ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-2.0/src/brains/SimInfo.cpp
(Generate patch)

Comparing trunk/OOPSE-2.0/src/brains/SimInfo.cpp (file contents):
Revision 1636 by chrisfen, Fri Oct 22 22:54:01 2004 UTC vs.
Revision 2310 by chrisfen, Mon Sep 19 23:21:46 2005 UTC

# Line 1 | Line 1
1 < #include <stdlib.h>
2 < #include <string.h>
3 < #include <math.h>
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Acknowledgement of the program authors must be made in any
10 > *    publication of scientific results based in part on use of the
11 > *    program.  An acceptable form of acknowledgement is citation of
12 > *    the article in which the program was described (Matthew
13 > *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 > *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 > *    Parallel Simulation Engine for Molecular Dynamics,"
16 > *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 > *
18 > * 2. Redistributions of source code must retain the above copyright
19 > *    notice, this list of conditions and the following disclaimer.
20 > *
21 > * 3. Redistributions in binary form must reproduce the above copyright
22 > *    notice, this list of conditions and the following disclaimer in the
23 > *    documentation and/or other materials provided with the
24 > *    distribution.
25 > *
26 > * This software is provided "AS IS," without a warranty of any
27 > * kind. All express or implied conditions, representations and
28 > * warranties, including any implied warranty of merchantability,
29 > * fitness for a particular purpose or non-infringement, are hereby
30 > * excluded.  The University of Notre Dame and its licensors shall not
31 > * be liable for any damages suffered by licensee as a result of
32 > * using, modifying or distributing the software or its
33 > * derivatives. In no event will the University of Notre Dame or its
34 > * licensors be liable for any lost revenue, profit or data, or for
35 > * direct, indirect, special, consequential, incidental or punitive
36 > * damages, however caused and regardless of the theory of liability,
37 > * arising out of the use of or inability to use software, even if the
38 > * University of Notre Dame has been advised of the possibility of
39 > * such damages.
40 > */
41 >
42 > /**
43 > * @file SimInfo.cpp
44 > * @author    tlin
45 > * @date  11/02/2004
46 > * @version 1.0
47 > */
48  
49 < #include <iostream>
50 < using namespace std;
49 > #include <algorithm>
50 > #include <set>
51  
52   #include "brains/SimInfo.hpp"
53 < #define __C
54 < #include "brains/fSimulation.h"
55 < #include "utils/simError.h"
56 < #include "UseTheForce/DarkSide/simulation_interface.h"
53 > #include "math/Vector3.hpp"
54 > #include "primitives/Molecule.hpp"
55 > #include "UseTheForce/fCutoffPolicy.h"
56 > #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
57 > #include "UseTheForce/doForces_interface.h"
58 > #include "UseTheForce/DarkSide/electrostatic_interface.h"
59   #include "UseTheForce/notifyCutoffs_interface.h"
60 + #include "utils/MemoryUtils.hpp"
61 + #include "utils/simError.h"
62 + #include "selection/SelectionManager.hpp"
63  
15 //#include "UseTheForce/fortranWrappers.hpp"
16
17 #include "math/MatVec3.h"
18
64   #ifdef IS_MPI
65 < #include "brains/mpiSimulation.hpp"
66 < #endif
65 > #include "UseTheForce/mpiComponentPlan.h"
66 > #include "UseTheForce/DarkSide/simParallel_interface.h"
67 > #endif
68  
69 < inline double roundMe( double x ){
24 <  return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
25 < }
26 <          
27 < inline double min( double a, double b ){
28 <  return (a < b ) ? a : b;
29 < }
69 > namespace oopse {
70  
71 < SimInfo* currentInfo;
71 >  SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
72 >                   ForceField* ff, Globals* simParams) :
73 >    stamps_(stamps), forceField_(ff), simParams_(simParams),
74 >    ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
75 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
76 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
77 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
78 >    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
79 >    sman_(NULL), fortranInitialized_(false) {
80  
81 < SimInfo::SimInfo(){
81 >            
82 >      std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
83 >      MoleculeStamp* molStamp;
84 >      int nMolWithSameStamp;
85 >      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
86 >      int nGroups = 0;          //total cutoff groups defined in meta-data file
87 >      CutoffGroupStamp* cgStamp;    
88 >      RigidBodyStamp* rbStamp;
89 >      int nRigidAtoms = 0;
90 >    
91 >      for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
92 >        molStamp = i->first;
93 >        nMolWithSameStamp = i->second;
94 >        
95 >        addMoleculeStamp(molStamp, nMolWithSameStamp);
96  
97 <  n_constraints = 0;
98 <  nZconstraints = 0;
37 <  n_oriented = 0;
38 <  n_dipoles = 0;
39 <  ndf = 0;
40 <  ndfRaw = 0;
41 <  nZconstraints = 0;
42 <  the_integrator = NULL;
43 <  setTemp = 0;
44 <  thermalTime = 0.0;
45 <  currentTime = 0.0;
46 <  rCut = 0.0;
47 <  rSw = 0.0;
97 >        //calculate atoms in molecules
98 >        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
99  
49  haveRcut = 0;
50  haveRsw = 0;
51  boxIsInit = 0;
52  
53  resetTime = 1e99;
100  
101 <  orthoRhombic = 0;
102 <  orthoTolerance = 1E-6;
103 <  useInitXSstate = true;
101 >        //calculate atoms in cutoff groups
102 >        int nAtomsInGroups = 0;
103 >        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
104 >        
105 >        for (int j=0; j < nCutoffGroupsInStamp; j++) {
106 >          cgStamp = molStamp->getCutoffGroup(j);
107 >          nAtomsInGroups += cgStamp->getNMembers();
108 >        }
109  
110 <  usePBC = 0;
111 <  useDirectionalAtoms = 0;
61 <  useLennardJones = 0;
62 <  useElectrostatics = 0;
63 <  useCharges = 0;
64 <  useDipoles = 0;
65 <  useSticky = 0;
66 <  useGayBerne = 0;
67 <  useEAM = 0;
68 <  useShapes = 0;
69 <  useFLARB = 0;
110 >        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
111 >        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
112  
113 <  useSolidThermInt = 0;
114 <  useLiquidThermInt = 0;
113 >        //calculate atoms in rigid bodies
114 >        int nAtomsInRigidBodies = 0;
115 >        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
116 >        
117 >        for (int j=0; j < nRigidBodiesInStamp; j++) {
118 >          rbStamp = molStamp->getRigidBody(j);
119 >          nAtomsInRigidBodies += rbStamp->getNMembers();
120 >        }
121  
122 <  haveCutoffGroups = false;
122 >        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
123 >        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
124 >        
125 >      }
126  
127 <  excludes = Exclude::Instance();
127 >      //every free atom (atom does not belong to cutoff groups) is a cutoff group
128 >      //therefore the total number of cutoff groups in the system is equal to
129 >      //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
130 >      //file plus the number of cutoff groups defined in meta-data file
131 >      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
132  
133 <  myConfiguration = new SimState();
133 >      //every free atom (atom does not belong to rigid bodies) is an integrable object
134 >      //therefore the total number of  integrable objects in the system is equal to
135 >      //the total number of atoms minus number of atoms belong to  rigid body defined in meta-data
136 >      //file plus the number of  rigid bodies defined in meta-data file
137 >      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
138  
139 <  has_minimizer = false;
81 <  the_minimizer =NULL;
139 >      nGlobalMols_ = molStampIds_.size();
140  
141 <  ngroup = 0;
141 > #ifdef IS_MPI    
142 >      molToProcMap_.resize(nGlobalMols_);
143 > #endif
144  
145 < }
145 >    }
146  
147 +  SimInfo::~SimInfo() {
148 +    std::map<int, Molecule*>::iterator i;
149 +    for (i = molecules_.begin(); i != molecules_.end(); ++i) {
150 +      delete i->second;
151 +    }
152 +    molecules_.clear();
153 +      
154 +    delete stamps_;
155 +    delete sman_;
156 +    delete simParams_;
157 +    delete forceField_;
158 +  }
159  
160 < SimInfo::~SimInfo(){
160 >  int SimInfo::getNGlobalConstraints() {
161 >    int nGlobalConstraints;
162 > #ifdef IS_MPI
163 >    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
164 >                  MPI_COMM_WORLD);    
165 > #else
166 >    nGlobalConstraints =  nConstraints_;
167 > #endif
168 >    return nGlobalConstraints;
169 >  }
170  
171 <  delete myConfiguration;
171 >  bool SimInfo::addMolecule(Molecule* mol) {
172 >    MoleculeIterator i;
173  
174 <  map<string, GenericData*>::iterator i;
175 <  
94 <  for(i = properties.begin(); i != properties.end(); i++)
95 <    delete (*i).second;
174 >    i = molecules_.find(mol->getGlobalIndex());
175 >    if (i == molecules_.end() ) {
176  
177 < }
177 >      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
178 >        
179 >      nAtoms_ += mol->getNAtoms();
180 >      nBonds_ += mol->getNBonds();
181 >      nBends_ += mol->getNBends();
182 >      nTorsions_ += mol->getNTorsions();
183 >      nRigidBodies_ += mol->getNRigidBodies();
184 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
185 >      nCutoffGroups_ += mol->getNCutoffGroups();
186 >      nConstraints_ += mol->getNConstraintPairs();
187  
188 < void SimInfo::setBox(double newBox[3]) {
189 <  
190 <  int i, j;
191 <  double tempMat[3][3];
192 <
104 <  for(i=0; i<3; i++)
105 <    for (j=0; j<3; j++) tempMat[i][j] = 0.0;;
106 <
107 <  tempMat[0][0] = newBox[0];
108 <  tempMat[1][1] = newBox[1];
109 <  tempMat[2][2] = newBox[2];
110 <
111 <  setBoxM( tempMat );
112 <
113 < }
114 <
115 < void SimInfo::setBoxM( double theBox[3][3] ){
116 <  
117 <  int i, j;
118 <  double FortranHmat[9]; // to preserve compatibility with Fortran the
119 <                         // ordering in the array is as follows:
120 <                         // [ 0 3 6 ]
121 <                         // [ 1 4 7 ]
122 <                         // [ 2 5 8 ]
123 <  double FortranHmatInv[9]; // the inverted Hmat (for Fortran);
124 <
125 <  if( !boxIsInit ) boxIsInit = 1;
126 <
127 <  for(i=0; i < 3; i++)
128 <    for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j];
129 <  
130 <  calcBoxL();
131 <  calcHmatInv();
132 <
133 <  for(i=0; i < 3; i++) {
134 <    for (j=0; j < 3; j++) {
135 <      FortranHmat[3*j + i] = Hmat[i][j];
136 <      FortranHmatInv[3*j + i] = HmatInv[i][j];
188 >      addExcludePairs(mol);
189 >        
190 >      return true;
191 >    } else {
192 >      return false;
193      }
194    }
195  
196 <  setFortranBox(FortranHmat, FortranHmatInv, &orthoRhombic);
197 <
198 < }
143 <
196 >  bool SimInfo::removeMolecule(Molecule* mol) {
197 >    MoleculeIterator i;
198 >    i = molecules_.find(mol->getGlobalIndex());
199  
200 < void SimInfo::getBoxM (double theBox[3][3]) {
200 >    if (i != molecules_.end() ) {
201  
202 <  int i, j;
203 <  for(i=0; i<3; i++)
204 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j];
205 < }
202 >      assert(mol == i->second);
203 >        
204 >      nAtoms_ -= mol->getNAtoms();
205 >      nBonds_ -= mol->getNBonds();
206 >      nBends_ -= mol->getNBends();
207 >      nTorsions_ -= mol->getNTorsions();
208 >      nRigidBodies_ -= mol->getNRigidBodies();
209 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
210 >      nCutoffGroups_ -= mol->getNCutoffGroups();
211 >      nConstraints_ -= mol->getNConstraintPairs();
212  
213 +      removeExcludePairs(mol);
214 +      molecules_.erase(mol->getGlobalIndex());
215  
216 < void SimInfo::scaleBox(double scale) {
217 <  double theBox[3][3];
218 <  int i, j;
216 >      delete mol;
217 >        
218 >      return true;
219 >    } else {
220 >      return false;
221 >    }
222  
157  // cerr << "Scaling box by " << scale << "\n";
223  
224 <  for(i=0; i<3; i++)
160 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale;
224 >  }    
225  
226 <  setBoxM(theBox);
226 >        
227 >  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
228 >    i = molecules_.begin();
229 >    return i == molecules_.end() ? NULL : i->second;
230 >  }    
231  
232 < }
232 >  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
233 >    ++i;
234 >    return i == molecules_.end() ? NULL : i->second;    
235 >  }
236  
166 void SimInfo::calcHmatInv( void ) {
167  
168  int oldOrtho;
169  int i,j;
170  double smallDiag;
171  double tol;
172  double sanity[3][3];
237  
238 <  invertMat3( Hmat, HmatInv );
238 >  void SimInfo::calcNdf() {
239 >    int ndf_local;
240 >    MoleculeIterator i;
241 >    std::vector<StuntDouble*>::iterator j;
242 >    Molecule* mol;
243 >    StuntDouble* integrableObject;
244  
245 <  // check to see if Hmat is orthorhombic
246 <  
247 <  oldOrtho = orthoRhombic;
245 >    ndf_local = 0;
246 >    
247 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
248 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
249 >           integrableObject = mol->nextIntegrableObject(j)) {
250  
251 <  smallDiag = fabs(Hmat[0][0]);
181 <  if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]);
182 <  if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]);
183 <  tol = smallDiag * orthoTolerance;
251 >        ndf_local += 3;
252  
253 <  orthoRhombic = 1;
254 <  
255 <  for (i = 0; i < 3; i++ ) {
256 <    for (j = 0 ; j < 3; j++) {
257 <      if (i != j) {
258 <        if (orthoRhombic) {
259 <          if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0;
260 <        }        
261 <      }
262 <    }
195 <  }
196 <
197 <  if( oldOrtho != orthoRhombic ){
253 >        if (integrableObject->isDirectional()) {
254 >          if (integrableObject->isLinear()) {
255 >            ndf_local += 2;
256 >          } else {
257 >            ndf_local += 3;
258 >          }
259 >        }
260 >            
261 >      }//end for (integrableObject)
262 >    }// end for (mol)
263      
264 <    if( orthoRhombic ) {
265 <      sprintf( painCave.errMsg,
201 <               "OOPSE is switching from the default Non-Orthorhombic\n"
202 <               "\tto the faster Orthorhombic periodic boundary computations.\n"
203 <               "\tThis is usually a good thing, but if you wan't the\n"
204 <               "\tNon-Orthorhombic computations, make the orthoBoxTolerance\n"
205 <               "\tvariable ( currently set to %G ) smaller.\n",
206 <               orthoTolerance);
207 <      painCave.severity = OOPSE_INFO;
208 <      simError();
209 <    }
210 <    else {
211 <      sprintf( painCave.errMsg,
212 <               "OOPSE is switching from the faster Orthorhombic to the more\n"
213 <               "\tflexible Non-Orthorhombic periodic boundary computations.\n"
214 <               "\tThis is usually because the box has deformed under\n"
215 <               "\tNPTf integration. If you wan't to live on the edge with\n"
216 <               "\tthe Orthorhombic computations, make the orthoBoxTolerance\n"
217 <               "\tvariable ( currently set to %G ) larger.\n",
218 <               orthoTolerance);
219 <      painCave.severity = OOPSE_WARNING;
220 <      simError();
221 <    }
222 <  }
223 < }
264 >    // n_constraints is local, so subtract them on each processor
265 >    ndf_local -= nConstraints_;
266  
267 < void SimInfo::calcBoxL( void ){
267 > #ifdef IS_MPI
268 >    MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
269 > #else
270 >    ndf_ = ndf_local;
271 > #endif
272  
273 <  double dx, dy, dz, dsq;
273 >    // nZconstraints_ is global, as are the 3 COM translations for the
274 >    // entire system:
275 >    ndf_ = ndf_ - 3 - nZconstraint_;
276  
277 <  // boxVol = Determinant of Hmat
277 >  }
278  
279 <  boxVol = matDet3( Hmat );
279 >  void SimInfo::calcNdfRaw() {
280 >    int ndfRaw_local;
281  
282 <  // boxLx
283 <  
284 <  dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0];
285 <  dsq = dx*dx + dy*dy + dz*dz;
237 <  boxL[0] = sqrt( dsq );
238 <  //maxCutoff = 0.5 * boxL[0];
282 >    MoleculeIterator i;
283 >    std::vector<StuntDouble*>::iterator j;
284 >    Molecule* mol;
285 >    StuntDouble* integrableObject;
286  
287 <  // boxLy
288 <  
289 <  dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1];
290 <  dsq = dx*dx + dy*dy + dz*dz;
291 <  boxL[1] = sqrt( dsq );
292 <  //if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1];
287 >    // Raw degrees of freedom that we have to set
288 >    ndfRaw_local = 0;
289 >    
290 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
291 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
292 >           integrableObject = mol->nextIntegrableObject(j)) {
293  
294 +        ndfRaw_local += 3;
295  
296 <  // boxLz
297 <  
298 <  dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2];
299 <  dsq = dx*dx + dy*dy + dz*dz;
300 <  boxL[2] = sqrt( dsq );
301 <  //if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2];
296 >        if (integrableObject->isDirectional()) {
297 >          if (integrableObject->isLinear()) {
298 >            ndfRaw_local += 2;
299 >          } else {
300 >            ndfRaw_local += 3;
301 >          }
302 >        }
303 >            
304 >      }
305 >    }
306 >    
307 > #ifdef IS_MPI
308 >    MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
309 > #else
310 >    ndfRaw_ = ndfRaw_local;
311 > #endif
312 >  }
313  
314 <  //calculate the max cutoff
315 <  maxCutoff =  calcMaxCutOff();
257 <  
258 <  checkCutOffs();
314 >  void SimInfo::calcNdfTrans() {
315 >    int ndfTrans_local;
316  
317 < }
317 >    ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
318  
319  
320 < double SimInfo::calcMaxCutOff(){
320 > #ifdef IS_MPI
321 >    MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
322 > #else
323 >    ndfTrans_ = ndfTrans_local;
324 > #endif
325  
326 <  double ri[3], rj[3], rk[3];
327 <  double rij[3], rjk[3], rki[3];
328 <  double minDist;
326 >    ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
327 >
328 >  }
329  
330 <  ri[0] = Hmat[0][0];
331 <  ri[1] = Hmat[1][0];
332 <  ri[2] = Hmat[2][0];
333 <
334 <  rj[0] = Hmat[0][1];
335 <  rj[1] = Hmat[1][1];
336 <  rj[2] = Hmat[2][1];
337 <
338 <  rk[0] = Hmat[0][2];
339 <  rk[1] = Hmat[1][2];
340 <  rk[2] = Hmat[2][2];
330 >  void SimInfo::addExcludePairs(Molecule* mol) {
331 >    std::vector<Bond*>::iterator bondIter;
332 >    std::vector<Bend*>::iterator bendIter;
333 >    std::vector<Torsion*>::iterator torsionIter;
334 >    Bond* bond;
335 >    Bend* bend;
336 >    Torsion* torsion;
337 >    int a;
338 >    int b;
339 >    int c;
340 >    int d;
341      
342 <  crossProduct3(ri, rj, rij);
343 <  distXY = dotProduct3(rk,rij) / norm3(rij);
342 >    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
343 >      a = bond->getAtomA()->getGlobalIndex();
344 >      b = bond->getAtomB()->getGlobalIndex();        
345 >      exclude_.addPair(a, b);
346 >    }
347  
348 <  crossProduct3(rj,rk, rjk);
349 <  distYZ = dotProduct3(ri,rjk) / norm3(rjk);
348 >    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
349 >      a = bend->getAtomA()->getGlobalIndex();
350 >      b = bend->getAtomB()->getGlobalIndex();        
351 >      c = bend->getAtomC()->getGlobalIndex();
352  
353 <  crossProduct3(rk,ri, rki);
354 <  distZX = dotProduct3(rj,rki) / norm3(rki);
353 >      exclude_.addPair(a, b);
354 >      exclude_.addPair(a, c);
355 >      exclude_.addPair(b, c);        
356 >    }
357  
358 <  minDist = min(min(distXY, distYZ), distZX);
359 <  return minDist/2;
360 <  
361 < }
358 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
359 >      a = torsion->getAtomA()->getGlobalIndex();
360 >      b = torsion->getAtomB()->getGlobalIndex();        
361 >      c = torsion->getAtomC()->getGlobalIndex();        
362 >      d = torsion->getAtomD()->getGlobalIndex();        
363  
364 < void SimInfo::wrapVector( double thePos[3] ){
364 >      exclude_.addPair(a, b);
365 >      exclude_.addPair(a, c);
366 >      exclude_.addPair(a, d);
367 >      exclude_.addPair(b, c);
368 >      exclude_.addPair(b, d);
369 >      exclude_.addPair(c, d);        
370 >    }
371  
372 <  int i;
373 <  double scaled[3];
372 >    Molecule::RigidBodyIterator rbIter;
373 >    RigidBody* rb;
374 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
375 >      std::vector<Atom*> atoms = rb->getAtoms();
376 >      for (int i = 0; i < atoms.size() -1 ; ++i) {
377 >        for (int j = i + 1; j < atoms.size(); ++j) {
378 >          a = atoms[i]->getGlobalIndex();
379 >          b = atoms[j]->getGlobalIndex();
380 >          exclude_.addPair(a, b);
381 >        }
382 >      }
383 >    }        
384  
385 <  if( !orthoRhombic ){
301 <    // calc the scaled coordinates.
302 <  
385 >  }
386  
387 <    matVecMul3(HmatInv, thePos, scaled);
387 >  void SimInfo::removeExcludePairs(Molecule* mol) {
388 >    std::vector<Bond*>::iterator bondIter;
389 >    std::vector<Bend*>::iterator bendIter;
390 >    std::vector<Torsion*>::iterator torsionIter;
391 >    Bond* bond;
392 >    Bend* bend;
393 >    Torsion* torsion;
394 >    int a;
395 >    int b;
396 >    int c;
397 >    int d;
398      
399 <    for(i=0; i<3; i++)
400 <      scaled[i] -= roundMe(scaled[i]);
401 <    
402 <    // calc the wrapped real coordinates from the wrapped scaled coordinates
403 <    
311 <    matVecMul3(Hmat, scaled, thePos);
399 >    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
400 >      a = bond->getAtomA()->getGlobalIndex();
401 >      b = bond->getAtomB()->getGlobalIndex();        
402 >      exclude_.removePair(a, b);
403 >    }
404  
405 <  }
406 <  else{
407 <    // calc the scaled coordinates.
408 <    
317 <    for(i=0; i<3; i++)
318 <      scaled[i] = thePos[i]*HmatInv[i][i];
319 <    
320 <    // wrap the scaled coordinates
321 <    
322 <    for(i=0; i<3; i++)
323 <      scaled[i] -= roundMe(scaled[i]);
324 <    
325 <    // calc the wrapped real coordinates from the wrapped scaled coordinates
326 <    
327 <    for(i=0; i<3; i++)
328 <      thePos[i] = scaled[i]*Hmat[i][i];
329 <  }
330 <    
331 < }
405 >    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
406 >      a = bend->getAtomA()->getGlobalIndex();
407 >      b = bend->getAtomB()->getGlobalIndex();        
408 >      c = bend->getAtomC()->getGlobalIndex();
409  
410 +      exclude_.removePair(a, b);
411 +      exclude_.removePair(a, c);
412 +      exclude_.removePair(b, c);        
413 +    }
414  
415 < int SimInfo::getNDF(){
416 <  int ndf_local;
415 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
416 >      a = torsion->getAtomA()->getGlobalIndex();
417 >      b = torsion->getAtomB()->getGlobalIndex();        
418 >      c = torsion->getAtomC()->getGlobalIndex();        
419 >      d = torsion->getAtomD()->getGlobalIndex();        
420  
421 <  ndf_local = 0;
422 <  
423 <  for(int i = 0; i < integrableObjects.size(); i++){
424 <    ndf_local += 3;
425 <    if (integrableObjects[i]->isDirectional()) {
426 <      if (integrableObjects[i]->isLinear())
343 <        ndf_local += 2;
344 <      else
345 <        ndf_local += 3;
421 >      exclude_.removePair(a, b);
422 >      exclude_.removePair(a, c);
423 >      exclude_.removePair(a, d);
424 >      exclude_.removePair(b, c);
425 >      exclude_.removePair(b, d);
426 >      exclude_.removePair(c, d);        
427      }
428 +
429 +    Molecule::RigidBodyIterator rbIter;
430 +    RigidBody* rb;
431 +    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
432 +      std::vector<Atom*> atoms = rb->getAtoms();
433 +      for (int i = 0; i < atoms.size() -1 ; ++i) {
434 +        for (int j = i + 1; j < atoms.size(); ++j) {
435 +          a = atoms[i]->getGlobalIndex();
436 +          b = atoms[j]->getGlobalIndex();
437 +          exclude_.removePair(a, b);
438 +        }
439 +      }
440 +    }        
441 +
442    }
443  
349  // n_constraints is local, so subtract them on each processor:
444  
445 <  ndf_local -= n_constraints;
445 >  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
446 >    int curStampId;
447  
448 < #ifdef IS_MPI
449 <  MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
355 < #else
356 <  ndf = ndf_local;
357 < #endif
448 >    //index from 0
449 >    curStampId = moleculeStamps_.size();
450  
451 <  // nZconstraints is global, as are the 3 COM translations for the
452 <  // entire system:
451 >    moleculeStamps_.push_back(molStamp);
452 >    molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
453 >  }
454  
455 <  ndf = ndf - 3 - nZconstraints;
455 >  void SimInfo::update() {
456  
457 <  return ndf;
365 < }
457 >    setupSimType();
458  
459 < int SimInfo::getNDFraw() {
460 <  int ndfRaw_local;
459 > #ifdef IS_MPI
460 >    setupFortranParallel();
461 > #endif
462  
463 <  // Raw degrees of freedom that we have to set
371 <  ndfRaw_local = 0;
463 >    setupFortranSim();
464  
465 <  for(int i = 0; i < integrableObjects.size(); i++){
466 <    ndfRaw_local += 3;
467 <    if (integrableObjects[i]->isDirectional()) {
468 <       if (integrableObjects[i]->isLinear())
469 <        ndfRaw_local += 2;
470 <      else
471 <        ndfRaw_local += 3;
465 >    //setup fortran force field
466 >    /** @deprecate */    
467 >    int isError = 0;
468 >    
469 >    setupElectrostaticSummationMethod( isError );
470 >
471 >    if(isError){
472 >      sprintf( painCave.errMsg,
473 >               "ForceField error: There was an error initializing the forceField in fortran.\n" );
474 >      painCave.isFatal = 1;
475 >      simError();
476      }
477 <  }
477 >  
478      
479 < #ifdef IS_MPI
384 <  MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
385 < #else
386 <  ndfRaw = ndfRaw_local;
387 < #endif
479 >    setupCutoff();
480  
481 <  return ndfRaw;
482 < }
481 >    calcNdf();
482 >    calcNdfRaw();
483 >    calcNdfTrans();
484  
485 < int SimInfo::getNDFtranslational() {
486 <  int ndfTrans_local;
485 >    fortranInitialized_ = true;
486 >  }
487  
488 <  ndfTrans_local = 3 * integrableObjects.size() - n_constraints;
488 >  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
489 >    SimInfo::MoleculeIterator mi;
490 >    Molecule* mol;
491 >    Molecule::AtomIterator ai;
492 >    Atom* atom;
493 >    std::set<AtomType*> atomTypes;
494  
495 +    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
496  
497 < #ifdef IS_MPI
498 <  MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
499 < #else
500 <  ndfTrans = ndfTrans_local;
501 < #endif
497 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
498 >        atomTypes.insert(atom->getAtomType());
499 >      }
500 >        
501 >    }
502  
503 <  ndfTrans = ndfTrans - 3 - nZconstraints;
503 >    return atomTypes;        
504 >  }
505  
506 <  return ndfTrans;
507 < }
506 >  void SimInfo::setupSimType() {
507 >    std::set<AtomType*>::iterator i;
508 >    std::set<AtomType*> atomTypes;
509 >    atomTypes = getUniqueAtomTypes();
510 >    
511 >    int useLennardJones = 0;
512 >    int useElectrostatic = 0;
513 >    int useEAM = 0;
514 >    int useCharge = 0;
515 >    int useDirectional = 0;
516 >    int useDipole = 0;
517 >    int useGayBerne = 0;
518 >    int useSticky = 0;
519 >    int useStickyPower = 0;
520 >    int useShape = 0;
521 >    int useFLARB = 0; //it is not in AtomType yet
522 >    int useDirectionalAtom = 0;    
523 >    int useElectrostatics = 0;
524 >    //usePBC and useRF are from simParams
525 >    int usePBC = simParams_->getPBC();
526 >    int useRF;
527  
528 < int SimInfo::getTotIntegrableObjects() {
529 <  int nObjs_local;
530 <  int nObjs;
528 >    // set the useRF logical
529 >    std::string myMethod = simParams_->getElectrostaticSummationMethod();
530 >    if (myMethod == "REACTION_FIELD")
531 >      useRF = 1;
532 >    else
533 >      useRF = 0;
534  
535 <  nObjs_local =  integrableObjects.size();
535 >    //loop over all of the atom types
536 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
537 >      useLennardJones |= (*i)->isLennardJones();
538 >      useElectrostatic |= (*i)->isElectrostatic();
539 >      useEAM |= (*i)->isEAM();
540 >      useCharge |= (*i)->isCharge();
541 >      useDirectional |= (*i)->isDirectional();
542 >      useDipole |= (*i)->isDipole();
543 >      useGayBerne |= (*i)->isGayBerne();
544 >      useSticky |= (*i)->isSticky();
545 >      useStickyPower |= (*i)->isStickyPower();
546 >      useShape |= (*i)->isShape();
547 >    }
548  
549 +    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
550 +      useDirectionalAtom = 1;
551 +    }
552  
553 < #ifdef IS_MPI
554 <  MPI_Allreduce(&nObjs_local,&nObjs,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
555 < #else
419 <  nObjs = nObjs_local;
420 < #endif
553 >    if (useCharge || useDipole) {
554 >      useElectrostatics = 1;
555 >    }
556  
557 + #ifdef IS_MPI    
558 +    int temp;
559  
560 <  return nObjs;
561 < }
560 >    temp = usePBC;
561 >    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
562  
563 < void SimInfo::refreshSim(){
563 >    temp = useDirectionalAtom;
564 >    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
565  
566 <  simtype fInfo;
567 <  int isError;
430 <  int n_global;
431 <  int* excl;
566 >    temp = useLennardJones;
567 >    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
568  
569 <  fInfo.dielect = 0.0;
569 >    temp = useElectrostatics;
570 >    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
571 >
572 >    temp = useCharge;
573 >    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
574 >
575 >    temp = useDipole;
576 >    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
577  
578 <  if( useDipoles ){
579 <    if( useReactionField )fInfo.dielect = dielectric;
437 <  }
578 >    temp = useSticky;
579 >    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
580  
581 <  fInfo.SIM_uses_PBC = usePBC;
581 >    temp = useStickyPower;
582 >    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
583 >    
584 >    temp = useGayBerne;
585 >    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
586  
587 <  if (useSticky || useDipoles || useGayBerne || useShapes) {
588 <    useDirectionalAtoms = 1;
443 <    fInfo.SIM_uses_DirectionalAtoms = useDirectionalAtoms;
444 <  }
587 >    temp = useEAM;
588 >    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
589  
590 <  fInfo.SIM_uses_LennardJones = useLennardJones;
590 >    temp = useShape;
591 >    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
592  
593 <  if (useCharges || useDipoles) {
594 <    useElectrostatics = 1;
450 <    fInfo.SIM_uses_Electrostatics = useElectrostatics;
451 <  }
593 >    temp = useFLARB;
594 >    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
595  
596 <  fInfo.SIM_uses_Charges = useCharges;
597 <  fInfo.SIM_uses_Dipoles = useDipoles;
455 <  fInfo.SIM_uses_Sticky = useSticky;
456 <  fInfo.SIM_uses_GayBerne = useGayBerne;
457 <  fInfo.SIM_uses_EAM = useEAM;
458 <  fInfo.SIM_uses_Shapes = useShapes;
459 <  fInfo.SIM_uses_FLARB = useFLARB;
460 <  fInfo.SIM_uses_RF = useReactionField;
596 >    temp = useRF;
597 >    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
598  
462  n_exclude = excludes->getSize();
463  excl = excludes->getFortranArray();
464  
465 #ifdef IS_MPI
466  n_global = mpiSim->getNAtomsGlobal();
467 #else
468  n_global = n_atoms;
599   #endif
470  
471  isError = 0;
472  
473  getFortranGroupArrays(this, FglobalGroupMembership, mfact);
474  //it may not be a good idea to pass the address of first element in vector
475  //since c++ standard does not require vector to be stored continuously in meomory
476  //Most of the compilers will organize the memory of vector continuously
477  setFortranSim( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl,
478                  &nGlobalExcludes, globalExcludes, molMembershipArray,
479                  &mfact[0], &ngroup, &FglobalGroupMembership[0], &isError);
600  
601 <  if( isError ){
602 <    
603 <    sprintf( painCave.errMsg,
604 <             "There was an error setting the simulation information in fortran.\n" );
605 <    painCave.isFatal = 1;
606 <    painCave.severity = OOPSE_ERROR;
607 <    simError();
601 >    fInfo_.SIM_uses_PBC = usePBC;    
602 >    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
603 >    fInfo_.SIM_uses_LennardJones = useLennardJones;
604 >    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
605 >    fInfo_.SIM_uses_Charges = useCharge;
606 >    fInfo_.SIM_uses_Dipoles = useDipole;
607 >    fInfo_.SIM_uses_Sticky = useSticky;
608 >    fInfo_.SIM_uses_StickyPower = useStickyPower;
609 >    fInfo_.SIM_uses_GayBerne = useGayBerne;
610 >    fInfo_.SIM_uses_EAM = useEAM;
611 >    fInfo_.SIM_uses_Shapes = useShape;
612 >    fInfo_.SIM_uses_FLARB = useFLARB;
613 >    fInfo_.SIM_uses_RF = useRF;
614 >
615 >    if( fInfo_.SIM_uses_Dipoles && myMethod == "REACTION_FIELD") {
616 >
617 >      if (simParams_->haveDielectric()) {
618 >        fInfo_.dielect = simParams_->getDielectric();
619 >      } else {
620 >        sprintf(painCave.errMsg,
621 >                "SimSetup Error: No Dielectric constant was set.\n"
622 >                "\tYou are trying to use Reaction Field without"
623 >                "\tsetting a dielectric constant!\n");
624 >        painCave.isFatal = 1;
625 >        simError();
626 >      }
627 >        
628 >    } else {
629 >      fInfo_.dielect = 0.0;
630 >    }
631 >
632    }
489  
490 #ifdef IS_MPI
491  sprintf( checkPointMsg,
492           "succesfully sent the simulation information to fortran.\n");
493  MPIcheckPoint();
494 #endif // is_mpi
495  
496  this->ndf = this->getNDF();
497  this->ndfRaw = this->getNDFraw();
498  this->ndfTrans = this->getNDFtranslational();
499 }
633  
634 < void SimInfo::setDefaultRcut( double theRcut ){
635 <  
636 <  haveRcut = 1;
637 <  rCut = theRcut;
638 <  rList = rCut + 1.0;
639 <  
640 <  notifyFortranCutoffs( &rCut, &rSw, &rList );
508 < }
634 >  void SimInfo::setupFortranSim() {
635 >    int isError;
636 >    int nExclude;
637 >    std::vector<int> fortranGlobalGroupMembership;
638 >    
639 >    nExclude = exclude_.getSize();
640 >    isError = 0;
641  
642 < void SimInfo::setDefaultRcut( double theRcut, double theRsw ){
642 >    //globalGroupMembership_ is filled by SimCreator    
643 >    for (int i = 0; i < nGlobalAtoms_; i++) {
644 >      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
645 >    }
646  
647 <  rSw = theRsw;
648 <  setDefaultRcut( theRcut );
649 < }
647 >    //calculate mass ratio of cutoff group
648 >    std::vector<double> mfact;
649 >    SimInfo::MoleculeIterator mi;
650 >    Molecule* mol;
651 >    Molecule::CutoffGroupIterator ci;
652 >    CutoffGroup* cg;
653 >    Molecule::AtomIterator ai;
654 >    Atom* atom;
655 >    double totalMass;
656  
657 +    //to avoid memory reallocation, reserve enough space for mfact
658 +    mfact.reserve(getNCutoffGroups());
659 +    
660 +    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
661 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
662  
663 < void SimInfo::checkCutOffs( void ){
664 <  
665 <  if( boxIsInit ){
663 >        totalMass = cg->getMass();
664 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
665 >          mfact.push_back(atom->getMass()/totalMass);
666 >        }
667 >
668 >      }      
669 >    }
670 >
671 >    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
672 >    std::vector<int> identArray;
673 >
674 >    //to avoid memory reallocation, reserve enough space identArray
675 >    identArray.reserve(getNAtoms());
676      
677 <    //we need to check cutOffs against the box
677 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
678 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
679 >        identArray.push_back(atom->getIdent());
680 >      }
681 >    }    
682 >
683 >    //fill molMembershipArray
684 >    //molMembershipArray is filled by SimCreator    
685 >    std::vector<int> molMembershipArray(nGlobalAtoms_);
686 >    for (int i = 0; i < nGlobalAtoms_; i++) {
687 >      molMembershipArray[i] = globalMolMembership_[i] + 1;
688 >    }
689      
690 <    if( rCut > maxCutoff ){
690 >    //setup fortran simulation
691 >    int nGlobalExcludes = 0;
692 >    int* globalExcludes = NULL;
693 >    int* excludeList = exclude_.getExcludeList();
694 >    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
695 >                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
696 >                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
697 >
698 >    if( isError ){
699 >
700        sprintf( painCave.errMsg,
701 <               "cutoffRadius is too large for the current periodic box.\n"
526 <               "\tCurrent Value of cutoffRadius = %G at time %G\n "
527 <               "\tThis is larger than half of at least one of the\n"
528 <               "\tperiodic box vectors.  Right now, the Box matrix is:\n"
529 <               "\n"
530 <               "\t[ %G %G %G ]\n"
531 <               "\t[ %G %G %G ]\n"
532 <               "\t[ %G %G %G ]\n",
533 <               rCut, currentTime,
534 <               Hmat[0][0], Hmat[0][1], Hmat[0][2],
535 <               Hmat[1][0], Hmat[1][1], Hmat[1][2],
536 <               Hmat[2][0], Hmat[2][1], Hmat[2][2]);
537 <      painCave.severity = OOPSE_ERROR;
701 >               "There was an error setting the simulation information in fortran.\n" );
702        painCave.isFatal = 1;
703 +      painCave.severity = OOPSE_ERROR;
704        simError();
705 <    }    
706 <  } else {
707 <    // initialize this stuff before using it, OK?
708 <    sprintf( painCave.errMsg,
709 <             "Trying to check cutoffs without a box.\n"
710 <             "\tOOPSE should have better programmers than that.\n" );
711 <    painCave.severity = OOPSE_ERROR;
547 <    painCave.isFatal = 1;
548 <    simError();      
705 >    }
706 >
707 > #ifdef IS_MPI
708 >    sprintf( checkPointMsg,
709 >             "succesfully sent the simulation information to fortran.\n");
710 >    MPIcheckPoint();
711 > #endif // is_mpi
712    }
550  
551 }
713  
553 void SimInfo::addProperty(GenericData* prop){
714  
715 <  map<string, GenericData*>::iterator result;
716 <  result = properties.find(prop->getID());
557 <  
558 <  //we can't simply use  properties[prop->getID()] = prop,
559 <  //it will cause memory leak if we already contain a propery which has the same name of prop
560 <  
561 <  if(result != properties.end()){
715 > #ifdef IS_MPI
716 >  void SimInfo::setupFortranParallel() {
717      
718 <    delete (*result).second;
719 <    (*result).second = prop;
720 <      
721 <  }
722 <  else{
718 >    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
719 >    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
720 >    std::vector<int> localToGlobalCutoffGroupIndex;
721 >    SimInfo::MoleculeIterator mi;
722 >    Molecule::AtomIterator ai;
723 >    Molecule::CutoffGroupIterator ci;
724 >    Molecule* mol;
725 >    Atom* atom;
726 >    CutoffGroup* cg;
727 >    mpiSimData parallelData;
728 >    int isError;
729  
730 <    properties[prop->getID()] = prop;
730 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
731  
732 +      //local index(index in DataStorge) of atom is important
733 +      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
734 +        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
735 +      }
736 +
737 +      //local index of cutoff group is trivial, it only depends on the order of travesing
738 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
739 +        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
740 +      }        
741 +        
742 +    }
743 +
744 +    //fill up mpiSimData struct
745 +    parallelData.nMolGlobal = getNGlobalMolecules();
746 +    parallelData.nMolLocal = getNMolecules();
747 +    parallelData.nAtomsGlobal = getNGlobalAtoms();
748 +    parallelData.nAtomsLocal = getNAtoms();
749 +    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
750 +    parallelData.nGroupsLocal = getNCutoffGroups();
751 +    parallelData.myNode = worldRank;
752 +    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
753 +
754 +    //pass mpiSimData struct and index arrays to fortran
755 +    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
756 +                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
757 +                    &localToGlobalCutoffGroupIndex[0], &isError);
758 +
759 +    if (isError) {
760 +      sprintf(painCave.errMsg,
761 +              "mpiRefresh errror: fortran didn't like something we gave it.\n");
762 +      painCave.isFatal = 1;
763 +      simError();
764 +    }
765 +
766 +    sprintf(checkPointMsg, " mpiRefresh successful.\n");
767 +    MPIcheckPoint();
768 +
769 +
770    }
572    
573 }
771  
772 < GenericData* SimInfo::getProperty(const string& propName){
576 <
577 <  map<string, GenericData*>::iterator result;
578 <  
579 <  //string lowerCaseName = ();
580 <  
581 <  result = properties.find(propName);
582 <  
583 <  if(result != properties.end())
584 <    return (*result).second;  
585 <  else  
586 <    return NULL;  
587 < }
772 > #endif
773  
774 +  double SimInfo::calcMaxCutoffRadius() {
775  
590 void SimInfo::getFortranGroupArrays(SimInfo* info,
591                                    vector<int>& FglobalGroupMembership,
592                                    vector<double>& mfact){
593  
594  Molecule* myMols;
595  Atom** myAtoms;
596  int numAtom;
597  double mtot;
598  int numMol;
599  int numCutoffGroups;
600  CutoffGroup* myCutoffGroup;
601  vector<CutoffGroup*>::iterator iterCutoff;
602  Atom* cutoffAtom;
603  vector<Atom*>::iterator iterAtom;
604  int atomIndex;
605  double totalMass;
606  
607  mfact.clear();
608  FglobalGroupMembership.clear();
609  
776  
777 <  // Fix the silly fortran indexing problem
777 >    std::set<AtomType*> atomTypes;
778 >    std::set<AtomType*>::iterator i;
779 >    std::vector<double> cutoffRadius;
780 >
781 >    //get the unique atom types
782 >    atomTypes = getUniqueAtomTypes();
783 >
784 >    //query the max cutoff radius among these atom types
785 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
786 >      cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
787 >    }
788 >
789 >    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
790   #ifdef IS_MPI
791 <  numAtom = mpiSim->getNAtomsGlobal();
614 < #else
615 <  numAtom = n_atoms;
791 >    //pick the max cutoff radius among the processors
792   #endif
617  for (int i = 0; i < numAtom; i++)
618    FglobalGroupMembership.push_back(globalGroupMembership[i] + 1);
619  
793  
794 <  myMols = info->molecules;
795 <  numMol = info->n_mol;
623 <  for(int i  = 0; i < numMol; i++){
624 <    numCutoffGroups = myMols[i].getNCutoffGroups();
625 <    for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff);
626 <        myCutoffGroup != NULL;
627 <        myCutoffGroup =myMols[i].nextCutoffGroup(iterCutoff)){
794 >    return maxCutoffRadius;
795 >  }
796  
797 <      totalMass = myCutoffGroup->getMass();
798 <      
799 <      for(cutoffAtom = myCutoffGroup->beginAtom(iterAtom);
800 <          cutoffAtom != NULL;
801 <          cutoffAtom = myCutoffGroup->nextAtom(iterAtom)){
802 <        mfact.push_back(cutoffAtom->getMass()/totalMass);
803 <      }  
797 >  void SimInfo::getCutoff(double& rcut, double& rsw) {
798 >    
799 >    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
800 >        
801 >      if (!simParams_->haveRcut()){
802 >        sprintf(painCave.errMsg,
803 >                "SimCreator Warning: No value was set for the cutoffRadius.\n"
804 >                "\tOOPSE will use a default value of 15.0 angstroms"
805 >                "\tfor the cutoffRadius.\n");
806 >        painCave.isFatal = 0;
807 >        simError();
808 >        rcut = 15.0;
809 >      } else{
810 >        rcut = simParams_->getRcut();
811 >      }
812 >
813 >      if (!simParams_->haveRsw()){
814 >        sprintf(painCave.errMsg,
815 >                "SimCreator Warning: No value was set for switchingRadius.\n"
816 >                "\tOOPSE will use a default value of\n"
817 >                "\t0.95 * cutoffRadius for the switchingRadius\n");
818 >        painCave.isFatal = 0;
819 >        simError();
820 >        rsw = 0.95 * rcut;
821 >      } else{
822 >        rsw = simParams_->getRsw();
823 >      }
824 >
825 >    } else {
826 >      // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
827 >      //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
828 >        
829 >      if (simParams_->haveRcut()) {
830 >        rcut = simParams_->getRcut();
831 >      } else {
832 >        //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
833 >        rcut = calcMaxCutoffRadius();
834 >      }
835 >
836 >      if (simParams_->haveRsw()) {
837 >        rsw  = simParams_->getRsw();
838 >      } else {
839 >        rsw = rcut;
840 >      }
841 >    
842      }
843    }
844  
845 < }
845 >  void SimInfo::setupCutoff() {    
846 >    getCutoff(rcut_, rsw_);    
847 >    double rnblist = rcut_ + 1; // skin of neighbor list
848 >
849 >    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
850 >    
851 >    int cp =  TRADITIONAL_CUTOFF_POLICY;
852 >    if (simParams_->haveCutoffPolicy()) {
853 >      std::string myPolicy = simParams_->getCutoffPolicy();
854 >      if (myPolicy == "MIX") {
855 >        cp = MIX_CUTOFF_POLICY;
856 >      } else {
857 >        if (myPolicy == "MAX") {
858 >          cp = MAX_CUTOFF_POLICY;
859 >        } else {
860 >          if (myPolicy == "TRADITIONAL") {            
861 >            cp = TRADITIONAL_CUTOFF_POLICY;
862 >          } else {
863 >            // throw error        
864 >            sprintf( painCave.errMsg,
865 >                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
866 >            painCave.isFatal = 1;
867 >            simError();
868 >          }    
869 >        }          
870 >      }
871 >    }
872 >    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist, &cp);
873 >    // also send cutoff notification to electrostatics
874 >    setElectrostaticCutoffRadius(&rcut_);
875 >  }
876 >
877 >  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
878 >    
879 >    int errorOut;
880 >    int esm =  NONE;
881 >    double alphaVal;
882 >    double dielectric;
883 >
884 >    errorOut = isError;
885 >    alphaVal = simParams_->getDampingAlpha();
886 >    dielectric = simParams_->getDielectric();
887 >
888 >    if (simParams_->haveElectrostaticSummationMethod()) {
889 >      std::string myMethod = simParams_->getElectrostaticSummationMethod();
890 >      if (myMethod == "NONE") {
891 >        esm = NONE;
892 >      } else {
893 >        if (myMethod == "UNDAMPED_WOLF") {
894 >          esm = UNDAMPED_WOLF;
895 >        } else {
896 >          if (myMethod == "DAMPED_WOLF") {            
897 >            esm = DAMPED_WOLF;
898 >            if (!simParams_->haveDampingAlpha()) {
899 >              //throw error
900 >              sprintf( painCave.errMsg,
901 >                       "SimInfo warning: dampingAlpha was not specified in the input file. A default value of %f (1/ang) will be used for the Damped Wolf Method.", alphaVal);
902 >              painCave.isFatal = 0;
903 >              simError();
904 >            }
905 >          } else {
906 >            if (myMethod == "REACTION_FIELD") {
907 >              esm = REACTION_FIELD;
908 >            } else {
909 >              // throw error        
910 >              sprintf( painCave.errMsg,
911 >                       "SimInfo error: Unknown electrostaticSummationMethod. (Input file specified %s .)\n\telectrostaticSummationMethod must be one of: \"none\", \"undamped_wolf\", \"damped_wolf\", or \"reaction_field\".", myMethod.c_str() );
912 >              painCave.isFatal = 1;
913 >              simError();
914 >            }    
915 >          }          
916 >        }
917 >      }
918 >    }
919 >    // let's pass some summation method variables to fortran
920 >    setElectrostaticSummationMethod( &esm );
921 >    setDampedWolfAlpha( &alphaVal );
922 >    setReactionFieldDielectric( &dielectric );
923 >    initFortranFF( &esm, &errorOut );
924 >  }
925 >
926 >  void SimInfo::addProperty(GenericData* genData) {
927 >    properties_.addProperty(genData);  
928 >  }
929 >
930 >  void SimInfo::removeProperty(const std::string& propName) {
931 >    properties_.removeProperty(propName);  
932 >  }
933 >
934 >  void SimInfo::clearProperties() {
935 >    properties_.clearProperties();
936 >  }
937 >
938 >  std::vector<std::string> SimInfo::getPropertyNames() {
939 >    return properties_.getPropertyNames();  
940 >  }
941 >      
942 >  std::vector<GenericData*> SimInfo::getProperties() {
943 >    return properties_.getProperties();
944 >  }
945 >
946 >  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
947 >    return properties_.getPropertyByName(propName);
948 >  }
949 >
950 >  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
951 >    if (sman_ == sman) {
952 >      return;
953 >    }    
954 >    delete sman_;
955 >    sman_ = sman;
956 >
957 >    Molecule* mol;
958 >    RigidBody* rb;
959 >    Atom* atom;
960 >    SimInfo::MoleculeIterator mi;
961 >    Molecule::RigidBodyIterator rbIter;
962 >    Molecule::AtomIterator atomIter;;
963 >
964 >    for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
965 >        
966 >      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
967 >        atom->setSnapshotManager(sman_);
968 >      }
969 >        
970 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
971 >        rb->setSnapshotManager(sman_);
972 >      }
973 >    }    
974 >    
975 >  }
976 >
977 >  Vector3d SimInfo::getComVel(){
978 >    SimInfo::MoleculeIterator i;
979 >    Molecule* mol;
980 >
981 >    Vector3d comVel(0.0);
982 >    double totalMass = 0.0;
983 >    
984 >
985 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
986 >      double mass = mol->getMass();
987 >      totalMass += mass;
988 >      comVel += mass * mol->getComVel();
989 >    }  
990 >
991 > #ifdef IS_MPI
992 >    double tmpMass = totalMass;
993 >    Vector3d tmpComVel(comVel);    
994 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
995 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
996 > #endif
997 >
998 >    comVel /= totalMass;
999 >
1000 >    return comVel;
1001 >  }
1002 >
1003 >  Vector3d SimInfo::getCom(){
1004 >    SimInfo::MoleculeIterator i;
1005 >    Molecule* mol;
1006 >
1007 >    Vector3d com(0.0);
1008 >    double totalMass = 0.0;
1009 >    
1010 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1011 >      double mass = mol->getMass();
1012 >      totalMass += mass;
1013 >      com += mass * mol->getCom();
1014 >    }  
1015 >
1016 > #ifdef IS_MPI
1017 >    double tmpMass = totalMass;
1018 >    Vector3d tmpCom(com);    
1019 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1020 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1021 > #endif
1022 >
1023 >    com /= totalMass;
1024 >
1025 >    return com;
1026 >
1027 >  }        
1028 >
1029 >  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1030 >
1031 >    return o;
1032 >  }
1033 >  
1034 >  
1035 >   /*
1036 >   Returns center of mass and center of mass velocity in one function call.
1037 >   */
1038 >  
1039 >   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1040 >      SimInfo::MoleculeIterator i;
1041 >      Molecule* mol;
1042 >      
1043 >    
1044 >      double totalMass = 0.0;
1045 >    
1046 >
1047 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1048 >         double mass = mol->getMass();
1049 >         totalMass += mass;
1050 >         com += mass * mol->getCom();
1051 >         comVel += mass * mol->getComVel();          
1052 >      }  
1053 >      
1054 > #ifdef IS_MPI
1055 >      double tmpMass = totalMass;
1056 >      Vector3d tmpCom(com);  
1057 >      Vector3d tmpComVel(comVel);
1058 >      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1059 >      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1060 >      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1061 > #endif
1062 >      
1063 >      com /= totalMass;
1064 >      comVel /= totalMass;
1065 >   }        
1066 >  
1067 >   /*
1068 >   Return intertia tensor for entire system and angular momentum Vector.
1069 >
1070 >
1071 >       [  Ixx -Ixy  -Ixz ]
1072 >  J =| -Iyx  Iyy  -Iyz |
1073 >       [ -Izx -Iyz   Izz ]
1074 >    */
1075 >
1076 >   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1077 >      
1078 >
1079 >      double xx = 0.0;
1080 >      double yy = 0.0;
1081 >      double zz = 0.0;
1082 >      double xy = 0.0;
1083 >      double xz = 0.0;
1084 >      double yz = 0.0;
1085 >      Vector3d com(0.0);
1086 >      Vector3d comVel(0.0);
1087 >      
1088 >      getComAll(com, comVel);
1089 >      
1090 >      SimInfo::MoleculeIterator i;
1091 >      Molecule* mol;
1092 >      
1093 >      Vector3d thisq(0.0);
1094 >      Vector3d thisv(0.0);
1095 >
1096 >      double thisMass = 0.0;
1097 >    
1098 >      
1099 >      
1100 >  
1101 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1102 >        
1103 >         thisq = mol->getCom()-com;
1104 >         thisv = mol->getComVel()-comVel;
1105 >         thisMass = mol->getMass();
1106 >         // Compute moment of intertia coefficients.
1107 >         xx += thisq[0]*thisq[0]*thisMass;
1108 >         yy += thisq[1]*thisq[1]*thisMass;
1109 >         zz += thisq[2]*thisq[2]*thisMass;
1110 >        
1111 >         // compute products of intertia
1112 >         xy += thisq[0]*thisq[1]*thisMass;
1113 >         xz += thisq[0]*thisq[2]*thisMass;
1114 >         yz += thisq[1]*thisq[2]*thisMass;
1115 >            
1116 >         angularMomentum += cross( thisq, thisv ) * thisMass;
1117 >            
1118 >      }  
1119 >      
1120 >      
1121 >      inertiaTensor(0,0) = yy + zz;
1122 >      inertiaTensor(0,1) = -xy;
1123 >      inertiaTensor(0,2) = -xz;
1124 >      inertiaTensor(1,0) = -xy;
1125 >      inertiaTensor(1,1) = xx + zz;
1126 >      inertiaTensor(1,2) = -yz;
1127 >      inertiaTensor(2,0) = -xz;
1128 >      inertiaTensor(2,1) = -yz;
1129 >      inertiaTensor(2,2) = xx + yy;
1130 >      
1131 > #ifdef IS_MPI
1132 >      Mat3x3d tmpI(inertiaTensor);
1133 >      Vector3d tmpAngMom;
1134 >      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1135 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1136 > #endif
1137 >              
1138 >      return;
1139 >   }
1140 >
1141 >   //Returns the angular momentum of the system
1142 >   Vector3d SimInfo::getAngularMomentum(){
1143 >      
1144 >      Vector3d com(0.0);
1145 >      Vector3d comVel(0.0);
1146 >      Vector3d angularMomentum(0.0);
1147 >      
1148 >      getComAll(com,comVel);
1149 >      
1150 >      SimInfo::MoleculeIterator i;
1151 >      Molecule* mol;
1152 >      
1153 >      Vector3d thisr(0.0);
1154 >      Vector3d thisp(0.0);
1155 >      
1156 >      double thisMass;
1157 >      
1158 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1159 >        thisMass = mol->getMass();
1160 >        thisr = mol->getCom()-com;
1161 >        thisp = (mol->getComVel()-comVel)*thisMass;
1162 >        
1163 >        angularMomentum += cross( thisr, thisp );
1164 >        
1165 >      }  
1166 >      
1167 > #ifdef IS_MPI
1168 >      Vector3d tmpAngMom;
1169 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1170 > #endif
1171 >      
1172 >      return angularMomentum;
1173 >   }
1174 >  
1175 >  
1176 > }//end namespace oopse
1177 >

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines