ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-2.0/src/brains/SimInfo.cpp
(Generate patch)

Comparing trunk/OOPSE-2.0/src/brains/SimInfo.cpp (file contents):
Revision 1617 by chuckv, Wed Oct 20 20:46:20 2004 UTC vs.
Revision 2425 by chrisfen, Fri Nov 11 15:22:11 2005 UTC

# Line 1 | Line 1
1 < #include <stdlib.h>
2 < #include <string.h>
3 < #include <math.h>
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Acknowledgement of the program authors must be made in any
10 > *    publication of scientific results based in part on use of the
11 > *    program.  An acceptable form of acknowledgement is citation of
12 > *    the article in which the program was described (Matthew
13 > *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 > *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 > *    Parallel Simulation Engine for Molecular Dynamics,"
16 > *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 > *
18 > * 2. Redistributions of source code must retain the above copyright
19 > *    notice, this list of conditions and the following disclaimer.
20 > *
21 > * 3. Redistributions in binary form must reproduce the above copyright
22 > *    notice, this list of conditions and the following disclaimer in the
23 > *    documentation and/or other materials provided with the
24 > *    distribution.
25 > *
26 > * This software is provided "AS IS," without a warranty of any
27 > * kind. All express or implied conditions, representations and
28 > * warranties, including any implied warranty of merchantability,
29 > * fitness for a particular purpose or non-infringement, are hereby
30 > * excluded.  The University of Notre Dame and its licensors shall not
31 > * be liable for any damages suffered by licensee as a result of
32 > * using, modifying or distributing the software or its
33 > * derivatives. In no event will the University of Notre Dame or its
34 > * licensors be liable for any lost revenue, profit or data, or for
35 > * direct, indirect, special, consequential, incidental or punitive
36 > * damages, however caused and regardless of the theory of liability,
37 > * arising out of the use of or inability to use software, even if the
38 > * University of Notre Dame has been advised of the possibility of
39 > * such damages.
40 > */
41 >
42 > /**
43 > * @file SimInfo.cpp
44 > * @author    tlin
45 > * @date  11/02/2004
46 > * @version 1.0
47 > */
48  
49 < #include <iostream>
50 < using namespace std;
49 > #include <algorithm>
50 > #include <set>
51  
52   #include "brains/SimInfo.hpp"
53 < #define __C
54 < #include "brains/fSimulation.h"
55 < #include "utils/simError.h"
56 < #include "UseTheForce/DarkSide/simulation_interface.h"
53 > #include "math/Vector3.hpp"
54 > #include "primitives/Molecule.hpp"
55 > #include "UseTheForce/fCutoffPolicy.h"
56 > #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
57 > #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
58 > #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
59 > #include "UseTheForce/doForces_interface.h"
60 > #include "UseTheForce/DarkSide/electrostatic_interface.h"
61   #include "UseTheForce/notifyCutoffs_interface.h"
62 + #include "UseTheForce/DarkSide/switcheroo_interface.h"
63 + #include "utils/MemoryUtils.hpp"
64 + #include "utils/simError.h"
65 + #include "selection/SelectionManager.hpp"
66  
15 //#include "UseTheForce/fortranWrappers.hpp"
16
17 #include "math/MatVec3.h"
18
67   #ifdef IS_MPI
68 < #include "brains/mpiSimulation.hpp"
69 < #endif
68 > #include "UseTheForce/mpiComponentPlan.h"
69 > #include "UseTheForce/DarkSide/simParallel_interface.h"
70 > #endif
71  
72 < inline double roundMe( double x ){
24 <  return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
25 < }
26 <          
27 < inline double min( double a, double b ){
28 <  return (a < b ) ? a : b;
29 < }
72 > namespace oopse {
73  
74 < SimInfo* currentInfo;
74 >  SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
75 >                   ForceField* ff, Globals* simParams) :
76 >    stamps_(stamps), forceField_(ff), simParams_(simParams),
77 >    ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
78 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
79 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
80 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
81 >    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
82 >    sman_(NULL), fortranInitialized_(false) {
83  
84 < SimInfo::SimInfo(){
84 >            
85 >      std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
86 >      MoleculeStamp* molStamp;
87 >      int nMolWithSameStamp;
88 >      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
89 >      int nGroups = 0;      //total cutoff groups defined in meta-data file
90 >      CutoffGroupStamp* cgStamp;    
91 >      RigidBodyStamp* rbStamp;
92 >      int nRigidAtoms = 0;
93 >    
94 >      for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
95 >        molStamp = i->first;
96 >        nMolWithSameStamp = i->second;
97 >        
98 >        addMoleculeStamp(molStamp, nMolWithSameStamp);
99  
100 <  n_constraints = 0;
101 <  nZconstraints = 0;
37 <  n_oriented = 0;
38 <  n_dipoles = 0;
39 <  ndf = 0;
40 <  ndfRaw = 0;
41 <  nZconstraints = 0;
42 <  the_integrator = NULL;
43 <  setTemp = 0;
44 <  thermalTime = 0.0;
45 <  currentTime = 0.0;
46 <  rCut = 0.0;
47 <  rSw = 0.0;
100 >        //calculate atoms in molecules
101 >        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
102  
49  haveRcut = 0;
50  haveRsw = 0;
51  boxIsInit = 0;
52  
53  resetTime = 1e99;
103  
104 <  orthoRhombic = 0;
105 <  orthoTolerance = 1E-6;
106 <  useInitXSstate = true;
104 >        //calculate atoms in cutoff groups
105 >        int nAtomsInGroups = 0;
106 >        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
107 >        
108 >        for (int j=0; j < nCutoffGroupsInStamp; j++) {
109 >          cgStamp = molStamp->getCutoffGroup(j);
110 >          nAtomsInGroups += cgStamp->getNMembers();
111 >        }
112  
113 <  usePBC = 0;
60 <  useLJ = 0;
61 <  useSticky = 0;
62 <  useCharges = 0;
63 <  useDipoles = 0;
64 <  useReactionField = 0;
65 <  useGB = 0;
66 <  useEAM = 0;
67 <  useSolidThermInt = 0;
68 <  useLiquidThermInt = 0;
113 >        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
114  
115 <  haveCutoffGroups = false;
115 >        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
116  
117 <  excludes = Exclude::Instance();
117 >        //calculate atoms in rigid bodies
118 >        int nAtomsInRigidBodies = 0;
119 >        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
120 >        
121 >        for (int j=0; j < nRigidBodiesInStamp; j++) {
122 >          rbStamp = molStamp->getRigidBody(j);
123 >          nAtomsInRigidBodies += rbStamp->getNMembers();
124 >        }
125  
126 <  myConfiguration = new SimState();
126 >        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
127 >        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
128 >        
129 >      }
130  
131 <  has_minimizer = false;
132 <  the_minimizer =NULL;
131 >      //every free atom (atom does not belong to cutoff groups) is a cutoff
132 >      //group therefore the total number of cutoff groups in the system is
133 >      //equal to the total number of atoms minus number of atoms belong to
134 >      //cutoff group defined in meta-data file plus the number of cutoff
135 >      //groups defined in meta-data file
136 >      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
137  
138 <  ngroup = 0;
138 >      //every free atom (atom does not belong to rigid bodies) is an
139 >      //integrable object therefore the total number of integrable objects
140 >      //in the system is equal to the total number of atoms minus number of
141 >      //atoms belong to rigid body defined in meta-data file plus the number
142 >      //of rigid bodies defined in meta-data file
143 >      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
144 >                                                + nGlobalRigidBodies_;
145 >  
146 >      nGlobalMols_ = molStampIds_.size();
147  
148 < }
148 > #ifdef IS_MPI    
149 >      molToProcMap_.resize(nGlobalMols_);
150 > #endif
151  
152 +    }
153  
154 < SimInfo::~SimInfo(){
154 >  SimInfo::~SimInfo() {
155 >    std::map<int, Molecule*>::iterator i;
156 >    for (i = molecules_.begin(); i != molecules_.end(); ++i) {
157 >      delete i->second;
158 >    }
159 >    molecules_.clear();
160 >      
161 >    delete stamps_;
162 >    delete sman_;
163 >    delete simParams_;
164 >    delete forceField_;
165 >  }
166  
167 <  delete myConfiguration;
167 >  int SimInfo::getNGlobalConstraints() {
168 >    int nGlobalConstraints;
169 > #ifdef IS_MPI
170 >    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
171 >                  MPI_COMM_WORLD);    
172 > #else
173 >    nGlobalConstraints =  nConstraints_;
174 > #endif
175 >    return nGlobalConstraints;
176 >  }
177  
178 <  map<string, GenericData*>::iterator i;
179 <  
90 <  for(i = properties.begin(); i != properties.end(); i++)
91 <    delete (*i).second;
178 >  bool SimInfo::addMolecule(Molecule* mol) {
179 >    MoleculeIterator i;
180  
181 < }
181 >    i = molecules_.find(mol->getGlobalIndex());
182 >    if (i == molecules_.end() ) {
183  
184 < void SimInfo::setBox(double newBox[3]) {
185 <  
186 <  int i, j;
187 <  double tempMat[3][3];
184 >      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
185 >        
186 >      nAtoms_ += mol->getNAtoms();
187 >      nBonds_ += mol->getNBonds();
188 >      nBends_ += mol->getNBends();
189 >      nTorsions_ += mol->getNTorsions();
190 >      nRigidBodies_ += mol->getNRigidBodies();
191 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
192 >      nCutoffGroups_ += mol->getNCutoffGroups();
193 >      nConstraints_ += mol->getNConstraintPairs();
194  
195 <  for(i=0; i<3; i++)
196 <    for (j=0; j<3; j++) tempMat[i][j] = 0.0;;
197 <
198 <  tempMat[0][0] = newBox[0];
199 <  tempMat[1][1] = newBox[1];
105 <  tempMat[2][2] = newBox[2];
106 <
107 <  setBoxM( tempMat );
108 <
109 < }
110 <
111 < void SimInfo::setBoxM( double theBox[3][3] ){
112 <  
113 <  int i, j;
114 <  double FortranHmat[9]; // to preserve compatibility with Fortran the
115 <                         // ordering in the array is as follows:
116 <                         // [ 0 3 6 ]
117 <                         // [ 1 4 7 ]
118 <                         // [ 2 5 8 ]
119 <  double FortranHmatInv[9]; // the inverted Hmat (for Fortran);
120 <
121 <  if( !boxIsInit ) boxIsInit = 1;
122 <
123 <  for(i=0; i < 3; i++)
124 <    for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j];
125 <  
126 <  calcBoxL();
127 <  calcHmatInv();
128 <
129 <  for(i=0; i < 3; i++) {
130 <    for (j=0; j < 3; j++) {
131 <      FortranHmat[3*j + i] = Hmat[i][j];
132 <      FortranHmatInv[3*j + i] = HmatInv[i][j];
195 >      addExcludePairs(mol);
196 >        
197 >      return true;
198 >    } else {
199 >      return false;
200      }
201    }
202  
203 <  setFortranBox(FortranHmat, FortranHmatInv, &orthoRhombic);
204 <
205 < }
139 <
203 >  bool SimInfo::removeMolecule(Molecule* mol) {
204 >    MoleculeIterator i;
205 >    i = molecules_.find(mol->getGlobalIndex());
206  
207 < void SimInfo::getBoxM (double theBox[3][3]) {
207 >    if (i != molecules_.end() ) {
208  
209 <  int i, j;
210 <  for(i=0; i<3; i++)
211 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j];
212 < }
209 >      assert(mol == i->second);
210 >        
211 >      nAtoms_ -= mol->getNAtoms();
212 >      nBonds_ -= mol->getNBonds();
213 >      nBends_ -= mol->getNBends();
214 >      nTorsions_ -= mol->getNTorsions();
215 >      nRigidBodies_ -= mol->getNRigidBodies();
216 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
217 >      nCutoffGroups_ -= mol->getNCutoffGroups();
218 >      nConstraints_ -= mol->getNConstraintPairs();
219  
220 +      removeExcludePairs(mol);
221 +      molecules_.erase(mol->getGlobalIndex());
222  
223 < void SimInfo::scaleBox(double scale) {
224 <  double theBox[3][3];
225 <  int i, j;
223 >      delete mol;
224 >        
225 >      return true;
226 >    } else {
227 >      return false;
228 >    }
229  
153  // cerr << "Scaling box by " << scale << "\n";
230  
231 <  for(i=0; i<3; i++)
156 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale;
231 >  }    
232  
233 <  setBoxM(theBox);
233 >        
234 >  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
235 >    i = molecules_.begin();
236 >    return i == molecules_.end() ? NULL : i->second;
237 >  }    
238  
239 < }
239 >  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
240 >    ++i;
241 >    return i == molecules_.end() ? NULL : i->second;    
242 >  }
243  
162 void SimInfo::calcHmatInv( void ) {
163  
164  int oldOrtho;
165  int i,j;
166  double smallDiag;
167  double tol;
168  double sanity[3][3];
244  
245 <  invertMat3( Hmat, HmatInv );
245 >  void SimInfo::calcNdf() {
246 >    int ndf_local;
247 >    MoleculeIterator i;
248 >    std::vector<StuntDouble*>::iterator j;
249 >    Molecule* mol;
250 >    StuntDouble* integrableObject;
251  
252 <  // check to see if Hmat is orthorhombic
253 <  
254 <  oldOrtho = orthoRhombic;
252 >    ndf_local = 0;
253 >    
254 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
255 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
256 >           integrableObject = mol->nextIntegrableObject(j)) {
257  
258 <  smallDiag = fabs(Hmat[0][0]);
177 <  if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]);
178 <  if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]);
179 <  tol = smallDiag * orthoTolerance;
258 >        ndf_local += 3;
259  
260 <  orthoRhombic = 1;
261 <  
262 <  for (i = 0; i < 3; i++ ) {
263 <    for (j = 0 ; j < 3; j++) {
264 <      if (i != j) {
265 <        if (orthoRhombic) {
266 <          if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0;
267 <        }        
268 <      }
269 <    }
191 <  }
192 <
193 <  if( oldOrtho != orthoRhombic ){
260 >        if (integrableObject->isDirectional()) {
261 >          if (integrableObject->isLinear()) {
262 >            ndf_local += 2;
263 >          } else {
264 >            ndf_local += 3;
265 >          }
266 >        }
267 >            
268 >      }//end for (integrableObject)
269 >    }// end for (mol)
270      
271 <    if( orthoRhombic ) {
272 <      sprintf( painCave.errMsg,
197 <               "OOPSE is switching from the default Non-Orthorhombic\n"
198 <               "\tto the faster Orthorhombic periodic boundary computations.\n"
199 <               "\tThis is usually a good thing, but if you wan't the\n"
200 <               "\tNon-Orthorhombic computations, make the orthoBoxTolerance\n"
201 <               "\tvariable ( currently set to %G ) smaller.\n",
202 <               orthoTolerance);
203 <      painCave.severity = OOPSE_INFO;
204 <      simError();
205 <    }
206 <    else {
207 <      sprintf( painCave.errMsg,
208 <               "OOPSE is switching from the faster Orthorhombic to the more\n"
209 <               "\tflexible Non-Orthorhombic periodic boundary computations.\n"
210 <               "\tThis is usually because the box has deformed under\n"
211 <               "\tNPTf integration. If you wan't to live on the edge with\n"
212 <               "\tthe Orthorhombic computations, make the orthoBoxTolerance\n"
213 <               "\tvariable ( currently set to %G ) larger.\n",
214 <               orthoTolerance);
215 <      painCave.severity = OOPSE_WARNING;
216 <      simError();
217 <    }
218 <  }
219 < }
271 >    // n_constraints is local, so subtract them on each processor
272 >    ndf_local -= nConstraints_;
273  
274 < void SimInfo::calcBoxL( void ){
274 > #ifdef IS_MPI
275 >    MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
276 > #else
277 >    ndf_ = ndf_local;
278 > #endif
279  
280 <  double dx, dy, dz, dsq;
280 >    // nZconstraints_ is global, as are the 3 COM translations for the
281 >    // entire system:
282 >    ndf_ = ndf_ - 3 - nZconstraint_;
283  
284 <  // boxVol = Determinant of Hmat
284 >  }
285  
286 <  boxVol = matDet3( Hmat );
286 >  void SimInfo::calcNdfRaw() {
287 >    int ndfRaw_local;
288  
289 <  // boxLx
290 <  
291 <  dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0];
292 <  dsq = dx*dx + dy*dy + dz*dz;
233 <  boxL[0] = sqrt( dsq );
234 <  //maxCutoff = 0.5 * boxL[0];
289 >    MoleculeIterator i;
290 >    std::vector<StuntDouble*>::iterator j;
291 >    Molecule* mol;
292 >    StuntDouble* integrableObject;
293  
294 <  // boxLy
295 <  
296 <  dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1];
297 <  dsq = dx*dx + dy*dy + dz*dz;
298 <  boxL[1] = sqrt( dsq );
299 <  //if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1];
294 >    // Raw degrees of freedom that we have to set
295 >    ndfRaw_local = 0;
296 >    
297 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
298 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
299 >           integrableObject = mol->nextIntegrableObject(j)) {
300  
301 +        ndfRaw_local += 3;
302  
303 <  // boxLz
304 <  
305 <  dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2];
306 <  dsq = dx*dx + dy*dy + dz*dz;
307 <  boxL[2] = sqrt( dsq );
308 <  //if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2];
309 <
310 <  //calculate the max cutoff
311 <  maxCutoff =  calcMaxCutOff();
312 <  
313 <  checkCutOffs();
314 <
315 < }
316 <
317 <
318 < double SimInfo::calcMaxCutOff(){
303 >        if (integrableObject->isDirectional()) {
304 >          if (integrableObject->isLinear()) {
305 >            ndfRaw_local += 2;
306 >          } else {
307 >            ndfRaw_local += 3;
308 >          }
309 >        }
310 >            
311 >      }
312 >    }
313 >    
314 > #ifdef IS_MPI
315 >    MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
316 > #else
317 >    ndfRaw_ = ndfRaw_local;
318 > #endif
319 >  }
320  
321 <  double ri[3], rj[3], rk[3];
322 <  double rij[3], rjk[3], rki[3];
263 <  double minDist;
321 >  void SimInfo::calcNdfTrans() {
322 >    int ndfTrans_local;
323  
324 <  ri[0] = Hmat[0][0];
266 <  ri[1] = Hmat[1][0];
267 <  ri[2] = Hmat[2][0];
324 >    ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
325  
269  rj[0] = Hmat[0][1];
270  rj[1] = Hmat[1][1];
271  rj[2] = Hmat[2][1];
326  
327 <  rk[0] = Hmat[0][2];
328 <  rk[1] = Hmat[1][2];
329 <  rk[2] = Hmat[2][2];
330 <    
331 <  crossProduct3(ri, rj, rij);
278 <  distXY = dotProduct3(rk,rij) / norm3(rij);
327 > #ifdef IS_MPI
328 >    MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
329 > #else
330 >    ndfTrans_ = ndfTrans_local;
331 > #endif
332  
333 <  crossProduct3(rj,rk, rjk);
334 <  distYZ = dotProduct3(ri,rjk) / norm3(rjk);
333 >    ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
334 >
335 >  }
336  
337 <  crossProduct3(rk,ri, rki);
338 <  distZX = dotProduct3(rj,rki) / norm3(rki);
337 >  void SimInfo::addExcludePairs(Molecule* mol) {
338 >    std::vector<Bond*>::iterator bondIter;
339 >    std::vector<Bend*>::iterator bendIter;
340 >    std::vector<Torsion*>::iterator torsionIter;
341 >    Bond* bond;
342 >    Bend* bend;
343 >    Torsion* torsion;
344 >    int a;
345 >    int b;
346 >    int c;
347 >    int d;
348 >    
349 >    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
350 >      a = bond->getAtomA()->getGlobalIndex();
351 >      b = bond->getAtomB()->getGlobalIndex();        
352 >      exclude_.addPair(a, b);
353 >    }
354  
355 <  minDist = min(min(distXY, distYZ), distZX);
356 <  return minDist/2;
357 <  
358 < }
355 >    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
356 >      a = bend->getAtomA()->getGlobalIndex();
357 >      b = bend->getAtomB()->getGlobalIndex();        
358 >      c = bend->getAtomC()->getGlobalIndex();
359  
360 < void SimInfo::wrapVector( double thePos[3] ){
360 >      exclude_.addPair(a, b);
361 >      exclude_.addPair(a, c);
362 >      exclude_.addPair(b, c);        
363 >    }
364  
365 <  int i;
366 <  double scaled[3];
365 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
366 >      a = torsion->getAtomA()->getGlobalIndex();
367 >      b = torsion->getAtomB()->getGlobalIndex();        
368 >      c = torsion->getAtomC()->getGlobalIndex();        
369 >      d = torsion->getAtomD()->getGlobalIndex();        
370  
371 <  if( !orthoRhombic ){
372 <    // calc the scaled coordinates.
373 <  
371 >      exclude_.addPair(a, b);
372 >      exclude_.addPair(a, c);
373 >      exclude_.addPair(a, d);
374 >      exclude_.addPair(b, c);
375 >      exclude_.addPair(b, d);
376 >      exclude_.addPair(c, d);        
377 >    }
378  
379 <    matVecMul3(HmatInv, thePos, scaled);
380 <    
381 <    for(i=0; i<3; i++)
382 <      scaled[i] -= roundMe(scaled[i]);
383 <    
384 <    // calc the wrapped real coordinates from the wrapped scaled coordinates
385 <    
386 <    matVecMul3(Hmat, scaled, thePos);
379 >    Molecule::RigidBodyIterator rbIter;
380 >    RigidBody* rb;
381 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
382 >      std::vector<Atom*> atoms = rb->getAtoms();
383 >      for (int i = 0; i < atoms.size() -1 ; ++i) {
384 >        for (int j = i + 1; j < atoms.size(); ++j) {
385 >          a = atoms[i]->getGlobalIndex();
386 >          b = atoms[j]->getGlobalIndex();
387 >          exclude_.addPair(a, b);
388 >        }
389 >      }
390 >    }        
391  
392    }
393 <  else{
394 <    // calc the scaled coordinates.
393 >
394 >  void SimInfo::removeExcludePairs(Molecule* mol) {
395 >    std::vector<Bond*>::iterator bondIter;
396 >    std::vector<Bend*>::iterator bendIter;
397 >    std::vector<Torsion*>::iterator torsionIter;
398 >    Bond* bond;
399 >    Bend* bend;
400 >    Torsion* torsion;
401 >    int a;
402 >    int b;
403 >    int c;
404 >    int d;
405      
406 <    for(i=0; i<3; i++)
407 <      scaled[i] = thePos[i]*HmatInv[i][i];
408 <    
409 <    // wrap the scaled coordinates
410 <    
318 <    for(i=0; i<3; i++)
319 <      scaled[i] -= roundMe(scaled[i]);
320 <    
321 <    // calc the wrapped real coordinates from the wrapped scaled coordinates
322 <    
323 <    for(i=0; i<3; i++)
324 <      thePos[i] = scaled[i]*Hmat[i][i];
325 <  }
326 <    
327 < }
406 >    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
407 >      a = bond->getAtomA()->getGlobalIndex();
408 >      b = bond->getAtomB()->getGlobalIndex();        
409 >      exclude_.removePair(a, b);
410 >    }
411  
412 +    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
413 +      a = bend->getAtomA()->getGlobalIndex();
414 +      b = bend->getAtomB()->getGlobalIndex();        
415 +      c = bend->getAtomC()->getGlobalIndex();
416  
417 < int SimInfo::getNDF(){
418 <  int ndf_local;
417 >      exclude_.removePair(a, b);
418 >      exclude_.removePair(a, c);
419 >      exclude_.removePair(b, c);        
420 >    }
421  
422 <  ndf_local = 0;
423 <  
424 <  for(int i = 0; i < integrableObjects.size(); i++){
425 <    ndf_local += 3;
426 <    if (integrableObjects[i]->isDirectional()) {
427 <      if (integrableObjects[i]->isLinear())
428 <        ndf_local += 2;
429 <      else
430 <        ndf_local += 3;
422 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
423 >      a = torsion->getAtomA()->getGlobalIndex();
424 >      b = torsion->getAtomB()->getGlobalIndex();        
425 >      c = torsion->getAtomC()->getGlobalIndex();        
426 >      d = torsion->getAtomD()->getGlobalIndex();        
427 >
428 >      exclude_.removePair(a, b);
429 >      exclude_.removePair(a, c);
430 >      exclude_.removePair(a, d);
431 >      exclude_.removePair(b, c);
432 >      exclude_.removePair(b, d);
433 >      exclude_.removePair(c, d);        
434      }
435 +
436 +    Molecule::RigidBodyIterator rbIter;
437 +    RigidBody* rb;
438 +    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
439 +      std::vector<Atom*> atoms = rb->getAtoms();
440 +      for (int i = 0; i < atoms.size() -1 ; ++i) {
441 +        for (int j = i + 1; j < atoms.size(); ++j) {
442 +          a = atoms[i]->getGlobalIndex();
443 +          b = atoms[j]->getGlobalIndex();
444 +          exclude_.removePair(a, b);
445 +        }
446 +      }
447 +    }        
448 +
449    }
450  
345  // n_constraints is local, so subtract them on each processor:
451  
452 <  ndf_local -= n_constraints;
452 >  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
453 >    int curStampId;
454  
455 +    //index from 0
456 +    curStampId = moleculeStamps_.size();
457 +
458 +    moleculeStamps_.push_back(molStamp);
459 +    molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
460 +  }
461 +
462 +  void SimInfo::update() {
463 +
464 +    setupSimType();
465 +
466   #ifdef IS_MPI
467 <  MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
351 < #else
352 <  ndf = ndf_local;
467 >    setupFortranParallel();
468   #endif
469  
470 <  // nZconstraints is global, as are the 3 COM translations for the
356 <  // entire system:
470 >    setupFortranSim();
471  
472 <  ndf = ndf - 3 - nZconstraints;
472 >    //setup fortran force field
473 >    /** @deprecate */    
474 >    int isError = 0;
475 >    
476 >    setupElectrostaticSummationMethod( isError );
477 >    setupSwitchingFunction();
478  
479 <  return ndf;
480 < }
479 >    if(isError){
480 >      sprintf( painCave.errMsg,
481 >               "ForceField error: There was an error initializing the forceField in fortran.\n" );
482 >      painCave.isFatal = 1;
483 >      simError();
484 >    }
485 >  
486 >    
487 >    setupCutoff();
488  
489 < int SimInfo::getNDFraw() {
490 <  int ndfRaw_local;
489 >    calcNdf();
490 >    calcNdfRaw();
491 >    calcNdfTrans();
492  
493 <  // Raw degrees of freedom that we have to set
494 <  ndfRaw_local = 0;
493 >    fortranInitialized_ = true;
494 >  }
495  
496 <  for(int i = 0; i < integrableObjects.size(); i++){
497 <    ndfRaw_local += 3;
498 <    if (integrableObjects[i]->isDirectional()) {
499 <       if (integrableObjects[i]->isLinear())
500 <        ndfRaw_local += 2;
501 <      else
502 <        ndfRaw_local += 3;
496 >  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
497 >    SimInfo::MoleculeIterator mi;
498 >    Molecule* mol;
499 >    Molecule::AtomIterator ai;
500 >    Atom* atom;
501 >    std::set<AtomType*> atomTypes;
502 >
503 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
504 >
505 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
506 >        atomTypes.insert(atom->getAtomType());
507 >      }
508 >        
509      }
510 +
511 +    return atomTypes;        
512    }
513 +
514 +  void SimInfo::setupSimType() {
515 +    std::set<AtomType*>::iterator i;
516 +    std::set<AtomType*> atomTypes;
517 +    atomTypes = getUniqueAtomTypes();
518      
519 < #ifdef IS_MPI
520 <  MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
521 < #else
522 <  ndfRaw = ndfRaw_local;
523 < #endif
519 >    int useLennardJones = 0;
520 >    int useElectrostatic = 0;
521 >    int useEAM = 0;
522 >    int useCharge = 0;
523 >    int useDirectional = 0;
524 >    int useDipole = 0;
525 >    int useGayBerne = 0;
526 >    int useSticky = 0;
527 >    int useStickyPower = 0;
528 >    int useShape = 0;
529 >    int useFLARB = 0; //it is not in AtomType yet
530 >    int useDirectionalAtom = 0;    
531 >    int useElectrostatics = 0;
532 >    //usePBC and useRF are from simParams
533 >    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
534 >    int useRF;
535 >    int useSF;
536 >    std::string myMethod;
537  
538 <  return ndfRaw;
539 < }
538 >    // set the useRF logical
539 >    useRF = 0;
540 >    useSF = 0;
541  
388 int SimInfo::getNDFtranslational() {
389  int ndfTrans_local;
542  
543 <  ndfTrans_local = 3 * integrableObjects.size() - n_constraints;
543 >    if (simParams_->haveElectrostaticSummationMethod()) {
544 >      std::string myMethod = simParams_->getElectrostaticSummationMethod();
545 >      toUpper(myMethod);
546 >      if (myMethod == "REACTION_FIELD") {
547 >        useRF=1;
548 >      } else {
549 >        if (myMethod == "SHIFTED_FORCE") {
550 >          useSF = 1;
551 >        }
552 >      }
553 >    }
554  
555 +    //loop over all of the atom types
556 +    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
557 +      useLennardJones |= (*i)->isLennardJones();
558 +      useElectrostatic |= (*i)->isElectrostatic();
559 +      useEAM |= (*i)->isEAM();
560 +      useCharge |= (*i)->isCharge();
561 +      useDirectional |= (*i)->isDirectional();
562 +      useDipole |= (*i)->isDipole();
563 +      useGayBerne |= (*i)->isGayBerne();
564 +      useSticky |= (*i)->isSticky();
565 +      useStickyPower |= (*i)->isStickyPower();
566 +      useShape |= (*i)->isShape();
567 +    }
568  
569 < #ifdef IS_MPI
570 <  MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
571 < #else
397 <  ndfTrans = ndfTrans_local;
398 < #endif
569 >    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
570 >      useDirectionalAtom = 1;
571 >    }
572  
573 <  ndfTrans = ndfTrans - 3 - nZconstraints;
573 >    if (useCharge || useDipole) {
574 >      useElectrostatics = 1;
575 >    }
576  
577 <  return ndfTrans;
578 < }
577 > #ifdef IS_MPI    
578 >    int temp;
579  
580 < int SimInfo::getTotIntegrableObjects() {
581 <  int nObjs_local;
407 <  int nObjs;
580 >    temp = usePBC;
581 >    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
582  
583 <  nObjs_local =  integrableObjects.size();
583 >    temp = useDirectionalAtom;
584 >    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
585  
586 +    temp = useLennardJones;
587 +    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
588  
589 < #ifdef IS_MPI
590 <  MPI_Allreduce(&nObjs_local,&nObjs,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
414 < #else
415 <  nObjs = nObjs_local;
416 < #endif
589 >    temp = useElectrostatics;
590 >    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
591  
592 +    temp = useCharge;
593 +    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
594  
595 <  return nObjs;
596 < }
595 >    temp = useDipole;
596 >    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
597  
598 < void SimInfo::refreshSim(){
598 >    temp = useSticky;
599 >    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
600  
601 <  simtype fInfo;
602 <  int isError;
603 <  int n_global;
604 <  int* excl;
601 >    temp = useStickyPower;
602 >    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
603 >    
604 >    temp = useGayBerne;
605 >    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
606  
607 <  fInfo.dielect = 0.0;
607 >    temp = useEAM;
608 >    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
609 >
610 >    temp = useShape;
611 >    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
612 >
613 >    temp = useFLARB;
614 >    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
615 >
616 >    temp = useRF;
617 >    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
618 >
619 >    temp = useSF;
620 >    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
621  
622 <  if( useDipoles ){
623 <    if( useReactionField )fInfo.dielect = dielectric;
622 > #endif
623 >
624 >    fInfo_.SIM_uses_PBC = usePBC;    
625 >    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
626 >    fInfo_.SIM_uses_LennardJones = useLennardJones;
627 >    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
628 >    fInfo_.SIM_uses_Charges = useCharge;
629 >    fInfo_.SIM_uses_Dipoles = useDipole;
630 >    fInfo_.SIM_uses_Sticky = useSticky;
631 >    fInfo_.SIM_uses_StickyPower = useStickyPower;
632 >    fInfo_.SIM_uses_GayBerne = useGayBerne;
633 >    fInfo_.SIM_uses_EAM = useEAM;
634 >    fInfo_.SIM_uses_Shapes = useShape;
635 >    fInfo_.SIM_uses_FLARB = useFLARB;
636 >    fInfo_.SIM_uses_RF = useRF;
637 >    fInfo_.SIM_uses_SF = useSF;
638 >
639 >    if( myMethod == "REACTION_FIELD") {
640 >      
641 >      if (simParams_->haveDielectric()) {
642 >        fInfo_.dielect = simParams_->getDielectric();
643 >      } else {
644 >        sprintf(painCave.errMsg,
645 >                "SimSetup Error: No Dielectric constant was set.\n"
646 >                "\tYou are trying to use Reaction Field without"
647 >                "\tsetting a dielectric constant!\n");
648 >        painCave.isFatal = 1;
649 >        simError();
650 >      }      
651 >    }
652 >
653    }
654  
655 <  fInfo.SIM_uses_PBC = usePBC;
656 <  //fInfo.SIM_uses_LJ = 0;
657 <  fInfo.SIM_uses_LJ = useLJ;
658 <  fInfo.SIM_uses_sticky = useSticky;
659 <  //fInfo.SIM_uses_sticky = 0;
660 <  fInfo.SIM_uses_charges = useCharges;
661 <  fInfo.SIM_uses_dipoles = useDipoles;
442 <  //fInfo.SIM_uses_dipoles = 0;
443 <  fInfo.SIM_uses_RF = useReactionField;
444 <  //fInfo.SIM_uses_RF = 0;
445 <  fInfo.SIM_uses_GB = useGB;
446 <  fInfo.SIM_uses_EAM = useEAM;
655 >  void SimInfo::setupFortranSim() {
656 >    int isError;
657 >    int nExclude;
658 >    std::vector<int> fortranGlobalGroupMembership;
659 >    
660 >    nExclude = exclude_.getSize();
661 >    isError = 0;
662  
663 <  n_exclude = excludes->getSize();
664 <  excl = excludes->getFortranArray();
665 <  
666 < #ifdef IS_MPI
452 <  n_global = mpiSim->getNAtomsGlobal();
453 < #else
454 <  n_global = n_atoms;
455 < #endif
456 <  
457 <  isError = 0;
458 <  
459 <  getFortranGroupArrays(this, FglobalGroupMembership, mfact);
460 <  //it may not be a good idea to pass the address of first element in vector
461 <  //since c++ standard does not require vector to be stored continuously in meomory
462 <  //Most of the compilers will organize the memory of vector continuously
463 <  setFortranSim( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl,
464 <                  &nGlobalExcludes, globalExcludes, molMembershipArray,
465 <                  &mfact[0], &ngroup, &FglobalGroupMembership[0], &isError);
663 >    //globalGroupMembership_ is filled by SimCreator    
664 >    for (int i = 0; i < nGlobalAtoms_; i++) {
665 >      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
666 >    }
667  
668 <  if( isError ){
668 >    //calculate mass ratio of cutoff group
669 >    std::vector<double> mfact;
670 >    SimInfo::MoleculeIterator mi;
671 >    Molecule* mol;
672 >    Molecule::CutoffGroupIterator ci;
673 >    CutoffGroup* cg;
674 >    Molecule::AtomIterator ai;
675 >    Atom* atom;
676 >    double totalMass;
677 >
678 >    //to avoid memory reallocation, reserve enough space for mfact
679 >    mfact.reserve(getNCutoffGroups());
680      
681 <    sprintf( painCave.errMsg,
682 <             "There was an error setting the simulation information in fortran.\n" );
471 <    painCave.isFatal = 1;
472 <    painCave.severity = OOPSE_ERROR;
473 <    simError();
474 <  }
475 <  
476 < #ifdef IS_MPI
477 <  sprintf( checkPointMsg,
478 <           "succesfully sent the simulation information to fortran.\n");
479 <  MPIcheckPoint();
480 < #endif // is_mpi
481 <  
482 <  this->ndf = this->getNDF();
483 <  this->ndfRaw = this->getNDFraw();
484 <  this->ndfTrans = this->getNDFtranslational();
485 < }
681 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
682 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
683  
684 < void SimInfo::setDefaultRcut( double theRcut ){
685 <  
686 <  haveRcut = 1;
687 <  rCut = theRcut;
688 <  rList = rCut + 1.0;
689 <  
690 <  notifyFortranCutoffs( &rCut, &rSw, &rList );
691 < }
684 >        totalMass = cg->getMass();
685 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
686 >          // Check for massless groups - set mfact to 1 if true
687 >          if (totalMass != 0)
688 >            mfact.push_back(atom->getMass()/totalMass);
689 >          else
690 >            mfact.push_back( 1.0 );
691 >        }
692  
693 < void SimInfo::setDefaultRcut( double theRcut, double theRsw ){
693 >      }      
694 >    }
695  
696 <  rSw = theRsw;
697 <  setDefaultRcut( theRcut );
500 < }
696 >    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
697 >    std::vector<int> identArray;
698  
699 +    //to avoid memory reallocation, reserve enough space identArray
700 +    identArray.reserve(getNAtoms());
701 +    
702 +    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
703 +      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
704 +        identArray.push_back(atom->getIdent());
705 +      }
706 +    }    
707  
708 < void SimInfo::checkCutOffs( void ){
709 <  
710 <  if( boxIsInit ){
708 >    //fill molMembershipArray
709 >    //molMembershipArray is filled by SimCreator    
710 >    std::vector<int> molMembershipArray(nGlobalAtoms_);
711 >    for (int i = 0; i < nGlobalAtoms_; i++) {
712 >      molMembershipArray[i] = globalMolMembership_[i] + 1;
713 >    }
714      
715 <    //we need to check cutOffs against the box
716 <    
717 <    if( rCut > maxCutoff ){
715 >    //setup fortran simulation
716 >    int nGlobalExcludes = 0;
717 >    int* globalExcludes = NULL;
718 >    int* excludeList = exclude_.getExcludeList();
719 >    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
720 >                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
721 >                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
722 >
723 >    if( isError ){
724 >
725        sprintf( painCave.errMsg,
726 <               "cutoffRadius is too large for the current periodic box.\n"
512 <               "\tCurrent Value of cutoffRadius = %G at time %G\n "
513 <               "\tThis is larger than half of at least one of the\n"
514 <               "\tperiodic box vectors.  Right now, the Box matrix is:\n"
515 <               "\n"
516 <               "\t[ %G %G %G ]\n"
517 <               "\t[ %G %G %G ]\n"
518 <               "\t[ %G %G %G ]\n",
519 <               rCut, currentTime,
520 <               Hmat[0][0], Hmat[0][1], Hmat[0][2],
521 <               Hmat[1][0], Hmat[1][1], Hmat[1][2],
522 <               Hmat[2][0], Hmat[2][1], Hmat[2][2]);
523 <      painCave.severity = OOPSE_ERROR;
726 >               "There was an error setting the simulation information in fortran.\n" );
727        painCave.isFatal = 1;
728 +      painCave.severity = OOPSE_ERROR;
729        simError();
730 <    }    
731 <  } else {
732 <    // initialize this stuff before using it, OK?
733 <    sprintf( painCave.errMsg,
734 <             "Trying to check cutoffs without a box.\n"
735 <             "\tOOPSE should have better programmers than that.\n" );
736 <    painCave.severity = OOPSE_ERROR;
533 <    painCave.isFatal = 1;
534 <    simError();      
730 >    }
731 >
732 > #ifdef IS_MPI
733 >    sprintf( checkPointMsg,
734 >             "succesfully sent the simulation information to fortran.\n");
735 >    MPIcheckPoint();
736 > #endif // is_mpi
737    }
536  
537 }
738  
539 void SimInfo::addProperty(GenericData* prop){
739  
740 <  map<string, GenericData*>::iterator result;
741 <  result = properties.find(prop->getID());
543 <  
544 <  //we can't simply use  properties[prop->getID()] = prop,
545 <  //it will cause memory leak if we already contain a propery which has the same name of prop
546 <  
547 <  if(result != properties.end()){
740 > #ifdef IS_MPI
741 >  void SimInfo::setupFortranParallel() {
742      
743 <    delete (*result).second;
744 <    (*result).second = prop;
745 <      
746 <  }
747 <  else{
743 >    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
744 >    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
745 >    std::vector<int> localToGlobalCutoffGroupIndex;
746 >    SimInfo::MoleculeIterator mi;
747 >    Molecule::AtomIterator ai;
748 >    Molecule::CutoffGroupIterator ci;
749 >    Molecule* mol;
750 >    Atom* atom;
751 >    CutoffGroup* cg;
752 >    mpiSimData parallelData;
753 >    int isError;
754  
755 <    properties[prop->getID()] = prop;
755 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
756  
757 +      //local index(index in DataStorge) of atom is important
758 +      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
759 +        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
760 +      }
761 +
762 +      //local index of cutoff group is trivial, it only depends on the order of travesing
763 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
764 +        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
765 +      }        
766 +        
767 +    }
768 +
769 +    //fill up mpiSimData struct
770 +    parallelData.nMolGlobal = getNGlobalMolecules();
771 +    parallelData.nMolLocal = getNMolecules();
772 +    parallelData.nAtomsGlobal = getNGlobalAtoms();
773 +    parallelData.nAtomsLocal = getNAtoms();
774 +    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
775 +    parallelData.nGroupsLocal = getNCutoffGroups();
776 +    parallelData.myNode = worldRank;
777 +    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
778 +
779 +    //pass mpiSimData struct and index arrays to fortran
780 +    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
781 +                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
782 +                    &localToGlobalCutoffGroupIndex[0], &isError);
783 +
784 +    if (isError) {
785 +      sprintf(painCave.errMsg,
786 +              "mpiRefresh errror: fortran didn't like something we gave it.\n");
787 +      painCave.isFatal = 1;
788 +      simError();
789 +    }
790 +
791 +    sprintf(checkPointMsg, " mpiRefresh successful.\n");
792 +    MPIcheckPoint();
793 +
794 +
795    }
558    
559 }
796  
797 < GenericData* SimInfo::getProperty(const string& propName){
562 <
563 <  map<string, GenericData*>::iterator result;
564 <  
565 <  //string lowerCaseName = ();
566 <  
567 <  result = properties.find(propName);
568 <  
569 <  if(result != properties.end())
570 <    return (*result).second;  
571 <  else  
572 <    return NULL;  
573 < }
797 > #endif
798  
799 +  double SimInfo::calcMaxCutoffRadius() {
800  
576 void SimInfo::getFortranGroupArrays(SimInfo* info,
577                                    vector<int>& FglobalGroupMembership,
578                                    vector<double>& mfact){
579  
580  Molecule* myMols;
581  Atom** myAtoms;
582  int numAtom;
583  double mtot;
584  int numMol;
585  int numCutoffGroups;
586  CutoffGroup* myCutoffGroup;
587  vector<CutoffGroup*>::iterator iterCutoff;
588  Atom* cutoffAtom;
589  vector<Atom*>::iterator iterAtom;
590  int atomIndex;
591  double totalMass;
592  
593  mfact.clear();
594  FglobalGroupMembership.clear();
595  
801  
802 <  // Fix the silly fortran indexing problem
802 >    std::set<AtomType*> atomTypes;
803 >    std::set<AtomType*>::iterator i;
804 >    std::vector<double> cutoffRadius;
805 >
806 >    //get the unique atom types
807 >    atomTypes = getUniqueAtomTypes();
808 >
809 >    //query the max cutoff radius among these atom types
810 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
811 >      cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
812 >    }
813 >
814 >    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
815   #ifdef IS_MPI
816 <  numAtom = mpiSim->getNAtomsGlobal();
600 < #else
601 <  numAtom = n_atoms;
816 >    //pick the max cutoff radius among the processors
817   #endif
603  for (int i = 0; i < numAtom; i++)
604    FglobalGroupMembership.push_back(globalGroupMembership[i] + 1);
605  
818  
819 <  myMols = info->molecules;
820 <  numMol = info->n_mol;
609 <  for(int i  = 0; i < numMol; i++){
610 <    numCutoffGroups = myMols[i].getNCutoffGroups();
611 <    for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff);
612 <        myCutoffGroup != NULL;
613 <        myCutoffGroup =myMols[i].nextCutoffGroup(iterCutoff)){
819 >    return maxCutoffRadius;
820 >  }
821  
822 <      totalMass = myCutoffGroup->getMass();
823 <      
824 <      for(cutoffAtom = myCutoffGroup->beginAtom(iterAtom);
825 <          cutoffAtom != NULL;
826 <          cutoffAtom = myCutoffGroup->nextAtom(iterAtom)){
827 <        mfact.push_back(cutoffAtom->getMass()/totalMass);
828 <      }  
822 >  void SimInfo::getCutoff(double& rcut, double& rsw) {
823 >    
824 >    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
825 >        
826 >      if (!simParams_->haveCutoffRadius()){
827 >        sprintf(painCave.errMsg,
828 >                "SimCreator Warning: No value was set for the cutoffRadius.\n"
829 >                "\tOOPSE will use a default value of 15.0 angstroms"
830 >                "\tfor the cutoffRadius.\n");
831 >        painCave.isFatal = 0;
832 >        simError();
833 >        rcut = 15.0;
834 >      } else{
835 >        rcut = simParams_->getCutoffRadius();
836 >      }
837 >
838 >      if (!simParams_->haveSwitchingRadius()){
839 >        sprintf(painCave.errMsg,
840 >                "SimCreator Warning: No value was set for switchingRadius.\n"
841 >                "\tOOPSE will use a default value of\n"
842 >                "\t0.85 * cutoffRadius for the switchingRadius\n");
843 >        painCave.isFatal = 0;
844 >        simError();
845 >        rsw = 0.85 * rcut;
846 >      } else{
847 >        rsw = simParams_->getSwitchingRadius();
848 >      }
849 >
850 >    } else {
851 >      // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
852 >      //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
853 >        
854 >      if (simParams_->haveCutoffRadius()) {
855 >        rcut = simParams_->getCutoffRadius();
856 >      } else {
857 >        //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
858 >        rcut = calcMaxCutoffRadius();
859 >      }
860 >
861 >      if (simParams_->haveSwitchingRadius()) {
862 >        rsw  = simParams_->getSwitchingRadius();
863 >      } else {
864 >        rsw = rcut;
865 >      }
866 >    
867      }
868    }
869  
870 < }
870 >  void SimInfo::setupCutoff() {    
871 >    getCutoff(rcut_, rsw_);    
872 >    double rnblist = rcut_ + 1; // skin of neighbor list
873 >
874 >    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
875 >    
876 >    int cp =  TRADITIONAL_CUTOFF_POLICY;
877 >    if (simParams_->haveCutoffPolicy()) {
878 >      std::string myPolicy = simParams_->getCutoffPolicy();
879 >      toUpper(myPolicy);
880 >      if (myPolicy == "MIX") {
881 >        cp = MIX_CUTOFF_POLICY;
882 >      } else {
883 >        if (myPolicy == "MAX") {
884 >          cp = MAX_CUTOFF_POLICY;
885 >        } else {
886 >          if (myPolicy == "TRADITIONAL") {            
887 >            cp = TRADITIONAL_CUTOFF_POLICY;
888 >          } else {
889 >            // throw error        
890 >            sprintf( painCave.errMsg,
891 >                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
892 >            painCave.isFatal = 1;
893 >            simError();
894 >          }    
895 >        }          
896 >      }
897 >    }
898 >
899 >
900 >    if (simParams_->haveSkinThickness()) {
901 >      double skinThickness = simParams_->getSkinThickness();
902 >    }
903 >
904 >    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist, &cp);
905 >    // also send cutoff notification to electrostatics
906 >    setElectrostaticCutoffRadius(&rcut_, &rsw_);
907 >  }
908 >
909 >  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
910 >    
911 >    int errorOut;
912 >    int esm =  NONE;
913 >    int sm = UNDAMPED;
914 >    double alphaVal;
915 >    double dielectric;
916 >
917 >    errorOut = isError;
918 >    alphaVal = simParams_->getDampingAlpha();
919 >    dielectric = simParams_->getDielectric();
920 >
921 >    if (simParams_->haveElectrostaticSummationMethod()) {
922 >      std::string myMethod = simParams_->getElectrostaticSummationMethod();
923 >      toUpper(myMethod);
924 >      if (myMethod == "NONE") {
925 >        esm = NONE;
926 >      } else {
927 >        if (myMethod == "SWITCHING_FUNCTION") {
928 >          esm = SWITCHING_FUNCTION;
929 >        } else {
930 >          if (myMethod == "SHIFTED_POTENTIAL") {
931 >            esm = SHIFTED_POTENTIAL;
932 >          } else {
933 >            if (myMethod == "SHIFTED_FORCE") {            
934 >              esm = SHIFTED_FORCE;
935 >            } else {
936 >              if (myMethod == "REACTION_FIELD") {            
937 >                esm = REACTION_FIELD;
938 >              } else {
939 >                // throw error        
940 >                sprintf( painCave.errMsg,
941 >                         "SimInfo error: Unknown electrostaticSummationMethod. (Input file specified %s .)\n\telectrostaticSummationMethod must be one of: \"none\", \"shifted_potential\", \"shifted_force\", or \"reaction_field\".", myMethod.c_str() );
942 >                painCave.isFatal = 1;
943 >                simError();
944 >              }    
945 >            }          
946 >          }
947 >        }
948 >      }
949 >    }
950 >    
951 >    if (simParams_->haveElectrostaticScreeningMethod()) {
952 >      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
953 >      toUpper(myScreen);
954 >      if (myScreen == "UNDAMPED") {
955 >        sm = UNDAMPED;
956 >      } else {
957 >        if (myScreen == "DAMPED") {
958 >          sm = DAMPED;
959 >          if (!simParams_->haveDampingAlpha()) {
960 >            //throw error
961 >            sprintf( painCave.errMsg,
962 >                     "SimInfo warning: dampingAlpha was not specified in the input file. A default value of %f (1/ang) will be used.", alphaVal);
963 >            painCave.isFatal = 0;
964 >            simError();
965 >          }
966 >        } else {
967 >          // throw error        
968 >          sprintf( painCave.errMsg,
969 >                   "SimInfo error: Unknown electrostaticScreeningMethod. (Input file specified %s .)\n\telectrostaticScreeningMethod must be one of: \"undamped\" or \"damped\".", myScreen.c_str() );
970 >          painCave.isFatal = 1;
971 >          simError();
972 >        }
973 >      }
974 >    }
975 >    
976 >    // let's pass some summation method variables to fortran
977 >    setElectrostaticSummationMethod( &esm );
978 >    setScreeningMethod( &sm );
979 >    setDampingAlpha( &alphaVal );
980 >    setReactionFieldDielectric( &dielectric );
981 >    initFortranFF( &esm, &errorOut );
982 >  }
983 >
984 >  void SimInfo::setupSwitchingFunction() {    
985 >    int ft = CUBIC;
986 >
987 >    if (simParams_->haveSwitchingFunctionType()) {
988 >      std::string funcType = simParams_->getSwitchingFunctionType();
989 >      toUpper(funcType);
990 >      if (funcType == "CUBIC") {
991 >        ft = CUBIC;
992 >      } else {
993 >        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
994 >          ft = FIFTH_ORDER_POLY;
995 >        } else {
996 >          // throw error        
997 >          sprintf( painCave.errMsg,
998 >                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
999 >          painCave.isFatal = 1;
1000 >          simError();
1001 >        }          
1002 >      }
1003 >    }
1004 >
1005 >    // send switching function notification to switcheroo
1006 >    setFunctionType(&ft);
1007 >
1008 >  }
1009 >
1010 >  void SimInfo::addProperty(GenericData* genData) {
1011 >    properties_.addProperty(genData);  
1012 >  }
1013 >
1014 >  void SimInfo::removeProperty(const std::string& propName) {
1015 >    properties_.removeProperty(propName);  
1016 >  }
1017 >
1018 >  void SimInfo::clearProperties() {
1019 >    properties_.clearProperties();
1020 >  }
1021 >
1022 >  std::vector<std::string> SimInfo::getPropertyNames() {
1023 >    return properties_.getPropertyNames();  
1024 >  }
1025 >      
1026 >  std::vector<GenericData*> SimInfo::getProperties() {
1027 >    return properties_.getProperties();
1028 >  }
1029 >
1030 >  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1031 >    return properties_.getPropertyByName(propName);
1032 >  }
1033 >
1034 >  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1035 >    if (sman_ == sman) {
1036 >      return;
1037 >    }    
1038 >    delete sman_;
1039 >    sman_ = sman;
1040 >
1041 >    Molecule* mol;
1042 >    RigidBody* rb;
1043 >    Atom* atom;
1044 >    SimInfo::MoleculeIterator mi;
1045 >    Molecule::RigidBodyIterator rbIter;
1046 >    Molecule::AtomIterator atomIter;;
1047 >
1048 >    for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1049 >        
1050 >      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1051 >        atom->setSnapshotManager(sman_);
1052 >      }
1053 >        
1054 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1055 >        rb->setSnapshotManager(sman_);
1056 >      }
1057 >    }    
1058 >    
1059 >  }
1060 >
1061 >  Vector3d SimInfo::getComVel(){
1062 >    SimInfo::MoleculeIterator i;
1063 >    Molecule* mol;
1064 >
1065 >    Vector3d comVel(0.0);
1066 >    double totalMass = 0.0;
1067 >    
1068 >
1069 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1070 >      double mass = mol->getMass();
1071 >      totalMass += mass;
1072 >      comVel += mass * mol->getComVel();
1073 >    }  
1074 >
1075 > #ifdef IS_MPI
1076 >    double tmpMass = totalMass;
1077 >    Vector3d tmpComVel(comVel);    
1078 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1079 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1080 > #endif
1081 >
1082 >    comVel /= totalMass;
1083 >
1084 >    return comVel;
1085 >  }
1086 >
1087 >  Vector3d SimInfo::getCom(){
1088 >    SimInfo::MoleculeIterator i;
1089 >    Molecule* mol;
1090 >
1091 >    Vector3d com(0.0);
1092 >    double totalMass = 0.0;
1093 >    
1094 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1095 >      double mass = mol->getMass();
1096 >      totalMass += mass;
1097 >      com += mass * mol->getCom();
1098 >    }  
1099 >
1100 > #ifdef IS_MPI
1101 >    double tmpMass = totalMass;
1102 >    Vector3d tmpCom(com);    
1103 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1104 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1105 > #endif
1106 >
1107 >    com /= totalMass;
1108 >
1109 >    return com;
1110 >
1111 >  }        
1112 >
1113 >  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1114 >
1115 >    return o;
1116 >  }
1117 >  
1118 >  
1119 >   /*
1120 >   Returns center of mass and center of mass velocity in one function call.
1121 >   */
1122 >  
1123 >   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1124 >      SimInfo::MoleculeIterator i;
1125 >      Molecule* mol;
1126 >      
1127 >    
1128 >      double totalMass = 0.0;
1129 >    
1130 >
1131 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1132 >         double mass = mol->getMass();
1133 >         totalMass += mass;
1134 >         com += mass * mol->getCom();
1135 >         comVel += mass * mol->getComVel();          
1136 >      }  
1137 >      
1138 > #ifdef IS_MPI
1139 >      double tmpMass = totalMass;
1140 >      Vector3d tmpCom(com);  
1141 >      Vector3d tmpComVel(comVel);
1142 >      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1143 >      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1144 >      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1145 > #endif
1146 >      
1147 >      com /= totalMass;
1148 >      comVel /= totalMass;
1149 >   }        
1150 >  
1151 >   /*
1152 >   Return intertia tensor for entire system and angular momentum Vector.
1153 >
1154 >
1155 >       [  Ixx -Ixy  -Ixz ]
1156 >  J =| -Iyx  Iyy  -Iyz |
1157 >       [ -Izx -Iyz   Izz ]
1158 >    */
1159 >
1160 >   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1161 >      
1162 >
1163 >      double xx = 0.0;
1164 >      double yy = 0.0;
1165 >      double zz = 0.0;
1166 >      double xy = 0.0;
1167 >      double xz = 0.0;
1168 >      double yz = 0.0;
1169 >      Vector3d com(0.0);
1170 >      Vector3d comVel(0.0);
1171 >      
1172 >      getComAll(com, comVel);
1173 >      
1174 >      SimInfo::MoleculeIterator i;
1175 >      Molecule* mol;
1176 >      
1177 >      Vector3d thisq(0.0);
1178 >      Vector3d thisv(0.0);
1179 >
1180 >      double thisMass = 0.0;
1181 >    
1182 >      
1183 >      
1184 >  
1185 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1186 >        
1187 >         thisq = mol->getCom()-com;
1188 >         thisv = mol->getComVel()-comVel;
1189 >         thisMass = mol->getMass();
1190 >         // Compute moment of intertia coefficients.
1191 >         xx += thisq[0]*thisq[0]*thisMass;
1192 >         yy += thisq[1]*thisq[1]*thisMass;
1193 >         zz += thisq[2]*thisq[2]*thisMass;
1194 >        
1195 >         // compute products of intertia
1196 >         xy += thisq[0]*thisq[1]*thisMass;
1197 >         xz += thisq[0]*thisq[2]*thisMass;
1198 >         yz += thisq[1]*thisq[2]*thisMass;
1199 >            
1200 >         angularMomentum += cross( thisq, thisv ) * thisMass;
1201 >            
1202 >      }  
1203 >      
1204 >      
1205 >      inertiaTensor(0,0) = yy + zz;
1206 >      inertiaTensor(0,1) = -xy;
1207 >      inertiaTensor(0,2) = -xz;
1208 >      inertiaTensor(1,0) = -xy;
1209 >      inertiaTensor(1,1) = xx + zz;
1210 >      inertiaTensor(1,2) = -yz;
1211 >      inertiaTensor(2,0) = -xz;
1212 >      inertiaTensor(2,1) = -yz;
1213 >      inertiaTensor(2,2) = xx + yy;
1214 >      
1215 > #ifdef IS_MPI
1216 >      Mat3x3d tmpI(inertiaTensor);
1217 >      Vector3d tmpAngMom;
1218 >      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1219 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1220 > #endif
1221 >              
1222 >      return;
1223 >   }
1224 >
1225 >   //Returns the angular momentum of the system
1226 >   Vector3d SimInfo::getAngularMomentum(){
1227 >      
1228 >      Vector3d com(0.0);
1229 >      Vector3d comVel(0.0);
1230 >      Vector3d angularMomentum(0.0);
1231 >      
1232 >      getComAll(com,comVel);
1233 >      
1234 >      SimInfo::MoleculeIterator i;
1235 >      Molecule* mol;
1236 >      
1237 >      Vector3d thisr(0.0);
1238 >      Vector3d thisp(0.0);
1239 >      
1240 >      double thisMass;
1241 >      
1242 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1243 >        thisMass = mol->getMass();
1244 >        thisr = mol->getCom()-com;
1245 >        thisp = (mol->getComVel()-comVel)*thisMass;
1246 >        
1247 >        angularMomentum += cross( thisr, thisp );
1248 >        
1249 >      }  
1250 >      
1251 > #ifdef IS_MPI
1252 >      Vector3d tmpAngMom;
1253 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1254 > #endif
1255 >      
1256 >      return angularMomentum;
1257 >   }
1258 >  
1259 >  
1260 > }//end namespace oopse
1261 >

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines