UTC

# Line 1 | Line 1
1 < #include <stdlib.h>
2 < #include <string.h>
3 < #include <math.h>
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Acknowledgement of the program authors must be made in any
10 > *    publication of scientific results based in part on use of the
11 > *    program.  An acceptable form of acknowledgement is citation of
12 > *    the article in which the program was described (Matthew
13 > *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 > *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 > *    Parallel Simulation Engine for Molecular Dynamics,"
16 > *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 > *
18 > * 2. Redistributions of source code must retain the above copyright
19 > *    notice, this list of conditions and the following disclaimer.
20 > *
21 > * 3. Redistributions in binary form must reproduce the above copyright
22 > *    notice, this list of conditions and the following disclaimer in the
23 > *    documentation and/or other materials provided with the
24 > *    distribution.
25 > *
26 > * This software is provided "AS IS," without a warranty of any
27 > * kind. All express or implied conditions, representations and
28 > * warranties, including any implied warranty of merchantability,
29 > * fitness for a particular purpose or non-infringement, are hereby
30 > * excluded.  The University of Notre Dame and its licensors shall not
31 > * be liable for any damages suffered by licensee as a result of
32 > * using, modifying or distributing the software or its
33 > * derivatives. In no event will the University of Notre Dame or its
34 > * licensors be liable for any lost revenue, profit or data, or for
35 > * direct, indirect, special, consequential, incidental or punitive
36 > * damages, however caused and regardless of the theory of liability,
37 > * arising out of the use of or inability to use software, even if the
38 > * University of Notre Dame has been advised of the possibility of
39 > * such damages.
40 > */
41 >
42 > /**
43 > * @file SimInfo.cpp
44 > * @author    tlin
45 > * @date  11/02/2004
46 > * @version 1.0
47 > */
48  
49 < #include <iostream>
50 < using namespace std;
49 > #include <algorithm>
50 > #include <set>
51  
52   #include "brains/SimInfo.hpp"
53 < #define __C
54 < #include "brains/fSimulation.h"
55 < #include "utils/simError.h"
56 < #include "UseTheForce/DarkSide/simulation_interface.h"
53 > #include "math/Vector3.hpp"
54 > #include "primitives/Molecule.hpp"
55 > #include "UseTheForce/fCutoffPolicy.h"
56 > #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
57 > #include "UseTheForce/doForces_interface.h"
58   #include "UseTheForce/notifyCutoffs_interface.h"
59 + #include "utils/MemoryUtils.hpp"
60 + #include "utils/simError.h"
61 + #include "selection/SelectionManager.hpp"
62  
15 //#include "UseTheForce/fortranWrappers.hpp"
16
17 #include "math/MatVec3.h"
18
63   #ifdef IS_MPI
64 < #include "brains/mpiSimulation.hpp"
65 < #endif
64 > #include "UseTheForce/mpiComponentPlan.h"
65 > #include "UseTheForce/DarkSide/simParallel_interface.h"
66 > #endif
67  
68 < inline double roundMe( double x ){
24 <  return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
25 < }
26 <          
27 < inline double min( double a, double b ){
28 <  return (a < b ) ? a : b;
29 < }
68 > namespace oopse {
69  
70 < SimInfo* currentInfo;
70 >  SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
71 >                   ForceField* ff, Globals* simParams) :
72 >    stamps_(stamps), forceField_(ff), simParams_(simParams),
73 >    ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
74 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
75 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
76 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
77 >    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
78 >    sman_(NULL), fortranInitialized_(false) {
79  
80 < SimInfo::SimInfo(){
80 >            
81 >      std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
82 >      MoleculeStamp* molStamp;
83 >      int nMolWithSameStamp;
84 >      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
85 >      int nGroups = 0;          //total cutoff groups defined in meta-data file
86 >      CutoffGroupStamp* cgStamp;    
87 >      RigidBodyStamp* rbStamp;
88 >      int nRigidAtoms = 0;
89 >    
90 >      for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
91 >        molStamp = i->first;
92 >        nMolWithSameStamp = i->second;
93 >        
94 >        addMoleculeStamp(molStamp, nMolWithSameStamp);
95  
96 <  n_constraints = 0;
97 <  nZconstraints = 0;
37 <  n_oriented = 0;
38 <  n_dipoles = 0;
39 <  ndf = 0;
40 <  ndfRaw = 0;
41 <  nZconstraints = 0;
42 <  the_integrator = NULL;
43 <  setTemp = 0;
44 <  thermalTime = 0.0;
45 <  currentTime = 0.0;
46 <  rCut = 0.0;
47 <  rSw = 0.0;
96 >        //calculate atoms in molecules
97 >        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
98  
49  haveRcut = 0;
50  haveRsw = 0;
51  boxIsInit = 0;
52  
53  resetTime = 1e99;
99  
100 <  orthoRhombic = 0;
101 <  orthoTolerance = 1E-6;
102 <  useInitXSstate = true;
100 >        //calculate atoms in cutoff groups
101 >        int nAtomsInGroups = 0;
102 >        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
103 >        
104 >        for (int j=0; j < nCutoffGroupsInStamp; j++) {
105 >          cgStamp = molStamp->getCutoffGroup(j);
106 >          nAtomsInGroups += cgStamp->getNMembers();
107 >        }
108  
109 <  usePBC = 0;
110 <  useLJ = 0;
61 <  useSticky = 0;
62 <  useCharges = 0;
63 <  useDipoles = 0;
64 <  useReactionField = 0;
65 <  useGB = 0;
66 <  useEAM = 0;
67 <  useSolidThermInt = 0;
68 <  useLiquidThermInt = 0;
109 >        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
110 >        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
111  
112 <  haveCutoffGroups = false;
112 >        //calculate atoms in rigid bodies
113 >        int nAtomsInRigidBodies = 0;
114 >        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
115 >        
116 >        for (int j=0; j < nRigidBodiesInStamp; j++) {
117 >          rbStamp = molStamp->getRigidBody(j);
118 >          nAtomsInRigidBodies += rbStamp->getNMembers();
119 >        }
120  
121 <  excludes = Exclude::Instance();
121 >        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
122 >        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
123 >        
124 >      }
125  
126 <  myConfiguration = new SimState();
126 >      //every free atom (atom does not belong to cutoff groups) is a cutoff group
127 >      //therefore the total number of cutoff groups in the system is equal to
128 >      //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
129 >      //file plus the number of cutoff groups defined in meta-data file
130 >      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
131  
132 <  has_minimizer = false;
133 <  the_minimizer =NULL;
132 >      //every free atom (atom does not belong to rigid bodies) is an integrable object
133 >      //therefore the total number of  integrable objects in the system is equal to
134 >      //the total number of atoms minus number of atoms belong to  rigid body defined in meta-data
135 >      //file plus the number of  rigid bodies defined in meta-data file
136 >      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
137  
138 <  ngroup = 0;
138 >      nGlobalMols_ = molStampIds_.size();
139  
140 < }
140 > #ifdef IS_MPI    
141 >      molToProcMap_.resize(nGlobalMols_);
142 > #endif
143  
144 +    }
145  
146 < SimInfo::~SimInfo(){
146 >  SimInfo::~SimInfo() {
147 >    std::map<int, Molecule*>::iterator i;
148 >    for (i = molecules_.begin(); i != molecules_.end(); ++i) {
149 >      delete i->second;
150 >    }
151 >    molecules_.clear();
152 >      
153 >    delete stamps_;
154 >    delete sman_;
155 >    delete simParams_;
156 >    delete forceField_;
157 >  }
158  
159 <  delete myConfiguration;
159 >  int SimInfo::getNGlobalConstraints() {
160 >    int nGlobalConstraints;
161 > #ifdef IS_MPI
162 >    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
163 >                  MPI_COMM_WORLD);    
164 > #else
165 >    nGlobalConstraints =  nConstraints_;
166 > #endif
167 >    return nGlobalConstraints;
168 >  }
169  
170 <  map<string, GenericData*>::iterator i;
171 <  
90 <  for(i = properties.begin(); i != properties.end(); i++)
91 <    delete (*i).second;
170 >  bool SimInfo::addMolecule(Molecule* mol) {
171 >    MoleculeIterator i;
172  
173 < }
173 >    i = molecules_.find(mol->getGlobalIndex());
174 >    if (i == molecules_.end() ) {
175  
176 < void SimInfo::setBox(double newBox[3]) {
177 <  
178 <  int i, j;
179 <  double tempMat[3][3];
180 <
181 <  for(i=0; i<3; i++)
182 <    for (j=0; j<3; j++) tempMat[i][j] = 0.0;;
183 <
184 <  tempMat[0][0] = newBox[0];
185 <  tempMat[1][1] = newBox[1];
105 <  tempMat[2][2] = newBox[2];
106 <
107 <  setBoxM( tempMat );
176 >      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
177 >        
178 >      nAtoms_ += mol->getNAtoms();
179 >      nBonds_ += mol->getNBonds();
180 >      nBends_ += mol->getNBends();
181 >      nTorsions_ += mol->getNTorsions();
182 >      nRigidBodies_ += mol->getNRigidBodies();
183 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
184 >      nCutoffGroups_ += mol->getNCutoffGroups();
185 >      nConstraints_ += mol->getNConstraintPairs();
186  
187 < }
188 <
189 < void SimInfo::setBoxM( double theBox[3][3] ){
190 <  
191 <  int i, j;
114 <  double FortranHmat[9]; // to preserve compatibility with Fortran the
115 <                         // ordering in the array is as follows:
116 <                         // [ 0 3 6 ]
117 <                         // [ 1 4 7 ]
118 <                         // [ 2 5 8 ]
119 <  double FortranHmatInv[9]; // the inverted Hmat (for Fortran);
120 <
121 <  if( !boxIsInit ) boxIsInit = 1;
122 <
123 <  for(i=0; i < 3; i++)
124 <    for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j];
125 <  
126 <  calcBoxL();
127 <  calcHmatInv();
128 <
129 <  for(i=0; i < 3; i++) {
130 <    for (j=0; j < 3; j++) {
131 <      FortranHmat[3*j + i] = Hmat[i][j];
132 <      FortranHmatInv[3*j + i] = HmatInv[i][j];
187 >      addExcludePairs(mol);
188 >        
189 >      return true;
190 >    } else {
191 >      return false;
192      }
193    }
194  
195 <  setFortranBox(FortranHmat, FortranHmatInv, &orthoRhombic);
196 <
197 < }
139 <
195 >  bool SimInfo::removeMolecule(Molecule* mol) {
196 >    MoleculeIterator i;
197 >    i = molecules_.find(mol->getGlobalIndex());
198  
199 < void SimInfo::getBoxM (double theBox[3][3]) {
199 >    if (i != molecules_.end() ) {
200  
201 <  int i, j;
202 <  for(i=0; i<3; i++)
203 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j];
204 < }
201 >      assert(mol == i->second);
202 >        
203 >      nAtoms_ -= mol->getNAtoms();
204 >      nBonds_ -= mol->getNBonds();
205 >      nBends_ -= mol->getNBends();
206 >      nTorsions_ -= mol->getNTorsions();
207 >      nRigidBodies_ -= mol->getNRigidBodies();
208 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
209 >      nCutoffGroups_ -= mol->getNCutoffGroups();
210 >      nConstraints_ -= mol->getNConstraintPairs();
211  
212 +      removeExcludePairs(mol);
213 +      molecules_.erase(mol->getGlobalIndex());
214  
215 < void SimInfo::scaleBox(double scale) {
216 <  double theBox[3][3];
217 <  int i, j;
215 >      delete mol;
216 >        
217 >      return true;
218 >    } else {
219 >      return false;
220 >    }
221  
153  // cerr << "Scaling box by " << scale << "\n";
222  
223 <  for(i=0; i<3; i++)
156 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale;
223 >  }    
224  
225 <  setBoxM(theBox);
225 >        
226 >  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
227 >    i = molecules_.begin();
228 >    return i == molecules_.end() ? NULL : i->second;
229 >  }    
230  
231 < }
231 >  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
232 >    ++i;
233 >    return i == molecules_.end() ? NULL : i->second;    
234 >  }
235  
162 void SimInfo::calcHmatInv( void ) {
163  
164  int oldOrtho;
165  int i,j;
166  double smallDiag;
167  double tol;
168  double sanity[3][3];
236  
237 <  invertMat3( Hmat, HmatInv );
237 >  void SimInfo::calcNdf() {
238 >    int ndf_local;
239 >    MoleculeIterator i;
240 >    std::vector<StuntDouble*>::iterator j;
241 >    Molecule* mol;
242 >    StuntDouble* integrableObject;
243  
244 <  // check to see if Hmat is orthorhombic
245 <  
246 <  oldOrtho = orthoRhombic;
244 >    ndf_local = 0;
245 >    
246 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
247 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
248 >           integrableObject = mol->nextIntegrableObject(j)) {
249  
250 <  smallDiag = fabs(Hmat[0][0]);
177 <  if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]);
178 <  if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]);
179 <  tol = smallDiag * orthoTolerance;
250 >        ndf_local += 3;
251  
252 <  orthoRhombic = 1;
253 <  
254 <  for (i = 0; i < 3; i++ ) {
255 <    for (j = 0 ; j < 3; j++) {
256 <      if (i != j) {
257 <        if (orthoRhombic) {
258 <          if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0;
259 <        }        
260 <      }
261 <    }
191 <  }
192 <
193 <  if( oldOrtho != orthoRhombic ){
252 >        if (integrableObject->isDirectional()) {
253 >          if (integrableObject->isLinear()) {
254 >            ndf_local += 2;
255 >          } else {
256 >            ndf_local += 3;
257 >          }
258 >        }
259 >            
260 >      }//end for (integrableObject)
261 >    }// end for (mol)
262      
263 <    if( orthoRhombic ) {
264 <      sprintf( painCave.errMsg,
197 <               "OOPSE is switching from the default Non-Orthorhombic\n"
198 <               "\tto the faster Orthorhombic periodic boundary computations.\n"
199 <               "\tThis is usually a good thing, but if you wan't the\n"
200 <               "\tNon-Orthorhombic computations, make the orthoBoxTolerance\n"
201 <               "\tvariable ( currently set to %G ) smaller.\n",
202 <               orthoTolerance);
203 <      painCave.severity = OOPSE_INFO;
204 <      simError();
205 <    }
206 <    else {
207 <      sprintf( painCave.errMsg,
208 <               "OOPSE is switching from the faster Orthorhombic to the more\n"
209 <               "\tflexible Non-Orthorhombic periodic boundary computations.\n"
210 <               "\tThis is usually because the box has deformed under\n"
211 <               "\tNPTf integration. If you wan't to live on the edge with\n"
212 <               "\tthe Orthorhombic computations, make the orthoBoxTolerance\n"
213 <               "\tvariable ( currently set to %G ) larger.\n",
214 <               orthoTolerance);
215 <      painCave.severity = OOPSE_WARNING;
216 <      simError();
217 <    }
218 <  }
219 < }
263 >    // n_constraints is local, so subtract them on each processor
264 >    ndf_local -= nConstraints_;
265  
266 < void SimInfo::calcBoxL( void ){
266 > #ifdef IS_MPI
267 >    MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
268 > #else
269 >    ndf_ = ndf_local;
270 > #endif
271  
272 <  double dx, dy, dz, dsq;
272 >    // nZconstraints_ is global, as are the 3 COM translations for the
273 >    // entire system:
274 >    ndf_ = ndf_ - 3 - nZconstraint_;
275  
276 <  // boxVol = Determinant of Hmat
276 >  }
277  
278 <  boxVol = matDet3( Hmat );
278 >  void SimInfo::calcNdfRaw() {
279 >    int ndfRaw_local;
280  
281 <  // boxLx
282 <  
283 <  dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0];
284 <  dsq = dx*dx + dy*dy + dz*dz;
233 <  boxL[0] = sqrt( dsq );
234 <  //maxCutoff = 0.5 * boxL[0];
235 <
236 <  // boxLy
237 <  
238 <  dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1];
239 <  dsq = dx*dx + dy*dy + dz*dz;
240 <  boxL[1] = sqrt( dsq );
241 <  //if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1];
281 >    MoleculeIterator i;
282 >    std::vector<StuntDouble*>::iterator j;
283 >    Molecule* mol;
284 >    StuntDouble* integrableObject;
285  
286 +    // Raw degrees of freedom that we have to set
287 +    ndfRaw_local = 0;
288 +    
289 +    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
290 +      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
291 +           integrableObject = mol->nextIntegrableObject(j)) {
292  
293 <  // boxLz
245 <  
246 <  dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2];
247 <  dsq = dx*dx + dy*dy + dz*dz;
248 <  boxL[2] = sqrt( dsq );
249 <  //if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2];
293 >        ndfRaw_local += 3;
294  
295 <  //calculate the max cutoff
296 <  maxCutoff =  calcMaxCutOff();
297 <  
298 <  checkCutOffs();
295 >        if (integrableObject->isDirectional()) {
296 >          if (integrableObject->isLinear()) {
297 >            ndfRaw_local += 2;
298 >          } else {
299 >            ndfRaw_local += 3;
300 >          }
301 >        }
302 >            
303 >      }
304 >    }
305 >    
306 > #ifdef IS_MPI
307 >    MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
308 > #else
309 >    ndfRaw_ = ndfRaw_local;
310 > #endif
311 >  }
312  
313 < }
313 >  void SimInfo::calcNdfTrans() {
314 >    int ndfTrans_local;
315  
316 +    ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
317  
259 double SimInfo::calcMaxCutOff(){
318  
319 <  double ri[3], rj[3], rk[3];
320 <  double rij[3], rjk[3], rki[3];
321 <  double minDist;
319 > #ifdef IS_MPI
320 >    MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
321 > #else
322 >    ndfTrans_ = ndfTrans_local;
323 > #endif
324  
325 <  ri[0] = Hmat[0][0];
326 <  ri[1] = Hmat[1][0];
327 <  ri[2] = Hmat[2][0];
325 >    ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
326 >
327 >  }
328  
329 <  rj[0] = Hmat[0][1];
330 <  rj[1] = Hmat[1][1];
331 <  rj[2] = Hmat[2][1];
332 <
333 <  rk[0] = Hmat[0][2];
334 <  rk[1] = Hmat[1][2];
335 <  rk[2] = Hmat[2][2];
329 >  void SimInfo::addExcludePairs(Molecule* mol) {
330 >    std::vector<Bond*>::iterator bondIter;
331 >    std::vector<Bend*>::iterator bendIter;
332 >    std::vector<Torsion*>::iterator torsionIter;
333 >    Bond* bond;
334 >    Bend* bend;
335 >    Torsion* torsion;
336 >    int a;
337 >    int b;
338 >    int c;
339 >    int d;
340      
341 <  crossProduct3(ri, rj, rij);
342 <  distXY = dotProduct3(rk,rij) / norm3(rij);
341 >    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
342 >      a = bond->getAtomA()->getGlobalIndex();
343 >      b = bond->getAtomB()->getGlobalIndex();        
344 >      exclude_.addPair(a, b);
345 >    }
346  
347 <  crossProduct3(rj,rk, rjk);
348 <  distYZ = dotProduct3(ri,rjk) / norm3(rjk);
347 >    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
348 >      a = bend->getAtomA()->getGlobalIndex();
349 >      b = bend->getAtomB()->getGlobalIndex();        
350 >      c = bend->getAtomC()->getGlobalIndex();
351  
352 <  crossProduct3(rk,ri, rki);
353 <  distZX = dotProduct3(rj,rki) / norm3(rki);
352 >      exclude_.addPair(a, b);
353 >      exclude_.addPair(a, c);
354 >      exclude_.addPair(b, c);        
355 >    }
356  
357 <  minDist = min(min(distXY, distYZ), distZX);
358 <  return minDist/2;
359 <  
360 < }
357 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
358 >      a = torsion->getAtomA()->getGlobalIndex();
359 >      b = torsion->getAtomB()->getGlobalIndex();        
360 >      c = torsion->getAtomC()->getGlobalIndex();        
361 >      d = torsion->getAtomD()->getGlobalIndex();        
362  
363 < void SimInfo::wrapVector( double thePos[3] ){
363 >      exclude_.addPair(a, b);
364 >      exclude_.addPair(a, c);
365 >      exclude_.addPair(a, d);
366 >      exclude_.addPair(b, c);
367 >      exclude_.addPair(b, d);
368 >      exclude_.addPair(c, d);        
369 >    }
370  
371 <  int i;
372 <  double scaled[3];
371 >    Molecule::RigidBodyIterator rbIter;
372 >    RigidBody* rb;
373 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
374 >      std::vector<Atom*> atoms = rb->getAtoms();
375 >      for (int i = 0; i < atoms.size() -1 ; ++i) {
376 >        for (int j = i + 1; j < atoms.size(); ++j) {
377 >          a = atoms[i]->getGlobalIndex();
378 >          b = atoms[j]->getGlobalIndex();
379 >          exclude_.addPair(a, b);
380 >        }
381 >      }
382 >    }        
383  
384 <  if( !orthoRhombic ){
297 <    // calc the scaled coordinates.
298 <  
384 >  }
385  
386 <    matVecMul3(HmatInv, thePos, scaled);
386 >  void SimInfo::removeExcludePairs(Molecule* mol) {
387 >    std::vector<Bond*>::iterator bondIter;
388 >    std::vector<Bend*>::iterator bendIter;
389 >    std::vector<Torsion*>::iterator torsionIter;
390 >    Bond* bond;
391 >    Bend* bend;
392 >    Torsion* torsion;
393 >    int a;
394 >    int b;
395 >    int c;
396 >    int d;
397      
398 <    for(i=0; i<3; i++)
399 <      scaled[i] -= roundMe(scaled[i]);
400 <    
401 <    // calc the wrapped real coordinates from the wrapped scaled coordinates
402 <    
307 <    matVecMul3(Hmat, scaled, thePos);
398 >    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
399 >      a = bond->getAtomA()->getGlobalIndex();
400 >      b = bond->getAtomB()->getGlobalIndex();        
401 >      exclude_.removePair(a, b);
402 >    }
403  
404 <  }
405 <  else{
406 <    // calc the scaled coordinates.
407 <    
313 <    for(i=0; i<3; i++)
314 <      scaled[i] = thePos[i]*HmatInv[i][i];
315 <    
316 <    // wrap the scaled coordinates
317 <    
318 <    for(i=0; i<3; i++)
319 <      scaled[i] -= roundMe(scaled[i]);
320 <    
321 <    // calc the wrapped real coordinates from the wrapped scaled coordinates
322 <    
323 <    for(i=0; i<3; i++)
324 <      thePos[i] = scaled[i]*Hmat[i][i];
325 <  }
326 <    
327 < }
404 >    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
405 >      a = bend->getAtomA()->getGlobalIndex();
406 >      b = bend->getAtomB()->getGlobalIndex();        
407 >      c = bend->getAtomC()->getGlobalIndex();
408  
409 +      exclude_.removePair(a, b);
410 +      exclude_.removePair(a, c);
411 +      exclude_.removePair(b, c);        
412 +    }
413  
414 < int SimInfo::getNDF(){
415 <  int ndf_local;
414 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
415 >      a = torsion->getAtomA()->getGlobalIndex();
416 >      b = torsion->getAtomB()->getGlobalIndex();        
417 >      c = torsion->getAtomC()->getGlobalIndex();        
418 >      d = torsion->getAtomD()->getGlobalIndex();        
419  
420 <  ndf_local = 0;
421 <  
422 <  for(int i = 0; i < integrableObjects.size(); i++){
423 <    ndf_local += 3;
424 <    if (integrableObjects[i]->isDirectional()) {
425 <      if (integrableObjects[i]->isLinear())
339 <        ndf_local += 2;
340 <      else
341 <        ndf_local += 3;
420 >      exclude_.removePair(a, b);
421 >      exclude_.removePair(a, c);
422 >      exclude_.removePair(a, d);
423 >      exclude_.removePair(b, c);
424 >      exclude_.removePair(b, d);
425 >      exclude_.removePair(c, d);        
426      }
343  }
427  
428 <  // n_constraints is local, so subtract them on each processor:
428 >    Molecule::RigidBodyIterator rbIter;
429 >    RigidBody* rb;
430 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
431 >      std::vector<Atom*> atoms = rb->getAtoms();
432 >      for (int i = 0; i < atoms.size() -1 ; ++i) {
433 >        for (int j = i + 1; j < atoms.size(); ++j) {
434 >          a = atoms[i]->getGlobalIndex();
435 >          b = atoms[j]->getGlobalIndex();
436 >          exclude_.removePair(a, b);
437 >        }
438 >      }
439 >    }        
440  
441 <  ndf_local -= n_constraints;
441 >  }
442  
349 #ifdef IS_MPI
350  MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
351 #else
352  ndf = ndf_local;
353 #endif
443  
444 <  // nZconstraints is global, as are the 3 COM translations for the
445 <  // entire system:
444 >  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
445 >    int curStampId;
446  
447 <  ndf = ndf - 3 - nZconstraints;
447 >    //index from 0
448 >    curStampId = moleculeStamps_.size();
449  
450 <  return ndf;
451 < }
450 >    moleculeStamps_.push_back(molStamp);
451 >    molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
452 >  }
453  
454 < int SimInfo::getNDFraw() {
364 <  int ndfRaw_local;
454 >  void SimInfo::update() {
455  
456 <  // Raw degrees of freedom that we have to set
367 <  ndfRaw_local = 0;
456 >    setupSimType();
457  
369  for(int i = 0; i < integrableObjects.size(); i++){
370    ndfRaw_local += 3;
371    if (integrableObjects[i]->isDirectional()) {
372       if (integrableObjects[i]->isLinear())
373        ndfRaw_local += 2;
374      else
375        ndfRaw_local += 3;
376    }
377  }
378    
458   #ifdef IS_MPI
459 <  MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
381 < #else
382 <  ndfRaw = ndfRaw_local;
459 >    setupFortranParallel();
460   #endif
461  
462 <  return ndfRaw;
386 < }
462 >    setupFortranSim();
463  
464 < int SimInfo::getNDFtranslational() {
465 <  int ndfTrans_local;
464 >    //setup fortran force field
465 >    /** @deprecate */    
466 >    int isError = 0;
467 >    
468 >    setupElectrostaticSummationMethod( isError );
469  
470 <  ndfTrans_local = 3 * integrableObjects.size() - n_constraints;
470 >    if(isError){
471 >      sprintf( painCave.errMsg,
472 >               "ForceField error: There was an error initializing the forceField in fortran.\n" );
473 >      painCave.isFatal = 1;
474 >      simError();
475 >    }
476 >  
477 >    
478 >    setupCutoff();
479  
480 +    calcNdf();
481 +    calcNdfRaw();
482 +    calcNdfTrans();
483  
484 < #ifdef IS_MPI
485 <  MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
396 < #else
397 <  ndfTrans = ndfTrans_local;
398 < #endif
484 >    fortranInitialized_ = true;
485 >  }
486  
487 <  ndfTrans = ndfTrans - 3 - nZconstraints;
487 >  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
488 >    SimInfo::MoleculeIterator mi;
489 >    Molecule* mol;
490 >    Molecule::AtomIterator ai;
491 >    Atom* atom;
492 >    std::set<AtomType*> atomTypes;
493  
494 <  return ndfTrans;
403 < }
494 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
495  
496 < int SimInfo::getTotIntegrableObjects() {
497 <  int nObjs_local;
498 <  int nObjs;
496 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
497 >        atomTypes.insert(atom->getAtomType());
498 >      }
499 >        
500 >    }
501  
502 <  nObjs_local =  integrableObjects.size();
502 >    return atomTypes;        
503 >  }
504  
505 +  void SimInfo::setupSimType() {
506 +    std::set<AtomType*>::iterator i;
507 +    std::set<AtomType*> atomTypes;
508 +    atomTypes = getUniqueAtomTypes();
509 +    
510 +    int useLennardJones = 0;
511 +    int useElectrostatic = 0;
512 +    int useEAM = 0;
513 +    int useCharge = 0;
514 +    int useDirectional = 0;
515 +    int useDipole = 0;
516 +    int useGayBerne = 0;
517 +    int useSticky = 0;
518 +    int useStickyPower = 0;
519 +    int useShape = 0;
520 +    int useFLARB = 0; //it is not in AtomType yet
521 +    int useDirectionalAtom = 0;    
522 +    int useElectrostatics = 0;
523 +    //usePBC and useRF are from simParams
524 +    int usePBC = simParams_->getPBC();
525  
526 < #ifdef IS_MPI
527 <  MPI_Allreduce(&nObjs_local,&nObjs,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
528 < #else
529 <  nObjs = nObjs_local;
530 < #endif
526 >    //loop over all of the atom types
527 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
528 >      useLennardJones |= (*i)->isLennardJones();
529 >      useElectrostatic |= (*i)->isElectrostatic();
530 >      useEAM |= (*i)->isEAM();
531 >      useCharge |= (*i)->isCharge();
532 >      useDirectional |= (*i)->isDirectional();
533 >      useDipole |= (*i)->isDipole();
534 >      useGayBerne |= (*i)->isGayBerne();
535 >      useSticky |= (*i)->isSticky();
536 >      useStickyPower |= (*i)->isStickyPower();
537 >      useShape |= (*i)->isShape();
538 >    }
539  
540 +    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
541 +      useDirectionalAtom = 1;
542 +    }
543  
544 <  return nObjs;
545 < }
544 >    if (useCharge || useDipole) {
545 >      useElectrostatics = 1;
546 >    }
547  
548 < void SimInfo::refreshSim(){
548 > #ifdef IS_MPI    
549 >    int temp;
550  
551 <  simtype fInfo;
552 <  int isError;
426 <  int n_global;
427 <  int* excl;
551 >    temp = usePBC;
552 >    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
553  
554 <  fInfo.dielect = 0.0;
554 >    temp = useDirectionalAtom;
555 >    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
556 >
557 >    temp = useLennardJones;
558 >    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
559 >
560 >    temp = useElectrostatics;
561 >    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
562  
563 <  if( useDipoles ){
564 <    if( useReactionField )fInfo.dielect = dielectric;
433 <  }
563 >    temp = useCharge;
564 >    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
565  
566 <  fInfo.SIM_uses_PBC = usePBC;
567 <  //fInfo.SIM_uses_LJ = 0;
437 <  fInfo.SIM_uses_LJ = useLJ;
438 <  fInfo.SIM_uses_sticky = useSticky;
439 <  //fInfo.SIM_uses_sticky = 0;
440 <  fInfo.SIM_uses_charges = useCharges;
441 <  fInfo.SIM_uses_dipoles = useDipoles;
442 <  //fInfo.SIM_uses_dipoles = 0;
443 <  fInfo.SIM_uses_RF = useReactionField;
444 <  //fInfo.SIM_uses_RF = 0;
445 <  fInfo.SIM_uses_GB = useGB;
446 <  fInfo.SIM_uses_EAM = useEAM;
566 >    temp = useDipole;
567 >    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
568  
569 <  n_exclude = excludes->getSize();
570 <  excl = excludes->getFortranArray();
450 <  
451 < #ifdef IS_MPI
452 <  n_global = mpiSim->getNAtomsGlobal();
453 < #else
454 <  n_global = n_atoms;
455 < #endif
456 <  
457 <  isError = 0;
458 <  
459 <  getFortranGroupArrays(this, FglobalGroupMembership, mfact);
460 <  //it may not be a good idea to pass the address of first element in vector
461 <  //since c++ standard does not require vector to be stored continuously in meomory
462 <  //Most of the compilers will organize the memory of vector continuously
463 <  setFortranSim( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl,
464 <                  &nGlobalExcludes, globalExcludes, molMembershipArray,
465 <                  &mfact[0], &ngroup, &FglobalGroupMembership[0], &isError);
569 >    temp = useSticky;
570 >    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
571  
572 <  if( isError ){
572 >    temp = useStickyPower;
573 >    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
574      
575 <    sprintf( painCave.errMsg,
576 <             "There was an error setting the simulation information in fortran.\n" );
577 <    painCave.isFatal = 1;
578 <    painCave.severity = OOPSE_ERROR;
579 <    simError();
575 >    temp = useGayBerne;
576 >    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
577 >
578 >    temp = useEAM;
579 >    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
580 >
581 >    temp = useShape;
582 >    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
583 >
584 >    temp = useFLARB;
585 >    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
586 >
587 > #endif
588 >
589 >    fInfo_.SIM_uses_PBC = usePBC;    
590 >    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
591 >    fInfo_.SIM_uses_LennardJones = useLennardJones;
592 >    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
593 >    fInfo_.SIM_uses_Charges = useCharge;
594 >    fInfo_.SIM_uses_Dipoles = useDipole;
595 >    fInfo_.SIM_uses_Sticky = useSticky;
596 >    fInfo_.SIM_uses_StickyPower = useStickyPower;
597 >    fInfo_.SIM_uses_GayBerne = useGayBerne;
598 >    fInfo_.SIM_uses_EAM = useEAM;
599 >    fInfo_.SIM_uses_Shapes = useShape;
600 >    fInfo_.SIM_uses_FLARB = useFLARB;
601 >
602 >    if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
603 >
604 >      if (simParams_->haveDielectric()) {
605 >        fInfo_.dielect = simParams_->getDielectric();
606 >      } else {
607 >        sprintf(painCave.errMsg,
608 >                "SimSetup Error: No Dielectric constant was set.\n"
609 >                "\tYou are trying to use Reaction Field without"
610 >                "\tsetting a dielectric constant!\n");
611 >        painCave.isFatal = 1;
612 >        simError();
613 >      }
614 >        
615 >    } else {
616 >      fInfo_.dielect = 0.0;
617 >    }
618 >
619    }
475  
476 #ifdef IS_MPI
477  sprintf( checkPointMsg,
478           "succesfully sent the simulation information to fortran.\n");
479  MPIcheckPoint();
480 #endif // is_mpi
481  
482  this->ndf = this->getNDF();
483  this->ndfRaw = this->getNDFraw();
484  this->ndfTrans = this->getNDFtranslational();
485 }
620  
621 < void SimInfo::setDefaultRcut( double theRcut ){
622 <  
623 <  haveRcut = 1;
624 <  rCut = theRcut;
625 <  rList = rCut + 1.0;
626 <  
627 <  notifyFortranCutoffs( &rCut, &rSw, &rList );
494 < }
621 >  void SimInfo::setupFortranSim() {
622 >    int isError;
623 >    int nExclude;
624 >    std::vector<int> fortranGlobalGroupMembership;
625 >    
626 >    nExclude = exclude_.getSize();
627 >    isError = 0;
628  
629 < void SimInfo::setDefaultRcut( double theRcut, double theRsw ){
629 >    //globalGroupMembership_ is filled by SimCreator    
630 >    for (int i = 0; i < nGlobalAtoms_; i++) {
631 >      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
632 >    }
633  
634 <  rSw = theRsw;
635 <  setDefaultRcut( theRcut );
636 < }
634 >    //calculate mass ratio of cutoff group
635 >    std::vector<double> mfact;
636 >    SimInfo::MoleculeIterator mi;
637 >    Molecule* mol;
638 >    Molecule::CutoffGroupIterator ci;
639 >    CutoffGroup* cg;
640 >    Molecule::AtomIterator ai;
641 >    Atom* atom;
642 >    double totalMass;
643  
644 +    //to avoid memory reallocation, reserve enough space for mfact
645 +    mfact.reserve(getNCutoffGroups());
646 +    
647 +    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
648 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
649  
650 < void SimInfo::checkCutOffs( void ){
651 <  
652 <  if( boxIsInit ){
650 >        totalMass = cg->getMass();
651 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
652 >          mfact.push_back(atom->getMass()/totalMass);
653 >        }
654 >
655 >      }      
656 >    }
657 >
658 >    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
659 >    std::vector<int> identArray;
660 >
661 >    //to avoid memory reallocation, reserve enough space identArray
662 >    identArray.reserve(getNAtoms());
663      
664 <    //we need to check cutOffs against the box
664 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
665 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
666 >        identArray.push_back(atom->getIdent());
667 >      }
668 >    }    
669 >
670 >    //fill molMembershipArray
671 >    //molMembershipArray is filled by SimCreator    
672 >    std::vector<int> molMembershipArray(nGlobalAtoms_);
673 >    for (int i = 0; i < nGlobalAtoms_; i++) {
674 >      molMembershipArray[i] = globalMolMembership_[i] + 1;
675 >    }
676      
677 <    if( rCut > maxCutoff ){
677 >    //setup fortran simulation
678 >    int nGlobalExcludes = 0;
679 >    int* globalExcludes = NULL;
680 >    int* excludeList = exclude_.getExcludeList();
681 >    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
682 >                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
683 >                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
684 >
685 >    if( isError ){
686 >
687        sprintf( painCave.errMsg,
688 <               "cutoffRadius is too large for the current periodic box.\n"
512 <               "\tCurrent Value of cutoffRadius = %G at time %G\n "
513 <               "\tThis is larger than half of at least one of the\n"
514 <               "\tperiodic box vectors.  Right now, the Box matrix is:\n"
515 <               "\n"
516 <               "\t[ %G %G %G ]\n"
517 <               "\t[ %G %G %G ]\n"
518 <               "\t[ %G %G %G ]\n",
519 <               rCut, currentTime,
520 <               Hmat[0][0], Hmat[0][1], Hmat[0][2],
521 <               Hmat[1][0], Hmat[1][1], Hmat[1][2],
522 <               Hmat[2][0], Hmat[2][1], Hmat[2][2]);
523 <      painCave.severity = OOPSE_ERROR;
688 >               "There was an error setting the simulation information in fortran.\n" );
689        painCave.isFatal = 1;
690 +      painCave.severity = OOPSE_ERROR;
691        simError();
692 <    }    
693 <  } else {
694 <    // initialize this stuff before using it, OK?
695 <    sprintf( painCave.errMsg,
696 <             "Trying to check cutoffs without a box.\n"
697 <             "\tOOPSE should have better programmers than that.\n" );
698 <    painCave.severity = OOPSE_ERROR;
533 <    painCave.isFatal = 1;
534 <    simError();      
692 >    }
693 >
694 > #ifdef IS_MPI
695 >    sprintf( checkPointMsg,
696 >             "succesfully sent the simulation information to fortran.\n");
697 >    MPIcheckPoint();
698 > #endif // is_mpi
699    }
536  
537 }
700  
539 void SimInfo::addProperty(GenericData* prop){
701  
702 <  map<string, GenericData*>::iterator result;
703 <  result = properties.find(prop->getID());
543 <  
544 <  //we can't simply use  properties[prop->getID()] = prop,
545 <  //it will cause memory leak if we already contain a propery which has the same name of prop
546 <  
547 <  if(result != properties.end()){
702 > #ifdef IS_MPI
703 >  void SimInfo::setupFortranParallel() {
704      
705 <    delete (*result).second;
706 <    (*result).second = prop;
707 <      
708 <  }
709 <  else{
705 >    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
706 >    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
707 >    std::vector<int> localToGlobalCutoffGroupIndex;
708 >    SimInfo::MoleculeIterator mi;
709 >    Molecule::AtomIterator ai;
710 >    Molecule::CutoffGroupIterator ci;
711 >    Molecule* mol;
712 >    Atom* atom;
713 >    CutoffGroup* cg;
714 >    mpiSimData parallelData;
715 >    int isError;
716  
717 <    properties[prop->getID()] = prop;
717 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
718  
719 +      //local index(index in DataStorge) of atom is important
720 +      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
721 +        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
722 +      }
723 +
724 +      //local index of cutoff group is trivial, it only depends on the order of travesing
725 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
726 +        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
727 +      }        
728 +        
729 +    }
730 +
731 +    //fill up mpiSimData struct
732 +    parallelData.nMolGlobal = getNGlobalMolecules();
733 +    parallelData.nMolLocal = getNMolecules();
734 +    parallelData.nAtomsGlobal = getNGlobalAtoms();
735 +    parallelData.nAtomsLocal = getNAtoms();
736 +    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
737 +    parallelData.nGroupsLocal = getNCutoffGroups();
738 +    parallelData.myNode = worldRank;
739 +    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
740 +
741 +    //pass mpiSimData struct and index arrays to fortran
742 +    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
743 +                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
744 +                    &localToGlobalCutoffGroupIndex[0], &isError);
745 +
746 +    if (isError) {
747 +      sprintf(painCave.errMsg,
748 +              "mpiRefresh errror: fortran didn't like something we gave it.\n");
749 +      painCave.isFatal = 1;
750 +      simError();
751 +    }
752 +
753 +    sprintf(checkPointMsg, " mpiRefresh successful.\n");
754 +    MPIcheckPoint();
755 +
756 +
757    }
558    
559 }
758  
759 < GenericData* SimInfo::getProperty(const string& propName){
562 <
563 <  map<string, GenericData*>::iterator result;
564 <  
565 <  //string lowerCaseName = ();
566 <  
567 <  result = properties.find(propName);
568 <  
569 <  if(result != properties.end())
570 <    return (*result).second;  
571 <  else  
572 <    return NULL;  
573 < }
759 > #endif
760  
761 +  double SimInfo::calcMaxCutoffRadius() {
762  
576 void SimInfo::getFortranGroupArrays(SimInfo* info,
577                                    vector<int>& FglobalGroupMembership,
578                                    vector<double>& mfact){
579  
580  Molecule* myMols;
581  Atom** myAtoms;
582  int numAtom;
583  double mtot;
584  int numMol;
585  int numCutoffGroups;
586  CutoffGroup* myCutoffGroup;
587  vector<CutoffGroup*>::iterator iterCutoff;
588  Atom* cutoffAtom;
589  vector<Atom*>::iterator iterAtom;
590  int atomIndex;
591  double totalMass;
592  
593  mfact.clear();
594  FglobalGroupMembership.clear();
595  
763  
764 <  // Fix the silly fortran indexing problem
764 >    std::set<AtomType*> atomTypes;
765 >    std::set<AtomType*>::iterator i;
766 >    std::vector<double> cutoffRadius;
767 >
768 >    //get the unique atom types
769 >    atomTypes = getUniqueAtomTypes();
770 >
771 >    //query the max cutoff radius among these atom types
772 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
773 >      cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
774 >    }
775 >
776 >    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
777   #ifdef IS_MPI
778 <  numAtom = mpiSim->getNAtomsGlobal();
600 < #else
601 <  numAtom = n_atoms;
778 >    //pick the max cutoff radius among the processors
779   #endif
603  for (int i = 0; i < numAtom; i++)
604    FglobalGroupMembership.push_back(globalGroupMembership[i] + 1);
605  
780  
781 <  myMols = info->molecules;
782 <  numMol = info->n_mol;
609 <  for(int i  = 0; i < numMol; i++){
610 <    numCutoffGroups = myMols[i].getNCutoffGroups();
611 <    for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff);
612 <        myCutoffGroup != NULL;
613 <        myCutoffGroup =myMols[i].nextCutoffGroup(iterCutoff)){
781 >    return maxCutoffRadius;
782 >  }
783  
784 <      totalMass = myCutoffGroup->getMass();
785 <      
786 <      for(cutoffAtom = myCutoffGroup->beginAtom(iterAtom);
787 <          cutoffAtom != NULL;
788 <          cutoffAtom = myCutoffGroup->nextAtom(iterAtom)){
789 <        mfact.push_back(cutoffAtom->getMass()/totalMass);
790 <      }  
784 >  void SimInfo::getCutoff(double& rcut, double& rsw) {
785 >    
786 >    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
787 >        
788 >      if (!simParams_->haveRcut()){
789 >        sprintf(painCave.errMsg,
790 >                "SimCreator Warning: No value was set for the cutoffRadius.\n"
791 >                "\tOOPSE will use a default value of 15.0 angstroms"
792 >                "\tfor the cutoffRadius.\n");
793 >        painCave.isFatal = 0;
794 >        simError();
795 >        rcut = 15.0;
796 >      } else{
797 >        rcut = simParams_->getRcut();
798 >      }
799 >
800 >      if (!simParams_->haveRsw()){
801 >        sprintf(painCave.errMsg,
802 >                "SimCreator Warning: No value was set for switchingRadius.\n"
803 >                "\tOOPSE will use a default value of\n"
804 >                "\t0.95 * cutoffRadius for the switchingRadius\n");
805 >        painCave.isFatal = 0;
806 >        simError();
807 >        rsw = 0.95 * rcut;
808 >      } else{
809 >        rsw = simParams_->getRsw();
810 >      }
811 >
812 >    } else {
813 >      // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
814 >      //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
815 >        
816 >      if (simParams_->haveRcut()) {
817 >        rcut = simParams_->getRcut();
818 >      } else {
819 >        //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
820 >        rcut = calcMaxCutoffRadius();
821 >      }
822 >
823 >      if (simParams_->haveRsw()) {
824 >        rsw  = simParams_->getRsw();
825 >      } else {
826 >        rsw = rcut;
827 >      }
828 >    
829      }
830    }
831  
832 < }
832 >  void SimInfo::setupCutoff() {    
833 >    getCutoff(rcut_, rsw_);    
834 >    double rnblist = rcut_ + 1; // skin of neighbor list
835 >
836 >    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
837 >    
838 >    int cp =  TRADITIONAL_CUTOFF_POLICY;
839 >    if (simParams_->haveCutoffPolicy()) {
840 >      std::string myPolicy = simParams_->getCutoffPolicy();
841 >      if (myPolicy == "MIX") {
842 >        cp = MIX_CUTOFF_POLICY;
843 >      } else {
844 >        if (myPolicy == "MAX") {
845 >          cp = MAX_CUTOFF_POLICY;
846 >        } else {
847 >          if (myPolicy == "TRADITIONAL") {            
848 >            cp = TRADITIONAL_CUTOFF_POLICY;
849 >          } else {
850 >            // throw error        
851 >            sprintf( painCave.errMsg,
852 >                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
853 >            painCave.isFatal = 1;
854 >            simError();
855 >          }    
856 >        }          
857 >      }
858 >    }
859 >    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist, &cp);
860 >  }
861 >
862 >  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
863 >    
864 >    int errorOut;
865 >    int esm =  NONE;
866 >    double alphaVal;
867 >
868 >    errorOut = isError;
869 >
870 >    if (simParams_->haveElectrostaticSummationMethod()) {
871 >      std::string myMethod = simParams_->getElectrostaticSummationMethod();
872 >      if (myMethod == "NONE") {
873 >        esm = NONE;
874 >      } else {
875 >        if (myMethod == "UNDAMPED_WOLF") {
876 >          esm = UNDAMPED_WOLF;
877 >        } else {
878 >          if (myMethod == "DAMPED_WOLF") {            
879 >            esm = DAMPED_WOLF;
880 >            if (!simParams_->haveDampingAlpha()) {
881 >              //throw error
882 >              sprintf( painCave.errMsg,
883 >                       "SimInfo warning: dampingAlpha was not specified in the input file. A default value of %f (1/ang) will be used for the Damped Wolf Method.", simParams_->getDampingAlpha());
884 >              painCave.isFatal = 0;
885 >              simError();
886 >            }
887 >            alphaVal = simParams_->getDampingAlpha();
888 >          } else {
889 >            if (myMethod == "REACTION_FIELD") {
890 >              esm = REACTION_FIELD;
891 >            } else {
892 >              // throw error        
893 >              sprintf( painCave.errMsg,
894 >                       "SimInfo error: Unknown electrostaticSummationMethod. (Input file specified %s .)\n\telectrostaticSummationMethod must be one of: \"none\", \"undamped_wolf\", \"damped_wolf\", or \"reaction_field\".", myMethod.c_str() );
895 >              painCave.isFatal = 1;
896 >              simError();
897 >            }    
898 >          }          
899 >        }
900 >      }
901 >    }
902 >    initFortranFF( &esm, &alphaVal, &errorOut );
903 >  }
904 >
905 >  void SimInfo::addProperty(GenericData* genData) {
906 >    properties_.addProperty(genData);  
907 >  }
908 >
909 >  void SimInfo::removeProperty(const std::string& propName) {
910 >    properties_.removeProperty(propName);  
911 >  }
912 >
913 >  void SimInfo::clearProperties() {
914 >    properties_.clearProperties();
915 >  }
916 >
917 >  std::vector<std::string> SimInfo::getPropertyNames() {
918 >    return properties_.getPropertyNames();  
919 >  }
920 >      
921 >  std::vector<GenericData*> SimInfo::getProperties() {
922 >    return properties_.getProperties();
923 >  }
924 >
925 >  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
926 >    return properties_.getPropertyByName(propName);
927 >  }
928 >
929 >  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
930 >    if (sman_ == sman) {
931 >      return;
932 >    }    
933 >    delete sman_;
934 >    sman_ = sman;
935 >
936 >    Molecule* mol;
937 >    RigidBody* rb;
938 >    Atom* atom;
939 >    SimInfo::MoleculeIterator mi;
940 >    Molecule::RigidBodyIterator rbIter;
941 >    Molecule::AtomIterator atomIter;;
942 >
943 >    for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
944 >        
945 >      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
946 >        atom->setSnapshotManager(sman_);
947 >      }
948 >        
949 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
950 >        rb->setSnapshotManager(sman_);
951 >      }
952 >    }    
953 >    
954 >  }
955 >
956 >  Vector3d SimInfo::getComVel(){
957 >    SimInfo::MoleculeIterator i;
958 >    Molecule* mol;
959 >
960 >    Vector3d comVel(0.0);
961 >    double totalMass = 0.0;
962 >    
963 >
964 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
965 >      double mass = mol->getMass();
966 >      totalMass += mass;
967 >      comVel += mass * mol->getComVel();
968 >    }  
969 >
970 > #ifdef IS_MPI
971 >    double tmpMass = totalMass;
972 >    Vector3d tmpComVel(comVel);    
973 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
974 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
975 > #endif
976 >
977 >    comVel /= totalMass;
978 >
979 >    return comVel;
980 >  }
981 >
982 >  Vector3d SimInfo::getCom(){
983 >    SimInfo::MoleculeIterator i;
984 >    Molecule* mol;
985 >
986 >    Vector3d com(0.0);
987 >    double totalMass = 0.0;
988 >    
989 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
990 >      double mass = mol->getMass();
991 >      totalMass += mass;
992 >      com += mass * mol->getCom();
993 >    }  
994 >
995 > #ifdef IS_MPI
996 >    double tmpMass = totalMass;
997 >    Vector3d tmpCom(com);    
998 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
999 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1000 > #endif
1001 >
1002 >    com /= totalMass;
1003 >
1004 >    return com;
1005 >
1006 >  }        
1007 >
1008 >  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1009 >
1010 >    return o;
1011 >  }
1012 >  
1013 >  
1014 >   /*
1015 >   Returns center of mass and center of mass velocity in one function call.
1016 >   */
1017 >  
1018 >   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1019 >      SimInfo::MoleculeIterator i;
1020 >      Molecule* mol;
1021 >      
1022 >    
1023 >      double totalMass = 0.0;
1024 >    
1025 >
1026 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1027 >         double mass = mol->getMass();
1028 >         totalMass += mass;
1029 >         com += mass * mol->getCom();
1030 >         comVel += mass * mol->getComVel();          
1031 >      }  
1032 >      
1033 > #ifdef IS_MPI
1034 >      double tmpMass = totalMass;
1035 >      Vector3d tmpCom(com);  
1036 >      Vector3d tmpComVel(comVel);
1037 >      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1038 >      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1039 >      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1040 > #endif
1041 >      
1042 >      com /= totalMass;
1043 >      comVel /= totalMass;
1044 >   }        
1045 >  
1046 >   /*
1047 >   Return intertia tensor for entire system and angular momentum Vector.
1048 >
1049 >
1050 >       [  Ixx -Ixy  -Ixz ]
1051 >  J =| -Iyx  Iyy  -Iyz |
1052 >       [ -Izx -Iyz   Izz ]
1053 >    */
1054 >
1055 >   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1056 >      
1057 >
1058 >      double xx = 0.0;
1059 >      double yy = 0.0;
1060 >      double zz = 0.0;
1061 >      double xy = 0.0;
1062 >      double xz = 0.0;
1063 >      double yz = 0.0;
1064 >      Vector3d com(0.0);
1065 >      Vector3d comVel(0.0);
1066 >      
1067 >      getComAll(com, comVel);
1068 >      
1069 >      SimInfo::MoleculeIterator i;
1070 >      Molecule* mol;
1071 >      
1072 >      Vector3d thisq(0.0);
1073 >      Vector3d thisv(0.0);
1074 >
1075 >      double thisMass = 0.0;
1076 >    
1077 >      
1078 >      
1079 >  
1080 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1081 >        
1082 >         thisq = mol->getCom()-com;
1083 >         thisv = mol->getComVel()-comVel;
1084 >         thisMass = mol->getMass();
1085 >         // Compute moment of intertia coefficients.
1086 >         xx += thisq[0]*thisq[0]*thisMass;
1087 >         yy += thisq[1]*thisq[1]*thisMass;
1088 >         zz += thisq[2]*thisq[2]*thisMass;
1089 >        
1090 >         // compute products of intertia
1091 >         xy += thisq[0]*thisq[1]*thisMass;
1092 >         xz += thisq[0]*thisq[2]*thisMass;
1093 >         yz += thisq[1]*thisq[2]*thisMass;
1094 >            
1095 >         angularMomentum += cross( thisq, thisv ) * thisMass;
1096 >            
1097 >      }  
1098 >      
1099 >      
1100 >      inertiaTensor(0,0) = yy + zz;
1101 >      inertiaTensor(0,1) = -xy;
1102 >      inertiaTensor(0,2) = -xz;
1103 >      inertiaTensor(1,0) = -xy;
1104 >      inertiaTensor(1,1) = xx + zz;
1105 >      inertiaTensor(1,2) = -yz;
1106 >      inertiaTensor(2,0) = -xz;
1107 >      inertiaTensor(2,1) = -yz;
1108 >      inertiaTensor(2,2) = xx + yy;
1109 >      
1110 > #ifdef IS_MPI
1111 >      Mat3x3d tmpI(inertiaTensor);
1112 >      Vector3d tmpAngMom;
1113 >      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1114 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1115 > #endif
1116 >              
1117 >      return;
1118 >   }
1119 >
1120 >   //Returns the angular momentum of the system
1121 >   Vector3d SimInfo::getAngularMomentum(){
1122 >      
1123 >      Vector3d com(0.0);
1124 >      Vector3d comVel(0.0);
1125 >      Vector3d angularMomentum(0.0);
1126 >      
1127 >      getComAll(com,comVel);
1128 >      
1129 >      SimInfo::MoleculeIterator i;
1130 >      Molecule* mol;
1131 >      
1132 >      Vector3d thisr(0.0);
1133 >      Vector3d thisp(0.0);
1134 >      
1135 >      double thisMass;
1136 >      
1137 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1138 >        thisMass = mol->getMass();
1139 >        thisr = mol->getCom()-com;
1140 >        thisp = (mol->getComVel()-comVel)*thisMass;
1141 >        
1142 >        angularMomentum += cross( thisr, thisp );
1143 >        
1144 >      }  
1145 >      
1146 > #ifdef IS_MPI
1147 >      Vector3d tmpAngMom;
1148 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1149 > #endif
1150 >      
1151 >      return angularMomentum;
1152 >   }
1153 >  
1154 >  
1155 > }//end namespace oopse
1156 >

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines