ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-2.0/src/brains/SimInfo.cpp
(Generate patch)

Comparing trunk/OOPSE-2.0/src/brains/SimInfo.cpp (file contents):
Revision 1490 by gezelter, Fri Sep 24 04:16:43 2004 UTC vs.
Revision 2381 by chrisfen, Tue Oct 18 15:01:42 2005 UTC

# Line 1 | Line 1
1 < #include <stdlib.h>
2 < #include <string.h>
3 < #include <math.h>
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Acknowledgement of the program authors must be made in any
10 > *    publication of scientific results based in part on use of the
11 > *    program.  An acceptable form of acknowledgement is citation of
12 > *    the article in which the program was described (Matthew
13 > *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 > *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 > *    Parallel Simulation Engine for Molecular Dynamics,"
16 > *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 > *
18 > * 2. Redistributions of source code must retain the above copyright
19 > *    notice, this list of conditions and the following disclaimer.
20 > *
21 > * 3. Redistributions in binary form must reproduce the above copyright
22 > *    notice, this list of conditions and the following disclaimer in the
23 > *    documentation and/or other materials provided with the
24 > *    distribution.
25 > *
26 > * This software is provided "AS IS," without a warranty of any
27 > * kind. All express or implied conditions, representations and
28 > * warranties, including any implied warranty of merchantability,
29 > * fitness for a particular purpose or non-infringement, are hereby
30 > * excluded.  The University of Notre Dame and its licensors shall not
31 > * be liable for any damages suffered by licensee as a result of
32 > * using, modifying or distributing the software or its
33 > * derivatives. In no event will the University of Notre Dame or its
34 > * licensors be liable for any lost revenue, profit or data, or for
35 > * direct, indirect, special, consequential, incidental or punitive
36 > * damages, however caused and regardless of the theory of liability,
37 > * arising out of the use of or inability to use software, even if the
38 > * University of Notre Dame has been advised of the possibility of
39 > * such damages.
40 > */
41 >
42 > /**
43 > * @file SimInfo.cpp
44 > * @author    tlin
45 > * @date  11/02/2004
46 > * @version 1.0
47 > */
48  
49 < #include <iostream>
50 < using namespace std;
49 > #include <algorithm>
50 > #include <set>
51  
52 < #include "SimInfo.hpp"
53 < #define __C
54 < #include "fSimulation.h"
55 < #include "simError.h"
52 > #include "brains/SimInfo.hpp"
53 > #include "math/Vector3.hpp"
54 > #include "primitives/Molecule.hpp"
55 > #include "UseTheForce/fCutoffPolicy.h"
56 > #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
57 > #include "UseTheForce/doForces_interface.h"
58 > #include "UseTheForce/DarkSide/electrostatic_interface.h"
59 > #include "UseTheForce/notifyCutoffs_interface.h"
60 > #include "utils/MemoryUtils.hpp"
61 > #include "utils/simError.h"
62 > #include "selection/SelectionManager.hpp"
63  
13 #include "fortranWrappers.hpp"
14
15 #include "MatVec3.h"
16
64   #ifdef IS_MPI
65 < #include "mpiSimulation.hpp"
66 < #endif
65 > #include "UseTheForce/mpiComponentPlan.h"
66 > #include "UseTheForce/DarkSide/simParallel_interface.h"
67 > #endif
68  
69 < inline double roundMe( double x ){
22 <  return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
23 < }
24 <          
25 < inline double min( double a, double b ){
26 <  return (a < b ) ? a : b;
27 < }
69 > namespace oopse {
70  
71 < SimInfo* currentInfo;
71 >  SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
72 >                   ForceField* ff, Globals* simParams) :
73 >    stamps_(stamps), forceField_(ff), simParams_(simParams),
74 >    ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
75 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
76 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
77 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
78 >    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
79 >    sman_(NULL), fortranInitialized_(false) {
80  
81 < SimInfo::SimInfo(){
81 >            
82 >      std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
83 >      MoleculeStamp* molStamp;
84 >      int nMolWithSameStamp;
85 >      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
86 >      int nGroups = 0;      //total cutoff groups defined in meta-data file
87 >      CutoffGroupStamp* cgStamp;    
88 >      RigidBodyStamp* rbStamp;
89 >      int nRigidAtoms = 0;
90 >    
91 >      for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
92 >        molStamp = i->first;
93 >        nMolWithSameStamp = i->second;
94 >        
95 >        addMoleculeStamp(molStamp, nMolWithSameStamp);
96  
97 <  n_constraints = 0;
98 <  nZconstraints = 0;
35 <  n_oriented = 0;
36 <  n_dipoles = 0;
37 <  ndf = 0;
38 <  ndfRaw = 0;
39 <  nZconstraints = 0;
40 <  the_integrator = NULL;
41 <  setTemp = 0;
42 <  thermalTime = 0.0;
43 <  currentTime = 0.0;
44 <  rCut = 0.0;
45 <  rSw = 0.0;
97 >        //calculate atoms in molecules
98 >        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
99  
47  haveRcut = 0;
48  haveRsw = 0;
49  boxIsInit = 0;
50  
51  resetTime = 1e99;
100  
101 <  orthoRhombic = 0;
102 <  orthoTolerance = 1E-6;
103 <  useInitXSstate = true;
101 >        //calculate atoms in cutoff groups
102 >        int nAtomsInGroups = 0;
103 >        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
104 >        
105 >        for (int j=0; j < nCutoffGroupsInStamp; j++) {
106 >          cgStamp = molStamp->getCutoffGroup(j);
107 >          nAtomsInGroups += cgStamp->getNMembers();
108 >        }
109  
110 <  usePBC = 0;
58 <  useLJ = 0;
59 <  useSticky = 0;
60 <  useCharges = 0;
61 <  useDipoles = 0;
62 <  useReactionField = 0;
63 <  useGB = 0;
64 <  useEAM = 0;
65 <  useSolidThermInt = 0;
66 <  useLiquidThermInt = 0;
110 >        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
111  
112 <  haveCutoffGroups = false;
112 >        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
113  
114 <  excludes = Exclude::Instance();
114 >        //calculate atoms in rigid bodies
115 >        int nAtomsInRigidBodies = 0;
116 >        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
117 >        
118 >        for (int j=0; j < nRigidBodiesInStamp; j++) {
119 >          rbStamp = molStamp->getRigidBody(j);
120 >          nAtomsInRigidBodies += rbStamp->getNMembers();
121 >        }
122  
123 <  myConfiguration = new SimState();
123 >        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
124 >        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
125 >        
126 >      }
127  
128 <  has_minimizer = false;
129 <  the_minimizer =NULL;
128 >      //every free atom (atom does not belong to cutoff groups) is a cutoff
129 >      //group therefore the total number of cutoff groups in the system is
130 >      //equal to the total number of atoms minus number of atoms belong to
131 >      //cutoff group defined in meta-data file plus the number of cutoff
132 >      //groups defined in meta-data file
133 >      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
134  
135 <  ngroup = 0;
136 <
137 <  wrapMeSimInfo( this );
138 < }
139 <
140 <
141 < SimInfo::~SimInfo(){
84 <
85 <  delete myConfiguration;
86 <
87 <  map<string, GenericData*>::iterator i;
135 >      //every free atom (atom does not belong to rigid bodies) is an
136 >      //integrable object therefore the total number of integrable objects
137 >      //in the system is equal to the total number of atoms minus number of
138 >      //atoms belong to rigid body defined in meta-data file plus the number
139 >      //of rigid bodies defined in meta-data file
140 >      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
141 >                                                + nGlobalRigidBodies_;
142    
143 <  for(i = properties.begin(); i != properties.end(); i++)
90 <    delete (*i).second;
143 >      nGlobalMols_ = molStampIds_.size();
144  
145 < }
145 > #ifdef IS_MPI    
146 >      molToProcMap_.resize(nGlobalMols_);
147 > #endif
148  
149 < void SimInfo::setBox(double newBox[3]) {
95 <  
96 <  int i, j;
97 <  double tempMat[3][3];
149 >    }
150  
151 <  for(i=0; i<3; i++)
152 <    for (j=0; j<3; j++) tempMat[i][j] = 0.0;;
151 >  SimInfo::~SimInfo() {
152 >    std::map<int, Molecule*>::iterator i;
153 >    for (i = molecules_.begin(); i != molecules_.end(); ++i) {
154 >      delete i->second;
155 >    }
156 >    molecules_.clear();
157 >      
158 >    delete stamps_;
159 >    delete sman_;
160 >    delete simParams_;
161 >    delete forceField_;
162 >  }
163  
164 <  tempMat[0][0] = newBox[0];
165 <  tempMat[1][1] = newBox[1];
166 <  tempMat[2][2] = newBox[2];
164 >  int SimInfo::getNGlobalConstraints() {
165 >    int nGlobalConstraints;
166 > #ifdef IS_MPI
167 >    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
168 >                  MPI_COMM_WORLD);    
169 > #else
170 >    nGlobalConstraints =  nConstraints_;
171 > #endif
172 >    return nGlobalConstraints;
173 >  }
174  
175 <  setBoxM( tempMat );
175 >  bool SimInfo::addMolecule(Molecule* mol) {
176 >    MoleculeIterator i;
177  
178 < }
178 >    i = molecules_.find(mol->getGlobalIndex());
179 >    if (i == molecules_.end() ) {
180  
181 < void SimInfo::setBoxM( double theBox[3][3] ){
182 <  
183 <  int i, j;
184 <  double FortranHmat[9]; // to preserve compatibility with Fortran the
185 <                         // ordering in the array is as follows:
186 <                         // [ 0 3 6 ]
187 <                         // [ 1 4 7 ]
188 <                         // [ 2 5 8 ]
189 <  double FortranHmatInv[9]; // the inverted Hmat (for Fortran);
181 >      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
182 >        
183 >      nAtoms_ += mol->getNAtoms();
184 >      nBonds_ += mol->getNBonds();
185 >      nBends_ += mol->getNBends();
186 >      nTorsions_ += mol->getNTorsions();
187 >      nRigidBodies_ += mol->getNRigidBodies();
188 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
189 >      nCutoffGroups_ += mol->getNCutoffGroups();
190 >      nConstraints_ += mol->getNConstraintPairs();
191  
192 <  if( !boxIsInit ) boxIsInit = 1;
193 <
194 <  for(i=0; i < 3; i++)
195 <    for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j];
196 <  
125 <  calcBoxL();
126 <  calcHmatInv();
127 <
128 <  for(i=0; i < 3; i++) {
129 <    for (j=0; j < 3; j++) {
130 <      FortranHmat[3*j + i] = Hmat[i][j];
131 <      FortranHmatInv[3*j + i] = HmatInv[i][j];
192 >      addExcludePairs(mol);
193 >        
194 >      return true;
195 >    } else {
196 >      return false;
197      }
198    }
199  
200 <  setFortranBoxSize(FortranHmat, FortranHmatInv, &orthoRhombic);
201 <
202 < }
138 <
200 >  bool SimInfo::removeMolecule(Molecule* mol) {
201 >    MoleculeIterator i;
202 >    i = molecules_.find(mol->getGlobalIndex());
203  
204 < void SimInfo::getBoxM (double theBox[3][3]) {
204 >    if (i != molecules_.end() ) {
205  
206 <  int i, j;
207 <  for(i=0; i<3; i++)
208 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j];
209 < }
206 >      assert(mol == i->second);
207 >        
208 >      nAtoms_ -= mol->getNAtoms();
209 >      nBonds_ -= mol->getNBonds();
210 >      nBends_ -= mol->getNBends();
211 >      nTorsions_ -= mol->getNTorsions();
212 >      nRigidBodies_ -= mol->getNRigidBodies();
213 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
214 >      nCutoffGroups_ -= mol->getNCutoffGroups();
215 >      nConstraints_ -= mol->getNConstraintPairs();
216  
217 +      removeExcludePairs(mol);
218 +      molecules_.erase(mol->getGlobalIndex());
219  
220 < void SimInfo::scaleBox(double scale) {
221 <  double theBox[3][3];
222 <  int i, j;
220 >      delete mol;
221 >        
222 >      return true;
223 >    } else {
224 >      return false;
225 >    }
226  
152  // cerr << "Scaling box by " << scale << "\n";
227  
228 <  for(i=0; i<3; i++)
155 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale;
228 >  }    
229  
230 <  setBoxM(theBox);
230 >        
231 >  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
232 >    i = molecules_.begin();
233 >    return i == molecules_.end() ? NULL : i->second;
234 >  }    
235  
236 < }
236 >  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
237 >    ++i;
238 >    return i == molecules_.end() ? NULL : i->second;    
239 >  }
240  
161 void SimInfo::calcHmatInv( void ) {
162  
163  int oldOrtho;
164  int i,j;
165  double smallDiag;
166  double tol;
167  double sanity[3][3];
241  
242 <  invertMat3( Hmat, HmatInv );
242 >  void SimInfo::calcNdf() {
243 >    int ndf_local;
244 >    MoleculeIterator i;
245 >    std::vector<StuntDouble*>::iterator j;
246 >    Molecule* mol;
247 >    StuntDouble* integrableObject;
248  
249 <  // check to see if Hmat is orthorhombic
250 <  
251 <  oldOrtho = orthoRhombic;
249 >    ndf_local = 0;
250 >    
251 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
252 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
253 >           integrableObject = mol->nextIntegrableObject(j)) {
254  
255 <  smallDiag = fabs(Hmat[0][0]);
176 <  if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]);
177 <  if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]);
178 <  tol = smallDiag * orthoTolerance;
255 >        ndf_local += 3;
256  
257 <  orthoRhombic = 1;
258 <  
259 <  for (i = 0; i < 3; i++ ) {
260 <    for (j = 0 ; j < 3; j++) {
261 <      if (i != j) {
262 <        if (orthoRhombic) {
263 <          if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0;
264 <        }        
265 <      }
266 <    }
190 <  }
191 <
192 <  if( oldOrtho != orthoRhombic ){
257 >        if (integrableObject->isDirectional()) {
258 >          if (integrableObject->isLinear()) {
259 >            ndf_local += 2;
260 >          } else {
261 >            ndf_local += 3;
262 >          }
263 >        }
264 >            
265 >      }//end for (integrableObject)
266 >    }// end for (mol)
267      
268 <    if( orthoRhombic ) {
269 <      sprintf( painCave.errMsg,
196 <               "OOPSE is switching from the default Non-Orthorhombic\n"
197 <               "\tto the faster Orthorhombic periodic boundary computations.\n"
198 <               "\tThis is usually a good thing, but if you wan't the\n"
199 <               "\tNon-Orthorhombic computations, make the orthoBoxTolerance\n"
200 <               "\tvariable ( currently set to %G ) smaller.\n",
201 <               orthoTolerance);
202 <      painCave.severity = OOPSE_INFO;
203 <      simError();
204 <    }
205 <    else {
206 <      sprintf( painCave.errMsg,
207 <               "OOPSE is switching from the faster Orthorhombic to the more\n"
208 <               "\tflexible Non-Orthorhombic periodic boundary computations.\n"
209 <               "\tThis is usually because the box has deformed under\n"
210 <               "\tNPTf integration. If you wan't to live on the edge with\n"
211 <               "\tthe Orthorhombic computations, make the orthoBoxTolerance\n"
212 <               "\tvariable ( currently set to %G ) larger.\n",
213 <               orthoTolerance);
214 <      painCave.severity = OOPSE_WARNING;
215 <      simError();
216 <    }
217 <  }
218 < }
268 >    // n_constraints is local, so subtract them on each processor
269 >    ndf_local -= nConstraints_;
270  
271 < void SimInfo::calcBoxL( void ){
271 > #ifdef IS_MPI
272 >    MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
273 > #else
274 >    ndf_ = ndf_local;
275 > #endif
276  
277 <  double dx, dy, dz, dsq;
277 >    // nZconstraints_ is global, as are the 3 COM translations for the
278 >    // entire system:
279 >    ndf_ = ndf_ - 3 - nZconstraint_;
280  
281 <  // boxVol = Determinant of Hmat
281 >  }
282  
283 <  boxVol = matDet3( Hmat );
283 >  void SimInfo::calcNdfRaw() {
284 >    int ndfRaw_local;
285  
286 <  // boxLx
287 <  
288 <  dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0];
289 <  dsq = dx*dx + dy*dy + dz*dz;
232 <  boxL[0] = sqrt( dsq );
233 <  //maxCutoff = 0.5 * boxL[0];
286 >    MoleculeIterator i;
287 >    std::vector<StuntDouble*>::iterator j;
288 >    Molecule* mol;
289 >    StuntDouble* integrableObject;
290  
291 <  // boxLy
292 <  
293 <  dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1];
294 <  dsq = dx*dx + dy*dy + dz*dz;
295 <  boxL[1] = sqrt( dsq );
296 <  //if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1];
291 >    // Raw degrees of freedom that we have to set
292 >    ndfRaw_local = 0;
293 >    
294 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
295 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
296 >           integrableObject = mol->nextIntegrableObject(j)) {
297  
298 +        ndfRaw_local += 3;
299  
300 <  // boxLz
301 <  
302 <  dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2];
303 <  dsq = dx*dx + dy*dy + dz*dz;
304 <  boxL[2] = sqrt( dsq );
305 <  //if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2];
300 >        if (integrableObject->isDirectional()) {
301 >          if (integrableObject->isLinear()) {
302 >            ndfRaw_local += 2;
303 >          } else {
304 >            ndfRaw_local += 3;
305 >          }
306 >        }
307 >            
308 >      }
309 >    }
310 >    
311 > #ifdef IS_MPI
312 >    MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
313 > #else
314 >    ndfRaw_ = ndfRaw_local;
315 > #endif
316 >  }
317  
318 <  //calculate the max cutoff
319 <  maxCutoff =  calcMaxCutOff();
252 <  
253 <  checkCutOffs();
318 >  void SimInfo::calcNdfTrans() {
319 >    int ndfTrans_local;
320  
321 < }
321 >    ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
322  
323  
324 < double SimInfo::calcMaxCutOff(){
324 > #ifdef IS_MPI
325 >    MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
326 > #else
327 >    ndfTrans_ = ndfTrans_local;
328 > #endif
329  
330 <  double ri[3], rj[3], rk[3];
331 <  double rij[3], rjk[3], rki[3];
332 <  double minDist;
330 >    ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
331 >
332 >  }
333  
334 <  ri[0] = Hmat[0][0];
335 <  ri[1] = Hmat[1][0];
336 <  ri[2] = Hmat[2][0];
337 <
338 <  rj[0] = Hmat[0][1];
339 <  rj[1] = Hmat[1][1];
340 <  rj[2] = Hmat[2][1];
341 <
342 <  rk[0] = Hmat[0][2];
343 <  rk[1] = Hmat[1][2];
344 <  rk[2] = Hmat[2][2];
334 >  void SimInfo::addExcludePairs(Molecule* mol) {
335 >    std::vector<Bond*>::iterator bondIter;
336 >    std::vector<Bend*>::iterator bendIter;
337 >    std::vector<Torsion*>::iterator torsionIter;
338 >    Bond* bond;
339 >    Bend* bend;
340 >    Torsion* torsion;
341 >    int a;
342 >    int b;
343 >    int c;
344 >    int d;
345      
346 <  crossProduct3(ri, rj, rij);
347 <  distXY = dotProduct3(rk,rij) / norm3(rij);
346 >    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
347 >      a = bond->getAtomA()->getGlobalIndex();
348 >      b = bond->getAtomB()->getGlobalIndex();        
349 >      exclude_.addPair(a, b);
350 >    }
351  
352 <  crossProduct3(rj,rk, rjk);
353 <  distYZ = dotProduct3(ri,rjk) / norm3(rjk);
352 >    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
353 >      a = bend->getAtomA()->getGlobalIndex();
354 >      b = bend->getAtomB()->getGlobalIndex();        
355 >      c = bend->getAtomC()->getGlobalIndex();
356  
357 <  crossProduct3(rk,ri, rki);
358 <  distZX = dotProduct3(rj,rki) / norm3(rki);
357 >      exclude_.addPair(a, b);
358 >      exclude_.addPair(a, c);
359 >      exclude_.addPair(b, c);        
360 >    }
361  
362 <  minDist = min(min(distXY, distYZ), distZX);
363 <  return minDist/2;
364 <  
365 < }
362 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
363 >      a = torsion->getAtomA()->getGlobalIndex();
364 >      b = torsion->getAtomB()->getGlobalIndex();        
365 >      c = torsion->getAtomC()->getGlobalIndex();        
366 >      d = torsion->getAtomD()->getGlobalIndex();        
367  
368 < void SimInfo::wrapVector( double thePos[3] ){
368 >      exclude_.addPair(a, b);
369 >      exclude_.addPair(a, c);
370 >      exclude_.addPair(a, d);
371 >      exclude_.addPair(b, c);
372 >      exclude_.addPair(b, d);
373 >      exclude_.addPair(c, d);        
374 >    }
375  
376 <  int i;
377 <  double scaled[3];
376 >    Molecule::RigidBodyIterator rbIter;
377 >    RigidBody* rb;
378 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
379 >      std::vector<Atom*> atoms = rb->getAtoms();
380 >      for (int i = 0; i < atoms.size() -1 ; ++i) {
381 >        for (int j = i + 1; j < atoms.size(); ++j) {
382 >          a = atoms[i]->getGlobalIndex();
383 >          b = atoms[j]->getGlobalIndex();
384 >          exclude_.addPair(a, b);
385 >        }
386 >      }
387 >    }        
388  
389 <  if( !orthoRhombic ){
296 <    // calc the scaled coordinates.
297 <  
389 >  }
390  
391 <    matVecMul3(HmatInv, thePos, scaled);
391 >  void SimInfo::removeExcludePairs(Molecule* mol) {
392 >    std::vector<Bond*>::iterator bondIter;
393 >    std::vector<Bend*>::iterator bendIter;
394 >    std::vector<Torsion*>::iterator torsionIter;
395 >    Bond* bond;
396 >    Bend* bend;
397 >    Torsion* torsion;
398 >    int a;
399 >    int b;
400 >    int c;
401 >    int d;
402      
403 <    for(i=0; i<3; i++)
404 <      scaled[i] -= roundMe(scaled[i]);
405 <    
406 <    // calc the wrapped real coordinates from the wrapped scaled coordinates
407 <    
306 <    matVecMul3(Hmat, scaled, thePos);
403 >    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
404 >      a = bond->getAtomA()->getGlobalIndex();
405 >      b = bond->getAtomB()->getGlobalIndex();        
406 >      exclude_.removePair(a, b);
407 >    }
408  
409 <  }
410 <  else{
411 <    // calc the scaled coordinates.
412 <    
312 <    for(i=0; i<3; i++)
313 <      scaled[i] = thePos[i]*HmatInv[i][i];
314 <    
315 <    // wrap the scaled coordinates
316 <    
317 <    for(i=0; i<3; i++)
318 <      scaled[i] -= roundMe(scaled[i]);
319 <    
320 <    // calc the wrapped real coordinates from the wrapped scaled coordinates
321 <    
322 <    for(i=0; i<3; i++)
323 <      thePos[i] = scaled[i]*Hmat[i][i];
324 <  }
325 <    
326 < }
409 >    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
410 >      a = bend->getAtomA()->getGlobalIndex();
411 >      b = bend->getAtomB()->getGlobalIndex();        
412 >      c = bend->getAtomC()->getGlobalIndex();
413  
414 +      exclude_.removePair(a, b);
415 +      exclude_.removePair(a, c);
416 +      exclude_.removePair(b, c);        
417 +    }
418  
419 < int SimInfo::getNDF(){
420 <  int ndf_local;
419 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
420 >      a = torsion->getAtomA()->getGlobalIndex();
421 >      b = torsion->getAtomB()->getGlobalIndex();        
422 >      c = torsion->getAtomC()->getGlobalIndex();        
423 >      d = torsion->getAtomD()->getGlobalIndex();        
424  
425 <  ndf_local = 0;
426 <  
427 <  for(int i = 0; i < integrableObjects.size(); i++){
428 <    ndf_local += 3;
429 <    if (integrableObjects[i]->isDirectional()) {
430 <      if (integrableObjects[i]->isLinear())
338 <        ndf_local += 2;
339 <      else
340 <        ndf_local += 3;
425 >      exclude_.removePair(a, b);
426 >      exclude_.removePair(a, c);
427 >      exclude_.removePair(a, d);
428 >      exclude_.removePair(b, c);
429 >      exclude_.removePair(b, d);
430 >      exclude_.removePair(c, d);        
431      }
432 +
433 +    Molecule::RigidBodyIterator rbIter;
434 +    RigidBody* rb;
435 +    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
436 +      std::vector<Atom*> atoms = rb->getAtoms();
437 +      for (int i = 0; i < atoms.size() -1 ; ++i) {
438 +        for (int j = i + 1; j < atoms.size(); ++j) {
439 +          a = atoms[i]->getGlobalIndex();
440 +          b = atoms[j]->getGlobalIndex();
441 +          exclude_.removePair(a, b);
442 +        }
443 +      }
444 +    }        
445 +
446    }
447  
344  // n_constraints is local, so subtract them on each processor:
448  
449 <  ndf_local -= n_constraints;
449 >  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
450 >    int curStampId;
451  
452 < #ifdef IS_MPI
453 <  MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
350 < #else
351 <  ndf = ndf_local;
352 < #endif
452 >    //index from 0
453 >    curStampId = moleculeStamps_.size();
454  
455 <  // nZconstraints is global, as are the 3 COM translations for the
456 <  // entire system:
455 >    moleculeStamps_.push_back(molStamp);
456 >    molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
457 >  }
458  
459 <  ndf = ndf - 3 - nZconstraints;
459 >  void SimInfo::update() {
460  
461 <  return ndf;
360 < }
461 >    setupSimType();
462  
463 < int SimInfo::getNDFraw() {
464 <  int ndfRaw_local;
463 > #ifdef IS_MPI
464 >    setupFortranParallel();
465 > #endif
466  
467 <  // Raw degrees of freedom that we have to set
366 <  ndfRaw_local = 0;
467 >    setupFortranSim();
468  
469 <  for(int i = 0; i < integrableObjects.size(); i++){
470 <    ndfRaw_local += 3;
471 <    if (integrableObjects[i]->isDirectional()) {
472 <       if (integrableObjects[i]->isLinear())
473 <        ndfRaw_local += 2;
474 <      else
475 <        ndfRaw_local += 3;
469 >    //setup fortran force field
470 >    /** @deprecate */    
471 >    int isError = 0;
472 >    
473 >    setupElectrostaticSummationMethod( isError );
474 >
475 >    if(isError){
476 >      sprintf( painCave.errMsg,
477 >               "ForceField error: There was an error initializing the forceField in fortran.\n" );
478 >      painCave.isFatal = 1;
479 >      simError();
480      }
481 <  }
481 >  
482      
483 < #ifdef IS_MPI
379 <  MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
380 < #else
381 <  ndfRaw = ndfRaw_local;
382 < #endif
483 >    setupCutoff();
484  
485 <  return ndfRaw;
486 < }
485 >    calcNdf();
486 >    calcNdfRaw();
487 >    calcNdfTrans();
488  
489 < int SimInfo::getNDFtranslational() {
490 <  int ndfTrans_local;
489 >    fortranInitialized_ = true;
490 >  }
491  
492 <  ndfTrans_local = 3 * integrableObjects.size() - n_constraints;
492 >  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
493 >    SimInfo::MoleculeIterator mi;
494 >    Molecule* mol;
495 >    Molecule::AtomIterator ai;
496 >    Atom* atom;
497 >    std::set<AtomType*> atomTypes;
498  
499 +    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
500  
501 < #ifdef IS_MPI
502 <  MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
503 < #else
504 <  ndfTrans = ndfTrans_local;
505 < #endif
501 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
502 >        atomTypes.insert(atom->getAtomType());
503 >      }
504 >        
505 >    }
506  
507 <  ndfTrans = ndfTrans - 3 - nZconstraints;
507 >    return atomTypes;        
508 >  }
509  
510 <  return ndfTrans;
511 < }
510 >  void SimInfo::setupSimType() {
511 >    std::set<AtomType*>::iterator i;
512 >    std::set<AtomType*> atomTypes;
513 >    atomTypes = getUniqueAtomTypes();
514 >    
515 >    int useLennardJones = 0;
516 >    int useElectrostatic = 0;
517 >    int useEAM = 0;
518 >    int useCharge = 0;
519 >    int useDirectional = 0;
520 >    int useDipole = 0;
521 >    int useGayBerne = 0;
522 >    int useSticky = 0;
523 >    int useStickyPower = 0;
524 >    int useShape = 0;
525 >    int useFLARB = 0; //it is not in AtomType yet
526 >    int useDirectionalAtom = 0;    
527 >    int useElectrostatics = 0;
528 >    //usePBC and useRF are from simParams
529 >    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
530 >    int useRF;
531 >    std::string myMethod;
532  
533 < int SimInfo::getTotIntegrableObjects() {
534 <  int nObjs_local;
535 <  int nObjs;
533 >    // set the useRF logical
534 >    useRF = 0;
535 >    if (simParams_->haveElectrostaticSummationMethod()) {
536 >        myMethod = simParams_->getElectrostaticSummationMethod();
537 >        if (myMethod == "REACTION_FIELD")
538 >             useRF = 1;
539 >    }
540  
541 <  nObjs_local =  integrableObjects.size();
541 >    //loop over all of the atom types
542 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
543 >      useLennardJones |= (*i)->isLennardJones();
544 >      useElectrostatic |= (*i)->isElectrostatic();
545 >      useEAM |= (*i)->isEAM();
546 >      useCharge |= (*i)->isCharge();
547 >      useDirectional |= (*i)->isDirectional();
548 >      useDipole |= (*i)->isDipole();
549 >      useGayBerne |= (*i)->isGayBerne();
550 >      useSticky |= (*i)->isSticky();
551 >      useStickyPower |= (*i)->isStickyPower();
552 >      useShape |= (*i)->isShape();
553 >    }
554  
555 +    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
556 +      useDirectionalAtom = 1;
557 +    }
558  
559 < #ifdef IS_MPI
560 <  MPI_Allreduce(&nObjs_local,&nObjs,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
561 < #else
414 <  nObjs = nObjs_local;
415 < #endif
559 >    if (useCharge || useDipole) {
560 >      useElectrostatics = 1;
561 >    }
562  
563 + #ifdef IS_MPI    
564 +    int temp;
565  
566 <  return nObjs;
567 < }
566 >    temp = usePBC;
567 >    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
568  
569 < void SimInfo::refreshSim(){
569 >    temp = useDirectionalAtom;
570 >    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
571  
572 <  simtype fInfo;
573 <  int isError;
425 <  int n_global;
426 <  int* excl;
572 >    temp = useLennardJones;
573 >    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
574  
575 <  fInfo.dielect = 0.0;
575 >    temp = useElectrostatics;
576 >    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
577 >
578 >    temp = useCharge;
579 >    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
580 >
581 >    temp = useDipole;
582 >    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
583  
584 <  if( useDipoles ){
585 <    if( useReactionField )fInfo.dielect = dielectric;
432 <  }
584 >    temp = useSticky;
585 >    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
586  
587 <  fInfo.SIM_uses_PBC = usePBC;
588 <  //fInfo.SIM_uses_LJ = 0;
589 <  fInfo.SIM_uses_LJ = useLJ;
590 <  fInfo.SIM_uses_sticky = useSticky;
591 <  //fInfo.SIM_uses_sticky = 0;
439 <  fInfo.SIM_uses_charges = useCharges;
440 <  fInfo.SIM_uses_dipoles = useDipoles;
441 <  //fInfo.SIM_uses_dipoles = 0;
442 <  fInfo.SIM_uses_RF = useReactionField;
443 <  //fInfo.SIM_uses_RF = 0;
444 <  fInfo.SIM_uses_GB = useGB;
445 <  fInfo.SIM_uses_EAM = useEAM;
587 >    temp = useStickyPower;
588 >    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
589 >    
590 >    temp = useGayBerne;
591 >    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
592  
593 <  n_exclude = excludes->getSize();
594 <  excl = excludes->getFortranArray();
595 <  
596 < #ifdef IS_MPI
597 <  n_global = mpiSim->getNAtomsGlobal();
598 < #else
599 <  n_global = n_atoms;
593 >    temp = useEAM;
594 >    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
595 >
596 >    temp = useShape;
597 >    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
598 >
599 >    temp = useFLARB;
600 >    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
601 >
602 >    temp = useRF;
603 >    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
604 >
605   #endif
455  
456  isError = 0;
457  
458  getFortranGroupArrays(this, FglobalGroupMembership, mfact);
459  //it may not be a good idea to pass the address of first element in vector
460  //since c++ standard does not require vector to be stored continuously in meomory
461  //Most of the compilers will organize the memory of vector continuously
462  setFsimulation( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl,
463                  &nGlobalExcludes, globalExcludes, molMembershipArray,
464                  &mfact[0], &ngroup, &FglobalGroupMembership[0], &isError);
606  
607 <  if( isError ){
608 <    
609 <    sprintf( painCave.errMsg,
610 <             "There was an error setting the simulation information in fortran.\n" );
611 <    painCave.isFatal = 1;
612 <    painCave.severity = OOPSE_ERROR;
613 <    simError();
607 >    fInfo_.SIM_uses_PBC = usePBC;    
608 >    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
609 >    fInfo_.SIM_uses_LennardJones = useLennardJones;
610 >    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
611 >    fInfo_.SIM_uses_Charges = useCharge;
612 >    fInfo_.SIM_uses_Dipoles = useDipole;
613 >    fInfo_.SIM_uses_Sticky = useSticky;
614 >    fInfo_.SIM_uses_StickyPower = useStickyPower;
615 >    fInfo_.SIM_uses_GayBerne = useGayBerne;
616 >    fInfo_.SIM_uses_EAM = useEAM;
617 >    fInfo_.SIM_uses_Shapes = useShape;
618 >    fInfo_.SIM_uses_FLARB = useFLARB;
619 >    fInfo_.SIM_uses_RF = useRF;
620 >
621 >    if( fInfo_.SIM_uses_Dipoles && myMethod == "REACTION_FIELD") {
622 >
623 >      if (simParams_->haveDielectric()) {
624 >        fInfo_.dielect = simParams_->getDielectric();
625 >      } else {
626 >        sprintf(painCave.errMsg,
627 >                "SimSetup Error: No Dielectric constant was set.\n"
628 >                "\tYou are trying to use Reaction Field without"
629 >                "\tsetting a dielectric constant!\n");
630 >        painCave.isFatal = 1;
631 >        simError();
632 >      }
633 >        
634 >    } else {
635 >      fInfo_.dielect = 0.0;
636 >    }
637 >
638    }
474  
475 #ifdef IS_MPI
476  sprintf( checkPointMsg,
477           "succesfully sent the simulation information to fortran.\n");
478  MPIcheckPoint();
479 #endif // is_mpi
480  
481  this->ndf = this->getNDF();
482  this->ndfRaw = this->getNDFraw();
483  this->ndfTrans = this->getNDFtranslational();
484 }
639  
640 < void SimInfo::setDefaultRcut( double theRcut ){
641 <  
642 <  haveRcut = 1;
643 <  rCut = theRcut;
644 <  rList = rCut + 1.0;
645 <  
646 <  notifyFortranCutOffs( &rCut, &rSw, &rList );
493 < }
640 >  void SimInfo::setupFortranSim() {
641 >    int isError;
642 >    int nExclude;
643 >    std::vector<int> fortranGlobalGroupMembership;
644 >    
645 >    nExclude = exclude_.getSize();
646 >    isError = 0;
647  
648 < void SimInfo::setDefaultRcut( double theRcut, double theRsw ){
648 >    //globalGroupMembership_ is filled by SimCreator    
649 >    for (int i = 0; i < nGlobalAtoms_; i++) {
650 >      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
651 >    }
652  
653 <  rSw = theRsw;
654 <  setDefaultRcut( theRcut );
655 < }
653 >    //calculate mass ratio of cutoff group
654 >    std::vector<double> mfact;
655 >    SimInfo::MoleculeIterator mi;
656 >    Molecule* mol;
657 >    Molecule::CutoffGroupIterator ci;
658 >    CutoffGroup* cg;
659 >    Molecule::AtomIterator ai;
660 >    Atom* atom;
661 >    double totalMass;
662  
663 +    //to avoid memory reallocation, reserve enough space for mfact
664 +    mfact.reserve(getNCutoffGroups());
665 +    
666 +    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
667 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
668  
669 < void SimInfo::checkCutOffs( void ){
670 <  
671 <  if( boxIsInit ){
669 >        totalMass = cg->getMass();
670 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
671 >          // Check for massless groups - set mfact to 1 if true
672 >          if (totalMass != 0)
673 >            mfact.push_back(atom->getMass()/totalMass);
674 >          else
675 >            mfact.push_back( 1.0 );
676 >        }
677 >
678 >      }      
679 >    }
680 >
681 >    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
682 >    std::vector<int> identArray;
683 >
684 >    //to avoid memory reallocation, reserve enough space identArray
685 >    identArray.reserve(getNAtoms());
686      
687 <    //we need to check cutOffs against the box
687 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
688 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
689 >        identArray.push_back(atom->getIdent());
690 >      }
691 >    }    
692 >
693 >    //fill molMembershipArray
694 >    //molMembershipArray is filled by SimCreator    
695 >    std::vector<int> molMembershipArray(nGlobalAtoms_);
696 >    for (int i = 0; i < nGlobalAtoms_; i++) {
697 >      molMembershipArray[i] = globalMolMembership_[i] + 1;
698 >    }
699      
700 <    if( rCut > maxCutoff ){
700 >    //setup fortran simulation
701 >    int nGlobalExcludes = 0;
702 >    int* globalExcludes = NULL;
703 >    int* excludeList = exclude_.getExcludeList();
704 >    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
705 >                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
706 >                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
707 >
708 >    if( isError ){
709 >
710        sprintf( painCave.errMsg,
711 <               "cutoffRadius is too large for the current periodic box.\n"
511 <               "\tCurrent Value of cutoffRadius = %G at time %G\n "
512 <               "\tThis is larger than half of at least one of the\n"
513 <               "\tperiodic box vectors.  Right now, the Box matrix is:\n"
514 <               "\n"
515 <               "\t[ %G %G %G ]\n"
516 <               "\t[ %G %G %G ]\n"
517 <               "\t[ %G %G %G ]\n",
518 <               rCut, currentTime,
519 <               Hmat[0][0], Hmat[0][1], Hmat[0][2],
520 <               Hmat[1][0], Hmat[1][1], Hmat[1][2],
521 <               Hmat[2][0], Hmat[2][1], Hmat[2][2]);
522 <      painCave.severity = OOPSE_ERROR;
711 >               "There was an error setting the simulation information in fortran.\n" );
712        painCave.isFatal = 1;
713 +      painCave.severity = OOPSE_ERROR;
714        simError();
715 <    }    
716 <  } else {
717 <    // initialize this stuff before using it, OK?
718 <    sprintf( painCave.errMsg,
719 <             "Trying to check cutoffs without a box.\n"
720 <             "\tOOPSE should have better programmers than that.\n" );
721 <    painCave.severity = OOPSE_ERROR;
532 <    painCave.isFatal = 1;
533 <    simError();      
715 >    }
716 >
717 > #ifdef IS_MPI
718 >    sprintf( checkPointMsg,
719 >             "succesfully sent the simulation information to fortran.\n");
720 >    MPIcheckPoint();
721 > #endif // is_mpi
722    }
535  
536 }
723  
538 void SimInfo::addProperty(GenericData* prop){
724  
725 <  map<string, GenericData*>::iterator result;
726 <  result = properties.find(prop->getID());
542 <  
543 <  //we can't simply use  properties[prop->getID()] = prop,
544 <  //it will cause memory leak if we already contain a propery which has the same name of prop
545 <  
546 <  if(result != properties.end()){
725 > #ifdef IS_MPI
726 >  void SimInfo::setupFortranParallel() {
727      
728 <    delete (*result).second;
729 <    (*result).second = prop;
730 <      
731 <  }
732 <  else{
728 >    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
729 >    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
730 >    std::vector<int> localToGlobalCutoffGroupIndex;
731 >    SimInfo::MoleculeIterator mi;
732 >    Molecule::AtomIterator ai;
733 >    Molecule::CutoffGroupIterator ci;
734 >    Molecule* mol;
735 >    Atom* atom;
736 >    CutoffGroup* cg;
737 >    mpiSimData parallelData;
738 >    int isError;
739  
740 <    properties[prop->getID()] = prop;
740 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
741  
742 +      //local index(index in DataStorge) of atom is important
743 +      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
744 +        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
745 +      }
746 +
747 +      //local index of cutoff group is trivial, it only depends on the order of travesing
748 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
749 +        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
750 +      }        
751 +        
752 +    }
753 +
754 +    //fill up mpiSimData struct
755 +    parallelData.nMolGlobal = getNGlobalMolecules();
756 +    parallelData.nMolLocal = getNMolecules();
757 +    parallelData.nAtomsGlobal = getNGlobalAtoms();
758 +    parallelData.nAtomsLocal = getNAtoms();
759 +    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
760 +    parallelData.nGroupsLocal = getNCutoffGroups();
761 +    parallelData.myNode = worldRank;
762 +    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
763 +
764 +    //pass mpiSimData struct and index arrays to fortran
765 +    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
766 +                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
767 +                    &localToGlobalCutoffGroupIndex[0], &isError);
768 +
769 +    if (isError) {
770 +      sprintf(painCave.errMsg,
771 +              "mpiRefresh errror: fortran didn't like something we gave it.\n");
772 +      painCave.isFatal = 1;
773 +      simError();
774 +    }
775 +
776 +    sprintf(checkPointMsg, " mpiRefresh successful.\n");
777 +    MPIcheckPoint();
778 +
779 +
780    }
557    
558 }
781  
782 < GenericData* SimInfo::getProperty(const string& propName){
561 <
562 <  map<string, GenericData*>::iterator result;
563 <  
564 <  //string lowerCaseName = ();
565 <  
566 <  result = properties.find(propName);
567 <  
568 <  if(result != properties.end())
569 <    return (*result).second;  
570 <  else  
571 <    return NULL;  
572 < }
782 > #endif
783  
784 +  double SimInfo::calcMaxCutoffRadius() {
785  
575 void SimInfo::getFortranGroupArrays(SimInfo* info,
576                                    vector<int>& FglobalGroupMembership,
577                                    vector<double>& mfact){
578  
579  Molecule* myMols;
580  Atom** myAtoms;
581  int numAtom;
582  double mtot;
583  int numMol;
584  int numCutoffGroups;
585  CutoffGroup* myCutoffGroup;
586  vector<CutoffGroup*>::iterator iterCutoff;
587  Atom* cutoffAtom;
588  vector<Atom*>::iterator iterAtom;
589  int atomIndex;
590  double totalMass;
591  
592  mfact.clear();
593  FglobalGroupMembership.clear();
594  
786  
787 <  // Fix the silly fortran indexing problem
787 >    std::set<AtomType*> atomTypes;
788 >    std::set<AtomType*>::iterator i;
789 >    std::vector<double> cutoffRadius;
790 >
791 >    //get the unique atom types
792 >    atomTypes = getUniqueAtomTypes();
793 >
794 >    //query the max cutoff radius among these atom types
795 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
796 >      cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
797 >    }
798 >
799 >    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
800   #ifdef IS_MPI
801 <  numAtom = mpiSim->getNAtomsGlobal();
599 < #else
600 <  numAtom = n_atoms;
801 >    //pick the max cutoff radius among the processors
802   #endif
602  for (int i = 0; i < numAtom; i++)
603    FglobalGroupMembership.push_back(globalGroupMembership[i] + 1);
604  
803  
804 <  myMols = info->molecules;
805 <  numMol = info->n_mol;
608 <  for(int i  = 0; i < numMol; i++){
609 <    numCutoffGroups = myMols[i].getNCutoffGroups();
610 <    for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff);
611 <        myCutoffGroup != NULL;
612 <        myCutoffGroup =myMols[i].nextCutoffGroup(iterCutoff)){
804 >    return maxCutoffRadius;
805 >  }
806  
807 <      totalMass = myCutoffGroup->getMass();
808 <      
809 <      for(cutoffAtom = myCutoffGroup->beginAtom(iterAtom);
810 <          cutoffAtom != NULL;
811 <          cutoffAtom = myCutoffGroup->nextAtom(iterAtom)){
812 <        mfact.push_back(cutoffAtom->getMass()/totalMass);
813 <      }  
807 >  void SimInfo::getCutoff(double& rcut, double& rsw) {
808 >    
809 >    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
810 >        
811 >      if (!simParams_->haveCutoffRadius()){
812 >        sprintf(painCave.errMsg,
813 >                "SimCreator Warning: No value was set for the cutoffRadius.\n"
814 >                "\tOOPSE will use a default value of 15.0 angstroms"
815 >                "\tfor the cutoffRadius.\n");
816 >        painCave.isFatal = 0;
817 >        simError();
818 >        rcut = 15.0;
819 >      } else{
820 >        rcut = simParams_->getCutoffRadius();
821 >      }
822 >
823 >      if (!simParams_->haveSwitchingRadius()){
824 >        sprintf(painCave.errMsg,
825 >                "SimCreator Warning: No value was set for switchingRadius.\n"
826 >                "\tOOPSE will use a default value of\n"
827 >                "\t0.95 * cutoffRadius for the switchingRadius\n");
828 >        painCave.isFatal = 0;
829 >        simError();
830 >        rsw = 0.95 * rcut;
831 >      } else{
832 >        rsw = simParams_->getSwitchingRadius();
833 >      }
834 >
835 >    } else {
836 >      // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
837 >      //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
838 >        
839 >      if (simParams_->haveCutoffRadius()) {
840 >        rcut = simParams_->getCutoffRadius();
841 >      } else {
842 >        //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
843 >        rcut = calcMaxCutoffRadius();
844 >      }
845 >
846 >      if (simParams_->haveSwitchingRadius()) {
847 >        rsw  = simParams_->getSwitchingRadius();
848 >      } else {
849 >        rsw = rcut;
850 >      }
851 >    
852      }
853    }
854  
855 < }
855 >  void SimInfo::setupCutoff() {    
856 >    getCutoff(rcut_, rsw_);    
857 >    double rnblist = rcut_ + 1; // skin of neighbor list
858 >
859 >    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
860 >    
861 >    int cp =  TRADITIONAL_CUTOFF_POLICY;
862 >    if (simParams_->haveCutoffPolicy()) {
863 >      std::string myPolicy = simParams_->getCutoffPolicy();
864 >      toUpper(myPolicy);
865 >      if (myPolicy == "MIX") {
866 >        cp = MIX_CUTOFF_POLICY;
867 >      } else {
868 >        if (myPolicy == "MAX") {
869 >          cp = MAX_CUTOFF_POLICY;
870 >        } else {
871 >          if (myPolicy == "TRADITIONAL") {            
872 >            cp = TRADITIONAL_CUTOFF_POLICY;
873 >          } else {
874 >            // throw error        
875 >            sprintf( painCave.errMsg,
876 >                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
877 >            painCave.isFatal = 1;
878 >            simError();
879 >          }    
880 >        }          
881 >      }
882 >    }
883 >
884 >
885 >    if (simParams_->haveSkinThickness()) {
886 >      double skinThickness = simParams_->getSkinThickness();
887 >    }
888 >
889 >    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist, &cp);
890 >    // also send cutoff notification to electrostatics
891 >    setElectrostaticCutoffRadius(&rcut_, &rsw_);
892 >  }
893 >
894 >  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
895 >    
896 >    int errorOut;
897 >    int esm =  NONE;
898 >    double alphaVal;
899 >    double dielectric;
900 >
901 >    errorOut = isError;
902 >    alphaVal = simParams_->getDampingAlpha();
903 >    dielectric = simParams_->getDielectric();
904 >
905 >    if (simParams_->haveElectrostaticSummationMethod()) {
906 >      std::string myMethod = simParams_->getElectrostaticSummationMethod();
907 >      toUpper(myMethod);
908 >      if (myMethod == "NONE") {
909 >        esm = NONE;
910 >      } else {
911 >        if (myMethod == "UNDAMPED_WOLF") {
912 >          esm = UNDAMPED_WOLF;
913 >        } else {
914 >          if (myMethod == "DAMPED_WOLF") {            
915 >            esm = DAMPED_WOLF;
916 >            if (!simParams_->haveDampingAlpha()) {
917 >              //throw error
918 >              sprintf( painCave.errMsg,
919 >                       "SimInfo warning: dampingAlpha was not specified in the input file. A default value of %f (1/ang) will be used for the Damped Wolf Method.", alphaVal);
920 >              painCave.isFatal = 0;
921 >              simError();
922 >            }
923 >          } else {
924 >            if (myMethod == "REACTION_FIELD") {
925 >              esm = REACTION_FIELD;
926 >            } else {
927 >              // throw error        
928 >              sprintf( painCave.errMsg,
929 >                       "SimInfo error: Unknown electrostaticSummationMethod. (Input file specified %s .)\n\telectrostaticSummationMethod must be one of: \"none\", \"undamped_wolf\", \"damped_wolf\", or \"reaction_field\".", myMethod.c_str() );
930 >              painCave.isFatal = 1;
931 >              simError();
932 >            }    
933 >          }          
934 >        }
935 >      }
936 >    }
937 >    // let's pass some summation method variables to fortran
938 >    setElectrostaticSummationMethod( &esm );
939 >    setDampedWolfAlpha( &alphaVal );
940 >    setReactionFieldDielectric( &dielectric );
941 >    initFortranFF( &esm, &errorOut );
942 >  }
943 >
944 >  void SimInfo::addProperty(GenericData* genData) {
945 >    properties_.addProperty(genData);  
946 >  }
947 >
948 >  void SimInfo::removeProperty(const std::string& propName) {
949 >    properties_.removeProperty(propName);  
950 >  }
951 >
952 >  void SimInfo::clearProperties() {
953 >    properties_.clearProperties();
954 >  }
955 >
956 >  std::vector<std::string> SimInfo::getPropertyNames() {
957 >    return properties_.getPropertyNames();  
958 >  }
959 >      
960 >  std::vector<GenericData*> SimInfo::getProperties() {
961 >    return properties_.getProperties();
962 >  }
963 >
964 >  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
965 >    return properties_.getPropertyByName(propName);
966 >  }
967 >
968 >  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
969 >    if (sman_ == sman) {
970 >      return;
971 >    }    
972 >    delete sman_;
973 >    sman_ = sman;
974 >
975 >    Molecule* mol;
976 >    RigidBody* rb;
977 >    Atom* atom;
978 >    SimInfo::MoleculeIterator mi;
979 >    Molecule::RigidBodyIterator rbIter;
980 >    Molecule::AtomIterator atomIter;;
981 >
982 >    for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
983 >        
984 >      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
985 >        atom->setSnapshotManager(sman_);
986 >      }
987 >        
988 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
989 >        rb->setSnapshotManager(sman_);
990 >      }
991 >    }    
992 >    
993 >  }
994 >
995 >  Vector3d SimInfo::getComVel(){
996 >    SimInfo::MoleculeIterator i;
997 >    Molecule* mol;
998 >
999 >    Vector3d comVel(0.0);
1000 >    double totalMass = 0.0;
1001 >    
1002 >
1003 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1004 >      double mass = mol->getMass();
1005 >      totalMass += mass;
1006 >      comVel += mass * mol->getComVel();
1007 >    }  
1008 >
1009 > #ifdef IS_MPI
1010 >    double tmpMass = totalMass;
1011 >    Vector3d tmpComVel(comVel);    
1012 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1013 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1014 > #endif
1015 >
1016 >    comVel /= totalMass;
1017 >
1018 >    return comVel;
1019 >  }
1020 >
1021 >  Vector3d SimInfo::getCom(){
1022 >    SimInfo::MoleculeIterator i;
1023 >    Molecule* mol;
1024 >
1025 >    Vector3d com(0.0);
1026 >    double totalMass = 0.0;
1027 >    
1028 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1029 >      double mass = mol->getMass();
1030 >      totalMass += mass;
1031 >      com += mass * mol->getCom();
1032 >    }  
1033 >
1034 > #ifdef IS_MPI
1035 >    double tmpMass = totalMass;
1036 >    Vector3d tmpCom(com);    
1037 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1038 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1039 > #endif
1040 >
1041 >    com /= totalMass;
1042 >
1043 >    return com;
1044 >
1045 >  }        
1046 >
1047 >  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1048 >
1049 >    return o;
1050 >  }
1051 >  
1052 >  
1053 >   /*
1054 >   Returns center of mass and center of mass velocity in one function call.
1055 >   */
1056 >  
1057 >   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1058 >      SimInfo::MoleculeIterator i;
1059 >      Molecule* mol;
1060 >      
1061 >    
1062 >      double totalMass = 0.0;
1063 >    
1064 >
1065 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1066 >         double mass = mol->getMass();
1067 >         totalMass += mass;
1068 >         com += mass * mol->getCom();
1069 >         comVel += mass * mol->getComVel();          
1070 >      }  
1071 >      
1072 > #ifdef IS_MPI
1073 >      double tmpMass = totalMass;
1074 >      Vector3d tmpCom(com);  
1075 >      Vector3d tmpComVel(comVel);
1076 >      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1077 >      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1078 >      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1079 > #endif
1080 >      
1081 >      com /= totalMass;
1082 >      comVel /= totalMass;
1083 >   }        
1084 >  
1085 >   /*
1086 >   Return intertia tensor for entire system and angular momentum Vector.
1087 >
1088 >
1089 >       [  Ixx -Ixy  -Ixz ]
1090 >  J =| -Iyx  Iyy  -Iyz |
1091 >       [ -Izx -Iyz   Izz ]
1092 >    */
1093 >
1094 >   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1095 >      
1096 >
1097 >      double xx = 0.0;
1098 >      double yy = 0.0;
1099 >      double zz = 0.0;
1100 >      double xy = 0.0;
1101 >      double xz = 0.0;
1102 >      double yz = 0.0;
1103 >      Vector3d com(0.0);
1104 >      Vector3d comVel(0.0);
1105 >      
1106 >      getComAll(com, comVel);
1107 >      
1108 >      SimInfo::MoleculeIterator i;
1109 >      Molecule* mol;
1110 >      
1111 >      Vector3d thisq(0.0);
1112 >      Vector3d thisv(0.0);
1113 >
1114 >      double thisMass = 0.0;
1115 >    
1116 >      
1117 >      
1118 >  
1119 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1120 >        
1121 >         thisq = mol->getCom()-com;
1122 >         thisv = mol->getComVel()-comVel;
1123 >         thisMass = mol->getMass();
1124 >         // Compute moment of intertia coefficients.
1125 >         xx += thisq[0]*thisq[0]*thisMass;
1126 >         yy += thisq[1]*thisq[1]*thisMass;
1127 >         zz += thisq[2]*thisq[2]*thisMass;
1128 >        
1129 >         // compute products of intertia
1130 >         xy += thisq[0]*thisq[1]*thisMass;
1131 >         xz += thisq[0]*thisq[2]*thisMass;
1132 >         yz += thisq[1]*thisq[2]*thisMass;
1133 >            
1134 >         angularMomentum += cross( thisq, thisv ) * thisMass;
1135 >            
1136 >      }  
1137 >      
1138 >      
1139 >      inertiaTensor(0,0) = yy + zz;
1140 >      inertiaTensor(0,1) = -xy;
1141 >      inertiaTensor(0,2) = -xz;
1142 >      inertiaTensor(1,0) = -xy;
1143 >      inertiaTensor(1,1) = xx + zz;
1144 >      inertiaTensor(1,2) = -yz;
1145 >      inertiaTensor(2,0) = -xz;
1146 >      inertiaTensor(2,1) = -yz;
1147 >      inertiaTensor(2,2) = xx + yy;
1148 >      
1149 > #ifdef IS_MPI
1150 >      Mat3x3d tmpI(inertiaTensor);
1151 >      Vector3d tmpAngMom;
1152 >      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1153 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1154 > #endif
1155 >              
1156 >      return;
1157 >   }
1158 >
1159 >   //Returns the angular momentum of the system
1160 >   Vector3d SimInfo::getAngularMomentum(){
1161 >      
1162 >      Vector3d com(0.0);
1163 >      Vector3d comVel(0.0);
1164 >      Vector3d angularMomentum(0.0);
1165 >      
1166 >      getComAll(com,comVel);
1167 >      
1168 >      SimInfo::MoleculeIterator i;
1169 >      Molecule* mol;
1170 >      
1171 >      Vector3d thisr(0.0);
1172 >      Vector3d thisp(0.0);
1173 >      
1174 >      double thisMass;
1175 >      
1176 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1177 >        thisMass = mol->getMass();
1178 >        thisr = mol->getCom()-com;
1179 >        thisp = (mol->getComVel()-comVel)*thisMass;
1180 >        
1181 >        angularMomentum += cross( thisr, thisp );
1182 >        
1183 >      }  
1184 >      
1185 > #ifdef IS_MPI
1186 >      Vector3d tmpAngMom;
1187 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1188 > #endif
1189 >      
1190 >      return angularMomentum;
1191 >   }
1192 >  
1193 >  
1194 > }//end namespace oopse
1195 >

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines