ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-2.0/src/brains/SimInfo.cpp
(Generate patch)

Comparing trunk/OOPSE-2.0/src/brains/SimInfo.cpp (file contents):
Revision 2000 by tim, Fri Feb 11 22:41:02 2005 UTC vs.
Revision 2364 by tim, Thu Oct 13 22:26:47 2005 UTC

# Line 1 | Line 1
1 < /*
1 > /*
2   * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
4   * The University of Notre Dame grants you ("Licensee") a
# Line 52 | Line 52
52   #include "brains/SimInfo.hpp"
53   #include "math/Vector3.hpp"
54   #include "primitives/Molecule.hpp"
55 + #include "UseTheForce/fCutoffPolicy.h"
56 + #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
57   #include "UseTheForce/doForces_interface.h"
58 + #include "UseTheForce/DarkSide/electrostatic_interface.h"
59   #include "UseTheForce/notifyCutoffs_interface.h"
60   #include "utils/MemoryUtils.hpp"
61   #include "utils/simError.h"
# Line 65 | Line 68 | SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*,
68  
69   namespace oopse {
70  
71 < SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
72 <                                ForceField* ff, Globals* simParams) :
73 <                                forceField_(ff), simParams_(simParams),
74 <                                ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
75 <                                nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
76 <                                nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
77 <                                nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
78 <                                nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
79 <                                sman_(NULL), fortranInitialized_(false), selectMan_(NULL) {
71 >  SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
72 >                   ForceField* ff, Globals* simParams) :
73 >    stamps_(stamps), forceField_(ff), simParams_(simParams),
74 >    ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
75 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
76 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
77 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
78 >    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
79 >    sman_(NULL), fortranInitialized_(false) {
80  
81              
82 <    std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
83 <    MoleculeStamp* molStamp;
84 <    int nMolWithSameStamp;
85 <    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
86 <    int nGroups = 0;          //total cutoff groups defined in meta-data file
87 <    CutoffGroupStamp* cgStamp;    
88 <    RigidBodyStamp* rbStamp;
89 <    int nRigidAtoms = 0;
82 >      std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
83 >      MoleculeStamp* molStamp;
84 >      int nMolWithSameStamp;
85 >      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
86 >      int nGroups = 0;      //total cutoff groups defined in meta-data file
87 >      CutoffGroupStamp* cgStamp;    
88 >      RigidBodyStamp* rbStamp;
89 >      int nRigidAtoms = 0;
90      
91 <    for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
91 >      for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
92          molStamp = i->first;
93          nMolWithSameStamp = i->second;
94          
# Line 100 | Line 103 | SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*,
103          int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
104          
105          for (int j=0; j < nCutoffGroupsInStamp; j++) {
106 <            cgStamp = molStamp->getCutoffGroup(j);
107 <            nAtomsInGroups += cgStamp->getNMembers();
106 >          cgStamp = molStamp->getCutoffGroup(j);
107 >          nAtomsInGroups += cgStamp->getNMembers();
108          }
109  
110          nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
111 +
112          nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
113  
114          //calculate atoms in rigid bodies
# Line 112 | Line 116 | SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*,
116          int nRigidBodiesInStamp = molStamp->getNRigidBodies();
117          
118          for (int j=0; j < nRigidBodiesInStamp; j++) {
119 <            rbStamp = molStamp->getRigidBody(j);
120 <            nAtomsInRigidBodies += rbStamp->getNMembers();
119 >          rbStamp = molStamp->getRigidBody(j);
120 >          nAtomsInRigidBodies += rbStamp->getNMembers();
121          }
122  
123          nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
124          nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
125          
126 <    }
126 >      }
127  
128 <    //every free atom (atom does not belong to cutoff groups) is a cutoff group
129 <    //therefore the total number of cutoff groups in the system is equal to
130 <    //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
131 <    //file plus the number of cutoff groups defined in meta-data file
132 <    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
128 >      //every free atom (atom does not belong to cutoff groups) is a cutoff
129 >      //group therefore the total number of cutoff groups in the system is
130 >      //equal to the total number of atoms minus number of atoms belong to
131 >      //cutoff group defined in meta-data file plus the number of cutoff
132 >      //groups defined in meta-data file
133 >      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
134  
135 <    //every free atom (atom does not belong to rigid bodies) is an integrable object
136 <    //therefore the total number of  integrable objects in the system is equal to
137 <    //the total number of atoms minus number of atoms belong to  rigid body defined in meta-data
138 <    //file plus the number of  rigid bodies defined in meta-data file
139 <    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
135 >      //every free atom (atom does not belong to rigid bodies) is an
136 >      //integrable object therefore the total number of integrable objects
137 >      //in the system is equal to the total number of atoms minus number of
138 >      //atoms belong to rigid body defined in meta-data file plus the number
139 >      //of rigid bodies defined in meta-data file
140 >      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
141 >                                                + nGlobalRigidBodies_;
142 >  
143 >      nGlobalMols_ = molStampIds_.size();
144  
136    nGlobalMols_ = molStampIds_.size();
137
145   #ifdef IS_MPI    
146 <    molToProcMap_.resize(nGlobalMols_);
146 >      molToProcMap_.resize(nGlobalMols_);
147   #endif
148  
149 <    selectMan_ = new SelectionManager(this);
143 <    selectMan_->selectAll();
144 < }
149 >    }
150  
151 < SimInfo::~SimInfo() {
152 <    //MemoryUtils::deleteVectorOfPointer(molecules_);
153 <
154 <    MemoryUtils::deleteVectorOfPointer(moleculeStamps_);
155 <    
151 >  SimInfo::~SimInfo() {
152 >    std::map<int, Molecule*>::iterator i;
153 >    for (i = molecules_.begin(); i != molecules_.end(); ++i) {
154 >      delete i->second;
155 >    }
156 >    molecules_.clear();
157 >      
158 >    delete stamps_;
159      delete sman_;
160      delete simParams_;
161      delete forceField_;
162 <    delete selectMan_;
155 < }
162 >  }
163  
164 < int SimInfo::getNGlobalConstraints() {
164 >  int SimInfo::getNGlobalConstraints() {
165      int nGlobalConstraints;
166   #ifdef IS_MPI
167      MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
# Line 163 | Line 170 | int SimInfo::getNGlobalConstraints() {
170      nGlobalConstraints =  nConstraints_;
171   #endif
172      return nGlobalConstraints;
173 < }
173 >  }
174  
175 < bool SimInfo::addMolecule(Molecule* mol) {
175 >  bool SimInfo::addMolecule(Molecule* mol) {
176      MoleculeIterator i;
177  
178      i = molecules_.find(mol->getGlobalIndex());
179      if (i == molecules_.end() ) {
180  
181 <        molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
181 >      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
182          
183 <        nAtoms_ += mol->getNAtoms();
184 <        nBonds_ += mol->getNBonds();
185 <        nBends_ += mol->getNBends();
186 <        nTorsions_ += mol->getNTorsions();
187 <        nRigidBodies_ += mol->getNRigidBodies();
188 <        nIntegrableObjects_ += mol->getNIntegrableObjects();
189 <        nCutoffGroups_ += mol->getNCutoffGroups();
190 <        nConstraints_ += mol->getNConstraintPairs();
183 >      nAtoms_ += mol->getNAtoms();
184 >      nBonds_ += mol->getNBonds();
185 >      nBends_ += mol->getNBends();
186 >      nTorsions_ += mol->getNTorsions();
187 >      nRigidBodies_ += mol->getNRigidBodies();
188 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
189 >      nCutoffGroups_ += mol->getNCutoffGroups();
190 >      nConstraints_ += mol->getNConstraintPairs();
191  
192 <        addExcludePairs(mol);
192 >      addExcludePairs(mol);
193          
194 <        return true;
194 >      return true;
195      } else {
196 <        return false;
196 >      return false;
197      }
198 < }
198 >  }
199  
200 < bool SimInfo::removeMolecule(Molecule* mol) {
200 >  bool SimInfo::removeMolecule(Molecule* mol) {
201      MoleculeIterator i;
202      i = molecules_.find(mol->getGlobalIndex());
203  
204      if (i != molecules_.end() ) {
205  
206 <        assert(mol == i->second);
206 >      assert(mol == i->second);
207          
208 <        nAtoms_ -= mol->getNAtoms();
209 <        nBonds_ -= mol->getNBonds();
210 <        nBends_ -= mol->getNBends();
211 <        nTorsions_ -= mol->getNTorsions();
212 <        nRigidBodies_ -= mol->getNRigidBodies();
213 <        nIntegrableObjects_ -= mol->getNIntegrableObjects();
214 <        nCutoffGroups_ -= mol->getNCutoffGroups();
215 <        nConstraints_ -= mol->getNConstraintPairs();
208 >      nAtoms_ -= mol->getNAtoms();
209 >      nBonds_ -= mol->getNBonds();
210 >      nBends_ -= mol->getNBends();
211 >      nTorsions_ -= mol->getNTorsions();
212 >      nRigidBodies_ -= mol->getNRigidBodies();
213 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
214 >      nCutoffGroups_ -= mol->getNCutoffGroups();
215 >      nConstraints_ -= mol->getNConstraintPairs();
216  
217 <        removeExcludePairs(mol);
218 <        molecules_.erase(mol->getGlobalIndex());
217 >      removeExcludePairs(mol);
218 >      molecules_.erase(mol->getGlobalIndex());
219  
220 <        delete mol;
220 >      delete mol;
221          
222 <        return true;
222 >      return true;
223      } else {
224 <        return false;
224 >      return false;
225      }
226  
227  
228 < }    
228 >  }    
229  
230          
231 < Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
231 >  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
232      i = molecules_.begin();
233      return i == molecules_.end() ? NULL : i->second;
234 < }    
234 >  }    
235  
236 < Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
236 >  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
237      ++i;
238      return i == molecules_.end() ? NULL : i->second;    
239 < }
239 >  }
240  
241  
242 < void SimInfo::calcNdf() {
242 >  void SimInfo::calcNdf() {
243      int ndf_local;
244      MoleculeIterator i;
245      std::vector<StuntDouble*>::iterator j;
# Line 242 | Line 249 | void SimInfo::calcNdf() {
249      ndf_local = 0;
250      
251      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
252 <        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
253 <               integrableObject = mol->nextIntegrableObject(j)) {
252 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
253 >           integrableObject = mol->nextIntegrableObject(j)) {
254  
255 <            ndf_local += 3;
255 >        ndf_local += 3;
256  
257 <            if (integrableObject->isDirectional()) {
258 <                if (integrableObject->isLinear()) {
259 <                    ndf_local += 2;
260 <                } else {
261 <                    ndf_local += 3;
262 <                }
263 <            }
257 >        if (integrableObject->isDirectional()) {
258 >          if (integrableObject->isLinear()) {
259 >            ndf_local += 2;
260 >          } else {
261 >            ndf_local += 3;
262 >          }
263 >        }
264              
265 <        }//end for (integrableObject)
265 >      }//end for (integrableObject)
266      }// end for (mol)
267      
268      // n_constraints is local, so subtract them on each processor
# Line 271 | Line 278 | void SimInfo::calcNdf() {
278      // entire system:
279      ndf_ = ndf_ - 3 - nZconstraint_;
280  
281 < }
281 >  }
282  
283 < void SimInfo::calcNdfRaw() {
283 >  void SimInfo::calcNdfRaw() {
284      int ndfRaw_local;
285  
286      MoleculeIterator i;
# Line 285 | Line 292 | void SimInfo::calcNdfRaw() {
292      ndfRaw_local = 0;
293      
294      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
295 <        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
296 <               integrableObject = mol->nextIntegrableObject(j)) {
295 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
296 >           integrableObject = mol->nextIntegrableObject(j)) {
297  
298 <            ndfRaw_local += 3;
298 >        ndfRaw_local += 3;
299  
300 <            if (integrableObject->isDirectional()) {
301 <                if (integrableObject->isLinear()) {
302 <                    ndfRaw_local += 2;
303 <                } else {
304 <                    ndfRaw_local += 3;
305 <                }
306 <            }
300 >        if (integrableObject->isDirectional()) {
301 >          if (integrableObject->isLinear()) {
302 >            ndfRaw_local += 2;
303 >          } else {
304 >            ndfRaw_local += 3;
305 >          }
306 >        }
307              
308 <        }
308 >      }
309      }
310      
311   #ifdef IS_MPI
# Line 306 | Line 313 | void SimInfo::calcNdfRaw() {
313   #else
314      ndfRaw_ = ndfRaw_local;
315   #endif
316 < }
316 >  }
317  
318 < void SimInfo::calcNdfTrans() {
318 >  void SimInfo::calcNdfTrans() {
319      int ndfTrans_local;
320  
321      ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
# Line 322 | Line 329 | void SimInfo::calcNdfTrans() {
329  
330      ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
331  
332 < }
332 >  }
333  
334 < void SimInfo::addExcludePairs(Molecule* mol) {
334 >  void SimInfo::addExcludePairs(Molecule* mol) {
335      std::vector<Bond*>::iterator bondIter;
336      std::vector<Bend*>::iterator bendIter;
337      std::vector<Torsion*>::iterator torsionIter;
# Line 337 | Line 344 | void SimInfo::addExcludePairs(Molecule* mol) {
344      int d;
345      
346      for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
347 <        a = bond->getAtomA()->getGlobalIndex();
348 <        b = bond->getAtomB()->getGlobalIndex();        
349 <        exclude_.addPair(a, b);
347 >      a = bond->getAtomA()->getGlobalIndex();
348 >      b = bond->getAtomB()->getGlobalIndex();        
349 >      exclude_.addPair(a, b);
350      }
351  
352      for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
353 <        a = bend->getAtomA()->getGlobalIndex();
354 <        b = bend->getAtomB()->getGlobalIndex();        
355 <        c = bend->getAtomC()->getGlobalIndex();
353 >      a = bend->getAtomA()->getGlobalIndex();
354 >      b = bend->getAtomB()->getGlobalIndex();        
355 >      c = bend->getAtomC()->getGlobalIndex();
356  
357 <        exclude_.addPair(a, b);
358 <        exclude_.addPair(a, c);
359 <        exclude_.addPair(b, c);        
357 >      exclude_.addPair(a, b);
358 >      exclude_.addPair(a, c);
359 >      exclude_.addPair(b, c);        
360      }
361  
362      for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
363 <        a = torsion->getAtomA()->getGlobalIndex();
364 <        b = torsion->getAtomB()->getGlobalIndex();        
365 <        c = torsion->getAtomC()->getGlobalIndex();        
366 <        d = torsion->getAtomD()->getGlobalIndex();        
363 >      a = torsion->getAtomA()->getGlobalIndex();
364 >      b = torsion->getAtomB()->getGlobalIndex();        
365 >      c = torsion->getAtomC()->getGlobalIndex();        
366 >      d = torsion->getAtomD()->getGlobalIndex();        
367  
368 <        exclude_.addPair(a, b);
369 <        exclude_.addPair(a, c);
370 <        exclude_.addPair(a, d);
371 <        exclude_.addPair(b, c);
372 <        exclude_.addPair(b, d);
373 <        exclude_.addPair(c, d);        
368 >      exclude_.addPair(a, b);
369 >      exclude_.addPair(a, c);
370 >      exclude_.addPair(a, d);
371 >      exclude_.addPair(b, c);
372 >      exclude_.addPair(b, d);
373 >      exclude_.addPair(c, d);        
374      }
375  
376 <    
377 < }
376 >    Molecule::RigidBodyIterator rbIter;
377 >    RigidBody* rb;
378 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
379 >      std::vector<Atom*> atoms = rb->getAtoms();
380 >      for (int i = 0; i < atoms.size() -1 ; ++i) {
381 >        for (int j = i + 1; j < atoms.size(); ++j) {
382 >          a = atoms[i]->getGlobalIndex();
383 >          b = atoms[j]->getGlobalIndex();
384 >          exclude_.addPair(a, b);
385 >        }
386 >      }
387 >    }        
388  
389 < void SimInfo::removeExcludePairs(Molecule* mol) {
389 >  }
390 >
391 >  void SimInfo::removeExcludePairs(Molecule* mol) {
392      std::vector<Bond*>::iterator bondIter;
393      std::vector<Bend*>::iterator bendIter;
394      std::vector<Torsion*>::iterator torsionIter;
# Line 382 | Line 401 | void SimInfo::removeExcludePairs(Molecule* mol) {
401      int d;
402      
403      for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
404 <        a = bond->getAtomA()->getGlobalIndex();
405 <        b = bond->getAtomB()->getGlobalIndex();        
406 <        exclude_.removePair(a, b);
404 >      a = bond->getAtomA()->getGlobalIndex();
405 >      b = bond->getAtomB()->getGlobalIndex();        
406 >      exclude_.removePair(a, b);
407      }
408  
409      for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
410 <        a = bend->getAtomA()->getGlobalIndex();
411 <        b = bend->getAtomB()->getGlobalIndex();        
412 <        c = bend->getAtomC()->getGlobalIndex();
410 >      a = bend->getAtomA()->getGlobalIndex();
411 >      b = bend->getAtomB()->getGlobalIndex();        
412 >      c = bend->getAtomC()->getGlobalIndex();
413  
414 <        exclude_.removePair(a, b);
415 <        exclude_.removePair(a, c);
416 <        exclude_.removePair(b, c);        
414 >      exclude_.removePair(a, b);
415 >      exclude_.removePair(a, c);
416 >      exclude_.removePair(b, c);        
417      }
418  
419      for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
420 <        a = torsion->getAtomA()->getGlobalIndex();
421 <        b = torsion->getAtomB()->getGlobalIndex();        
422 <        c = torsion->getAtomC()->getGlobalIndex();        
423 <        d = torsion->getAtomD()->getGlobalIndex();        
420 >      a = torsion->getAtomA()->getGlobalIndex();
421 >      b = torsion->getAtomB()->getGlobalIndex();        
422 >      c = torsion->getAtomC()->getGlobalIndex();        
423 >      d = torsion->getAtomD()->getGlobalIndex();        
424  
425 <        exclude_.removePair(a, b);
426 <        exclude_.removePair(a, c);
427 <        exclude_.removePair(a, d);
428 <        exclude_.removePair(b, c);
429 <        exclude_.removePair(b, d);
430 <        exclude_.removePair(c, d);        
425 >      exclude_.removePair(a, b);
426 >      exclude_.removePair(a, c);
427 >      exclude_.removePair(a, d);
428 >      exclude_.removePair(b, c);
429 >      exclude_.removePair(b, d);
430 >      exclude_.removePair(c, d);        
431      }
432  
433 < }
433 >    Molecule::RigidBodyIterator rbIter;
434 >    RigidBody* rb;
435 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
436 >      std::vector<Atom*> atoms = rb->getAtoms();
437 >      for (int i = 0; i < atoms.size() -1 ; ++i) {
438 >        for (int j = i + 1; j < atoms.size(); ++j) {
439 >          a = atoms[i]->getGlobalIndex();
440 >          b = atoms[j]->getGlobalIndex();
441 >          exclude_.removePair(a, b);
442 >        }
443 >      }
444 >    }        
445  
446 +  }
447  
448 < void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
448 >
449 >  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
450      int curStampId;
451  
452      //index from 0
# Line 422 | Line 454 | void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp
454  
455      moleculeStamps_.push_back(molStamp);
456      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
457 < }
457 >  }
458  
459 < void SimInfo::update() {
459 >  void SimInfo::update() {
460  
461      setupSimType();
462  
# Line 437 | Line 469 | void SimInfo::update() {
469      //setup fortran force field
470      /** @deprecate */    
471      int isError = 0;
472 <    initFortranFF( &fInfo_.SIM_uses_RF , &isError );
472 >    
473 >    setupElectrostaticSummationMethod( isError );
474 >
475      if(isError){
476 <        sprintf( painCave.errMsg,
477 <         "ForceField error: There was an error initializing the forceField in fortran.\n" );
478 <        painCave.isFatal = 1;
479 <        simError();
476 >      sprintf( painCave.errMsg,
477 >               "ForceField error: There was an error initializing the forceField in fortran.\n" );
478 >      painCave.isFatal = 1;
479 >      simError();
480      }
481    
482      
# Line 453 | Line 487 | void SimInfo::update() {
487      calcNdfTrans();
488  
489      fortranInitialized_ = true;
490 < }
490 >  }
491  
492 < std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
492 >  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
493      SimInfo::MoleculeIterator mi;
494      Molecule* mol;
495      Molecule::AtomIterator ai;
# Line 464 | Line 498 | std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
498  
499      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
500  
501 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
502 <            atomTypes.insert(atom->getAtomType());
503 <        }
501 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
502 >        atomTypes.insert(atom->getAtomType());
503 >      }
504          
505      }
506  
507      return atomTypes;        
508 < }
508 >  }
509  
510 < void SimInfo::setupSimType() {
510 >  void SimInfo::setupSimType() {
511      std::set<AtomType*>::iterator i;
512      std::set<AtomType*> atomTypes;
513      atomTypes = getUniqueAtomTypes();
# Line 486 | Line 520 | void SimInfo::setupSimType() {
520      int useDipole = 0;
521      int useGayBerne = 0;
522      int useSticky = 0;
523 +    int useStickyPower = 0;
524      int useShape = 0;
525      int useFLARB = 0; //it is not in AtomType yet
526      int useDirectionalAtom = 0;    
527      int useElectrostatics = 0;
528      //usePBC and useRF are from simParams
529 <    int usePBC = simParams_->getPBC();
530 <    int useRF = simParams_->getUseRF();
529 >    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
530 >    int useRF;
531 >    std::string myMethod;
532  
533 +    // set the useRF logical
534 +    useRF = 0;
535 +    if (simParams_->haveElectrostaticSummationMethod()) {
536 +        myMethod = simParams_->getElectrostaticSummationMethod();
537 +        if (myMethod == "REACTION_FIELD")
538 +             useRF = 1;
539 +    }
540 +
541      //loop over all of the atom types
542      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
543 <        useLennardJones |= (*i)->isLennardJones();
544 <        useElectrostatic |= (*i)->isElectrostatic();
545 <        useEAM |= (*i)->isEAM();
546 <        useCharge |= (*i)->isCharge();
547 <        useDirectional |= (*i)->isDirectional();
548 <        useDipole |= (*i)->isDipole();
549 <        useGayBerne |= (*i)->isGayBerne();
550 <        useSticky |= (*i)->isSticky();
551 <        useShape |= (*i)->isShape();
543 >      useLennardJones |= (*i)->isLennardJones();
544 >      useElectrostatic |= (*i)->isElectrostatic();
545 >      useEAM |= (*i)->isEAM();
546 >      useCharge |= (*i)->isCharge();
547 >      useDirectional |= (*i)->isDirectional();
548 >      useDipole |= (*i)->isDipole();
549 >      useGayBerne |= (*i)->isGayBerne();
550 >      useSticky |= (*i)->isSticky();
551 >      useStickyPower |= (*i)->isStickyPower();
552 >      useShape |= (*i)->isShape();
553      }
554  
555 <    if (useSticky || useDipole || useGayBerne || useShape) {
556 <        useDirectionalAtom = 1;
555 >    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
556 >      useDirectionalAtom = 1;
557      }
558  
559      if (useCharge || useDipole) {
560 <        useElectrostatics = 1;
560 >      useElectrostatics = 1;
561      }
562  
563   #ifdef IS_MPI    
# Line 539 | Line 584 | void SimInfo::setupSimType() {
584      temp = useSticky;
585      MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
586  
587 +    temp = useStickyPower;
588 +    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
589 +    
590      temp = useGayBerne;
591      MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
592  
# Line 553 | Line 601 | void SimInfo::setupSimType() {
601  
602      temp = useRF;
603      MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
604 <    
604 >
605   #endif
606  
607      fInfo_.SIM_uses_PBC = usePBC;    
# Line 563 | Line 611 | void SimInfo::setupSimType() {
611      fInfo_.SIM_uses_Charges = useCharge;
612      fInfo_.SIM_uses_Dipoles = useDipole;
613      fInfo_.SIM_uses_Sticky = useSticky;
614 +    fInfo_.SIM_uses_StickyPower = useStickyPower;
615      fInfo_.SIM_uses_GayBerne = useGayBerne;
616      fInfo_.SIM_uses_EAM = useEAM;
617      fInfo_.SIM_uses_Shapes = useShape;
618      fInfo_.SIM_uses_FLARB = useFLARB;
619      fInfo_.SIM_uses_RF = useRF;
620  
621 <    if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
621 >    if( fInfo_.SIM_uses_Dipoles && myMethod == "REACTION_FIELD") {
622  
623 <        if (simParams_->haveDielectric()) {
624 <            fInfo_.dielect = simParams_->getDielectric();
625 <        } else {
626 <            sprintf(painCave.errMsg,
627 <                    "SimSetup Error: No Dielectric constant was set.\n"
628 <                    "\tYou are trying to use Reaction Field without"
629 <                    "\tsetting a dielectric constant!\n");
630 <            painCave.isFatal = 1;
631 <            simError();
632 <        }
623 >      if (simParams_->haveDielectric()) {
624 >        fInfo_.dielect = simParams_->getDielectric();
625 >      } else {
626 >        sprintf(painCave.errMsg,
627 >                "SimSetup Error: No Dielectric constant was set.\n"
628 >                "\tYou are trying to use Reaction Field without"
629 >                "\tsetting a dielectric constant!\n");
630 >        painCave.isFatal = 1;
631 >        simError();
632 >      }
633          
634      } else {
635 <        fInfo_.dielect = 0.0;
635 >      fInfo_.dielect = 0.0;
636      }
637  
638 < }
638 >  }
639  
640 < void SimInfo::setupFortranSim() {
640 >  void SimInfo::setupFortranSim() {
641      int isError;
642      int nExclude;
643      std::vector<int> fortranGlobalGroupMembership;
# Line 598 | Line 647 | void SimInfo::setupFortranSim() {
647  
648      //globalGroupMembership_ is filled by SimCreator    
649      for (int i = 0; i < nGlobalAtoms_; i++) {
650 <        fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
650 >      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
651      }
652  
653      //calculate mass ratio of cutoff group
# Line 615 | Line 664 | void SimInfo::setupFortranSim() {
664      mfact.reserve(getNCutoffGroups());
665      
666      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
667 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
667 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
668  
669 <            totalMass = cg->getMass();
670 <            for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
671 <                        mfact.push_back(atom->getMass()/totalMass);
672 <            }
669 >        totalMass = cg->getMass();
670 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
671 >          // Check for massless groups - set mfact to 1 if true
672 >          if (totalMass != 0)
673 >            mfact.push_back(atom->getMass()/totalMass);
674 >          else
675 >            mfact.push_back( 1.0 );
676 >        }
677  
678 <        }      
678 >      }      
679      }
680  
681      //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
# Line 632 | Line 685 | void SimInfo::setupFortranSim() {
685      identArray.reserve(getNAtoms());
686      
687      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
688 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
689 <            identArray.push_back(atom->getIdent());
690 <        }
688 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
689 >        identArray.push_back(atom->getIdent());
690 >      }
691      }    
692  
693      //fill molMembershipArray
694      //molMembershipArray is filled by SimCreator    
695      std::vector<int> molMembershipArray(nGlobalAtoms_);
696      for (int i = 0; i < nGlobalAtoms_; i++) {
697 <        molMembershipArray[i] = globalMolMembership_[i] + 1;
697 >      molMembershipArray[i] = globalMolMembership_[i] + 1;
698      }
699      
700      //setup fortran simulation
648    //gloalExcludes and molMembershipArray should go away (They are never used)
649    //why the hell fortran need to know molecule?
650    //OOPSE = Object-Obfuscated Parallel Simulation Engine
701      int nGlobalExcludes = 0;
702      int* globalExcludes = NULL;
703      int* excludeList = exclude_.getExcludeList();
704      setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
705 <                  &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
706 <                  &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
705 >                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
706 >                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
707  
708      if( isError ){
709  
710 <        sprintf( painCave.errMsg,
711 <                 "There was an error setting the simulation information in fortran.\n" );
712 <        painCave.isFatal = 1;
713 <        painCave.severity = OOPSE_ERROR;
714 <        simError();
710 >      sprintf( painCave.errMsg,
711 >               "There was an error setting the simulation information in fortran.\n" );
712 >      painCave.isFatal = 1;
713 >      painCave.severity = OOPSE_ERROR;
714 >      simError();
715      }
716  
717   #ifdef IS_MPI
718      sprintf( checkPointMsg,
719 <       "succesfully sent the simulation information to fortran.\n");
719 >             "succesfully sent the simulation information to fortran.\n");
720      MPIcheckPoint();
721   #endif // is_mpi
722 < }
722 >  }
723  
724  
725   #ifdef IS_MPI
726 < void SimInfo::setupFortranParallel() {
726 >  void SimInfo::setupFortranParallel() {
727      
728      //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
729      std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
# Line 689 | Line 739 | void SimInfo::setupFortranParallel() {
739  
740      for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
741  
742 <        //local index(index in DataStorge) of atom is important
743 <        for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
744 <            localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
745 <        }
742 >      //local index(index in DataStorge) of atom is important
743 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
744 >        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
745 >      }
746  
747 <        //local index of cutoff group is trivial, it only depends on the order of travesing
748 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
749 <            localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
750 <        }        
747 >      //local index of cutoff group is trivial, it only depends on the order of travesing
748 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
749 >        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
750 >      }        
751          
752      }
753  
# Line 717 | Line 767 | void SimInfo::setupFortranParallel() {
767                      &localToGlobalCutoffGroupIndex[0], &isError);
768  
769      if (isError) {
770 <        sprintf(painCave.errMsg,
771 <                "mpiRefresh errror: fortran didn't like something we gave it.\n");
772 <        painCave.isFatal = 1;
773 <        simError();
770 >      sprintf(painCave.errMsg,
771 >              "mpiRefresh errror: fortran didn't like something we gave it.\n");
772 >      painCave.isFatal = 1;
773 >      simError();
774      }
775  
776      sprintf(checkPointMsg, " mpiRefresh successful.\n");
777      MPIcheckPoint();
778  
779  
780 < }
780 >  }
781  
782   #endif
783  
784 < double SimInfo::calcMaxCutoffRadius() {
784 >  double SimInfo::calcMaxCutoffRadius() {
785  
786  
787      std::set<AtomType*> atomTypes;
# Line 743 | Line 793 | double SimInfo::calcMaxCutoffRadius() {
793  
794      //query the max cutoff radius among these atom types
795      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
796 <        cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
796 >      cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
797      }
798  
799      double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
# Line 752 | Line 802 | double SimInfo::calcMaxCutoffRadius() {
802   #endif
803  
804      return maxCutoffRadius;
805 < }
805 >  }
806  
807 < void SimInfo::setupCutoff() {
758 <    double rcut_;  //cutoff radius
759 <    double rsw_; //switching radius
807 >  void SimInfo::getCutoff(double& rcut, double& rsw) {
808      
809      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
810          
811 <        if (!simParams_->haveRcut()){
812 <            sprintf(painCave.errMsg,
811 >      if (!simParams_->haveCutoffRadius()){
812 >        sprintf(painCave.errMsg,
813                  "SimCreator Warning: No value was set for the cutoffRadius.\n"
814                  "\tOOPSE will use a default value of 15.0 angstroms"
815                  "\tfor the cutoffRadius.\n");
816 <            painCave.isFatal = 0;
817 <            simError();
818 <            rcut_ = 15.0;
819 <        } else{
820 <            rcut_ = simParams_->getRcut();
821 <        }
816 >        painCave.isFatal = 0;
817 >        simError();
818 >        rcut = 15.0;
819 >      } else{
820 >        rcut = simParams_->getCutoffRadius();
821 >      }
822  
823 <        if (!simParams_->haveRsw()){
824 <            sprintf(painCave.errMsg,
823 >      if (!simParams_->haveSwitchingRadius()){
824 >        sprintf(painCave.errMsg,
825                  "SimCreator Warning: No value was set for switchingRadius.\n"
826                  "\tOOPSE will use a default value of\n"
827                  "\t0.95 * cutoffRadius for the switchingRadius\n");
828 <            painCave.isFatal = 0;
829 <            simError();
830 <            rsw_ = 0.95 * rcut_;
831 <        } else{
832 <            rsw_ = simParams_->getRsw();
833 <        }
828 >        painCave.isFatal = 0;
829 >        simError();
830 >        rsw = 0.95 * rcut;
831 >      } else{
832 >        rsw = simParams_->getSwitchingRadius();
833 >      }
834  
835      } else {
836 <        // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
837 <        //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
836 >      // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
837 >      //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
838          
839 <        if (simParams_->haveRcut()) {
840 <            rcut_ = simParams_->getRcut();
841 <        } else {
842 <            //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
843 <            rcut_ = calcMaxCutoffRadius();
844 <        }
839 >      if (simParams_->haveCutoffRadius()) {
840 >        rcut = simParams_->getCutoffRadius();
841 >      } else {
842 >        //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
843 >        rcut = calcMaxCutoffRadius();
844 >      }
845  
846 <        if (simParams_->haveRsw()) {
847 <            rsw_  = simParams_->getRsw();
848 <        } else {
849 <            rsw_ = rcut_;
850 <        }
846 >      if (simParams_->haveSwitchingRadius()) {
847 >        rsw  = simParams_->getSwitchingRadius();
848 >      } else {
849 >        rsw = rcut;
850 >      }
851      
852      }
853 <        
853 >  }
854 >
855 >  void SimInfo::setupCutoff() {    
856 >    getCutoff(rcut_, rsw_);    
857      double rnblist = rcut_ + 1; // skin of neighbor list
858  
859      //Pass these cutoff radius etc. to fortran. This function should be called once and only once
860 <    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist);
861 < }
860 >    
861 >    int cp =  TRADITIONAL_CUTOFF_POLICY;
862 >    if (simParams_->haveCutoffPolicy()) {
863 >      std::string myPolicy = simParams_->getCutoffPolicy();
864 >      toUpper(myPolicy);
865 >      if (myPolicy == "MIX") {
866 >        cp = MIX_CUTOFF_POLICY;
867 >      } else {
868 >        if (myPolicy == "MAX") {
869 >          cp = MAX_CUTOFF_POLICY;
870 >        } else {
871 >          if (myPolicy == "TRADITIONAL") {            
872 >            cp = TRADITIONAL_CUTOFF_POLICY;
873 >          } else {
874 >            // throw error        
875 >            sprintf( painCave.errMsg,
876 >                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
877 >            painCave.isFatal = 1;
878 >            simError();
879 >          }    
880 >        }          
881 >      }
882 >    }
883  
884 < void SimInfo::addProperty(GenericData* genData) {
884 >
885 >    if (simParams_->haveSkinThickness()) {
886 >      double skinThickness = simParams_->getSkinThickness();
887 >    }
888 >
889 >    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist, &cp);
890 >    // also send cutoff notification to electrostatics
891 >    setElectrostaticCutoffRadius(&rcut_);
892 >  }
893 >
894 >  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
895 >    
896 >    int errorOut;
897 >    int esm =  NONE;
898 >    double alphaVal;
899 >    double dielectric;
900 >
901 >    errorOut = isError;
902 >    alphaVal = simParams_->getDampingAlpha();
903 >    dielectric = simParams_->getDielectric();
904 >
905 >    if (simParams_->haveElectrostaticSummationMethod()) {
906 >      std::string myMethod = simParams_->getElectrostaticSummationMethod();
907 >      toUpper(myMethod);
908 >      if (myMethod == "NONE") {
909 >        esm = NONE;
910 >      } else {
911 >        if (myMethod == "UNDAMPED_WOLF") {
912 >          esm = UNDAMPED_WOLF;
913 >        } else {
914 >          if (myMethod == "DAMPED_WOLF") {            
915 >            esm = DAMPED_WOLF;
916 >            if (!simParams_->haveDampingAlpha()) {
917 >              //throw error
918 >              sprintf( painCave.errMsg,
919 >                       "SimInfo warning: dampingAlpha was not specified in the input file. A default value of %f (1/ang) will be used for the Damped Wolf Method.", alphaVal);
920 >              painCave.isFatal = 0;
921 >              simError();
922 >            }
923 >          } else {
924 >            if (myMethod == "REACTION_FIELD") {
925 >              esm = REACTION_FIELD;
926 >            } else {
927 >              // throw error        
928 >              sprintf( painCave.errMsg,
929 >                       "SimInfo error: Unknown electrostaticSummationMethod. (Input file specified %s .)\n\telectrostaticSummationMethod must be one of: \"none\", \"undamped_wolf\", \"damped_wolf\", or \"reaction_field\".", myMethod.c_str() );
930 >              painCave.isFatal = 1;
931 >              simError();
932 >            }    
933 >          }          
934 >        }
935 >      }
936 >    }
937 >    // let's pass some summation method variables to fortran
938 >    setElectrostaticSummationMethod( &esm );
939 >    setDampedWolfAlpha( &alphaVal );
940 >    setReactionFieldDielectric( &dielectric );
941 >    initFortranFF( &esm, &errorOut );
942 >  }
943 >
944 >  void SimInfo::addProperty(GenericData* genData) {
945      properties_.addProperty(genData);  
946 < }
946 >  }
947  
948 < void SimInfo::removeProperty(const std::string& propName) {
948 >  void SimInfo::removeProperty(const std::string& propName) {
949      properties_.removeProperty(propName);  
950 < }
950 >  }
951  
952 < void SimInfo::clearProperties() {
952 >  void SimInfo::clearProperties() {
953      properties_.clearProperties();
954 < }
954 >  }
955  
956 < std::vector<std::string> SimInfo::getPropertyNames() {
956 >  std::vector<std::string> SimInfo::getPropertyNames() {
957      return properties_.getPropertyNames();  
958 < }
958 >  }
959        
960 < std::vector<GenericData*> SimInfo::getProperties() {
960 >  std::vector<GenericData*> SimInfo::getProperties() {
961      return properties_.getProperties();
962 < }
962 >  }
963  
964 < GenericData* SimInfo::getPropertyByName(const std::string& propName) {
964 >  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
965      return properties_.getPropertyByName(propName);
966 < }
966 >  }
967  
968 < void SimInfo::setSnapshotManager(SnapshotManager* sman) {
968 >  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
969 >    if (sman_ == sman) {
970 >      return;
971 >    }    
972 >    delete sman_;
973      sman_ = sman;
974  
975      Molecule* mol;
# Line 845 | Line 981 | void SimInfo::setSnapshotManager(SnapshotManager* sman
981  
982      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
983          
984 <        for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
985 <            atom->setSnapshotManager(sman_);
986 <        }
984 >      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
985 >        atom->setSnapshotManager(sman_);
986 >      }
987          
988 <        for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
989 <            rb->setSnapshotManager(sman_);
990 <        }
988 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
989 >        rb->setSnapshotManager(sman_);
990 >      }
991      }    
992      
993 < }
993 >  }
994  
995 < Vector3d SimInfo::getComVel(){
995 >  Vector3d SimInfo::getComVel(){
996      SimInfo::MoleculeIterator i;
997      Molecule* mol;
998  
# Line 865 | Line 1001 | Vector3d SimInfo::getComVel(){
1001      
1002  
1003      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1004 <        double mass = mol->getMass();
1005 <        totalMass += mass;
1006 <        comVel += mass * mol->getComVel();
1004 >      double mass = mol->getMass();
1005 >      totalMass += mass;
1006 >      comVel += mass * mol->getComVel();
1007      }  
1008  
1009   #ifdef IS_MPI
# Line 880 | Line 1016 | Vector3d SimInfo::getComVel(){
1016      comVel /= totalMass;
1017  
1018      return comVel;
1019 < }
1019 >  }
1020  
1021 < Vector3d SimInfo::getCom(){
1021 >  Vector3d SimInfo::getCom(){
1022      SimInfo::MoleculeIterator i;
1023      Molecule* mol;
1024  
# Line 890 | Line 1026 | Vector3d SimInfo::getCom(){
1026      double totalMass = 0.0;
1027      
1028      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1029 <        double mass = mol->getMass();
1030 <        totalMass += mass;
1031 <        com += mass * mol->getCom();
1029 >      double mass = mol->getMass();
1030 >      totalMass += mass;
1031 >      com += mass * mol->getCom();
1032      }  
1033  
1034   #ifdef IS_MPI
# Line 906 | Line 1042 | Vector3d SimInfo::getCom(){
1042  
1043      return com;
1044  
1045 < }        
1045 >  }        
1046  
1047 < std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1047 >  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1048  
1049      return o;
1050 < }
1050 >  }
1051 >  
1052 >  
1053 >   /*
1054 >   Returns center of mass and center of mass velocity in one function call.
1055 >   */
1056 >  
1057 >   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1058 >      SimInfo::MoleculeIterator i;
1059 >      Molecule* mol;
1060 >      
1061 >    
1062 >      double totalMass = 0.0;
1063 >    
1064  
1065 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1066 +         double mass = mol->getMass();
1067 +         totalMass += mass;
1068 +         com += mass * mol->getCom();
1069 +         comVel += mass * mol->getComVel();          
1070 +      }  
1071 +      
1072 + #ifdef IS_MPI
1073 +      double tmpMass = totalMass;
1074 +      Vector3d tmpCom(com);  
1075 +      Vector3d tmpComVel(comVel);
1076 +      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1077 +      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1078 +      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1079 + #endif
1080 +      
1081 +      com /= totalMass;
1082 +      comVel /= totalMass;
1083 +   }        
1084 +  
1085 +   /*
1086 +   Return intertia tensor for entire system and angular momentum Vector.
1087 +
1088 +
1089 +       [  Ixx -Ixy  -Ixz ]
1090 +  J =| -Iyx  Iyy  -Iyz |
1091 +       [ -Izx -Iyz   Izz ]
1092 +    */
1093 +
1094 +   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1095 +      
1096 +
1097 +      double xx = 0.0;
1098 +      double yy = 0.0;
1099 +      double zz = 0.0;
1100 +      double xy = 0.0;
1101 +      double xz = 0.0;
1102 +      double yz = 0.0;
1103 +      Vector3d com(0.0);
1104 +      Vector3d comVel(0.0);
1105 +      
1106 +      getComAll(com, comVel);
1107 +      
1108 +      SimInfo::MoleculeIterator i;
1109 +      Molecule* mol;
1110 +      
1111 +      Vector3d thisq(0.0);
1112 +      Vector3d thisv(0.0);
1113 +
1114 +      double thisMass = 0.0;
1115 +    
1116 +      
1117 +      
1118 +  
1119 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1120 +        
1121 +         thisq = mol->getCom()-com;
1122 +         thisv = mol->getComVel()-comVel;
1123 +         thisMass = mol->getMass();
1124 +         // Compute moment of intertia coefficients.
1125 +         xx += thisq[0]*thisq[0]*thisMass;
1126 +         yy += thisq[1]*thisq[1]*thisMass;
1127 +         zz += thisq[2]*thisq[2]*thisMass;
1128 +        
1129 +         // compute products of intertia
1130 +         xy += thisq[0]*thisq[1]*thisMass;
1131 +         xz += thisq[0]*thisq[2]*thisMass;
1132 +         yz += thisq[1]*thisq[2]*thisMass;
1133 +            
1134 +         angularMomentum += cross( thisq, thisv ) * thisMass;
1135 +            
1136 +      }  
1137 +      
1138 +      
1139 +      inertiaTensor(0,0) = yy + zz;
1140 +      inertiaTensor(0,1) = -xy;
1141 +      inertiaTensor(0,2) = -xz;
1142 +      inertiaTensor(1,0) = -xy;
1143 +      inertiaTensor(1,1) = xx + zz;
1144 +      inertiaTensor(1,2) = -yz;
1145 +      inertiaTensor(2,0) = -xz;
1146 +      inertiaTensor(2,1) = -yz;
1147 +      inertiaTensor(2,2) = xx + yy;
1148 +      
1149 + #ifdef IS_MPI
1150 +      Mat3x3d tmpI(inertiaTensor);
1151 +      Vector3d tmpAngMom;
1152 +      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1153 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1154 + #endif
1155 +              
1156 +      return;
1157 +   }
1158 +
1159 +   //Returns the angular momentum of the system
1160 +   Vector3d SimInfo::getAngularMomentum(){
1161 +      
1162 +      Vector3d com(0.0);
1163 +      Vector3d comVel(0.0);
1164 +      Vector3d angularMomentum(0.0);
1165 +      
1166 +      getComAll(com,comVel);
1167 +      
1168 +      SimInfo::MoleculeIterator i;
1169 +      Molecule* mol;
1170 +      
1171 +      Vector3d thisr(0.0);
1172 +      Vector3d thisp(0.0);
1173 +      
1174 +      double thisMass;
1175 +      
1176 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1177 +        thisMass = mol->getMass();
1178 +        thisr = mol->getCom()-com;
1179 +        thisp = (mol->getComVel()-comVel)*thisMass;
1180 +        
1181 +        angularMomentum += cross( thisr, thisp );
1182 +        
1183 +      }  
1184 +      
1185 + #ifdef IS_MPI
1186 +      Vector3d tmpAngMom;
1187 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1188 + #endif
1189 +      
1190 +      return angularMomentum;
1191 +   }
1192 +  
1193 +  
1194   }//end namespace oopse
1195  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines