ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-2.0/src/brains/SimInfo.cpp
(Generate patch)

Comparing trunk/OOPSE-2.0/src/brains/SimInfo.cpp (file contents):
Revision 2015 by tim, Sun Feb 13 21:18:27 2005 UTC vs.
Revision 2425 by chrisfen, Fri Nov 11 15:22:11 2005 UTC

# Line 1 | Line 1
1 < /*
1 > /*
2   * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
4   * The University of Notre Dame grants you ("Licensee") a
# Line 52 | Line 52
52   #include "brains/SimInfo.hpp"
53   #include "math/Vector3.hpp"
54   #include "primitives/Molecule.hpp"
55 + #include "UseTheForce/fCutoffPolicy.h"
56 + #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
57 + #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
58 + #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
59   #include "UseTheForce/doForces_interface.h"
60 + #include "UseTheForce/DarkSide/electrostatic_interface.h"
61   #include "UseTheForce/notifyCutoffs_interface.h"
62 + #include "UseTheForce/DarkSide/switcheroo_interface.h"
63   #include "utils/MemoryUtils.hpp"
64   #include "utils/simError.h"
65   #include "selection/SelectionManager.hpp"
# Line 65 | Line 71 | SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*,
71  
72   namespace oopse {
73  
74 < SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
75 <                                ForceField* ff, Globals* simParams) :
76 <                                forceField_(ff), simParams_(simParams),
77 <                                ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
78 <                                nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
79 <                                nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
80 <                                nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
81 <                                nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
82 <                                sman_(NULL), fortranInitialized_(false), selectMan_(NULL) {
74 >  SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
75 >                   ForceField* ff, Globals* simParams) :
76 >    stamps_(stamps), forceField_(ff), simParams_(simParams),
77 >    ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
78 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
79 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
80 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
81 >    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
82 >    sman_(NULL), fortranInitialized_(false) {
83  
84              
85 <    std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
86 <    MoleculeStamp* molStamp;
87 <    int nMolWithSameStamp;
88 <    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
89 <    int nGroups = 0;          //total cutoff groups defined in meta-data file
90 <    CutoffGroupStamp* cgStamp;    
91 <    RigidBodyStamp* rbStamp;
92 <    int nRigidAtoms = 0;
85 >      std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
86 >      MoleculeStamp* molStamp;
87 >      int nMolWithSameStamp;
88 >      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
89 >      int nGroups = 0;      //total cutoff groups defined in meta-data file
90 >      CutoffGroupStamp* cgStamp;    
91 >      RigidBodyStamp* rbStamp;
92 >      int nRigidAtoms = 0;
93      
94 <    for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
94 >      for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
95          molStamp = i->first;
96          nMolWithSameStamp = i->second;
97          
# Line 100 | Line 106 | SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*,
106          int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
107          
108          for (int j=0; j < nCutoffGroupsInStamp; j++) {
109 <            cgStamp = molStamp->getCutoffGroup(j);
110 <            nAtomsInGroups += cgStamp->getNMembers();
109 >          cgStamp = molStamp->getCutoffGroup(j);
110 >          nAtomsInGroups += cgStamp->getNMembers();
111          }
112  
113          nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
114 +
115          nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
116  
117          //calculate atoms in rigid bodies
# Line 112 | Line 119 | SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*,
119          int nRigidBodiesInStamp = molStamp->getNRigidBodies();
120          
121          for (int j=0; j < nRigidBodiesInStamp; j++) {
122 <            rbStamp = molStamp->getRigidBody(j);
123 <            nAtomsInRigidBodies += rbStamp->getNMembers();
122 >          rbStamp = molStamp->getRigidBody(j);
123 >          nAtomsInRigidBodies += rbStamp->getNMembers();
124          }
125  
126          nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
127          nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
128          
129 <    }
129 >      }
130  
131 <    //every free atom (atom does not belong to cutoff groups) is a cutoff group
132 <    //therefore the total number of cutoff groups in the system is equal to
133 <    //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
134 <    //file plus the number of cutoff groups defined in meta-data file
135 <    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
131 >      //every free atom (atom does not belong to cutoff groups) is a cutoff
132 >      //group therefore the total number of cutoff groups in the system is
133 >      //equal to the total number of atoms minus number of atoms belong to
134 >      //cutoff group defined in meta-data file plus the number of cutoff
135 >      //groups defined in meta-data file
136 >      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
137  
138 <    //every free atom (atom does not belong to rigid bodies) is an integrable object
139 <    //therefore the total number of  integrable objects in the system is equal to
140 <    //the total number of atoms minus number of atoms belong to  rigid body defined in meta-data
141 <    //file plus the number of  rigid bodies defined in meta-data file
142 <    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
138 >      //every free atom (atom does not belong to rigid bodies) is an
139 >      //integrable object therefore the total number of integrable objects
140 >      //in the system is equal to the total number of atoms minus number of
141 >      //atoms belong to rigid body defined in meta-data file plus the number
142 >      //of rigid bodies defined in meta-data file
143 >      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
144 >                                                + nGlobalRigidBodies_;
145 >  
146 >      nGlobalMols_ = molStampIds_.size();
147  
136    nGlobalMols_ = molStampIds_.size();
137
148   #ifdef IS_MPI    
149 <    molToProcMap_.resize(nGlobalMols_);
149 >      molToProcMap_.resize(nGlobalMols_);
150   #endif
151  
152 <    selectMan_ = new SelectionManager(this);
143 <    selectMan_->selectAll();
144 < }
152 >    }
153  
154 < SimInfo::~SimInfo() {
155 <    //MemoryUtils::deleteVectorOfPointer(molecules_);
156 <
157 <    MemoryUtils::deleteVectorOfPointer(moleculeStamps_);
158 <    
154 >  SimInfo::~SimInfo() {
155 >    std::map<int, Molecule*>::iterator i;
156 >    for (i = molecules_.begin(); i != molecules_.end(); ++i) {
157 >      delete i->second;
158 >    }
159 >    molecules_.clear();
160 >      
161 >    delete stamps_;
162      delete sman_;
163      delete simParams_;
164      delete forceField_;
165 <    delete selectMan_;
155 < }
165 >  }
166  
167 < int SimInfo::getNGlobalConstraints() {
167 >  int SimInfo::getNGlobalConstraints() {
168      int nGlobalConstraints;
169   #ifdef IS_MPI
170      MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
# Line 163 | Line 173 | int SimInfo::getNGlobalConstraints() {
173      nGlobalConstraints =  nConstraints_;
174   #endif
175      return nGlobalConstraints;
176 < }
176 >  }
177  
178 < bool SimInfo::addMolecule(Molecule* mol) {
178 >  bool SimInfo::addMolecule(Molecule* mol) {
179      MoleculeIterator i;
180  
181      i = molecules_.find(mol->getGlobalIndex());
182      if (i == molecules_.end() ) {
183  
184 <        molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
184 >      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
185          
186 <        nAtoms_ += mol->getNAtoms();
187 <        nBonds_ += mol->getNBonds();
188 <        nBends_ += mol->getNBends();
189 <        nTorsions_ += mol->getNTorsions();
190 <        nRigidBodies_ += mol->getNRigidBodies();
191 <        nIntegrableObjects_ += mol->getNIntegrableObjects();
192 <        nCutoffGroups_ += mol->getNCutoffGroups();
193 <        nConstraints_ += mol->getNConstraintPairs();
186 >      nAtoms_ += mol->getNAtoms();
187 >      nBonds_ += mol->getNBonds();
188 >      nBends_ += mol->getNBends();
189 >      nTorsions_ += mol->getNTorsions();
190 >      nRigidBodies_ += mol->getNRigidBodies();
191 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
192 >      nCutoffGroups_ += mol->getNCutoffGroups();
193 >      nConstraints_ += mol->getNConstraintPairs();
194  
195 <        addExcludePairs(mol);
195 >      addExcludePairs(mol);
196          
197 <        return true;
197 >      return true;
198      } else {
199 <        return false;
199 >      return false;
200      }
201 < }
201 >  }
202  
203 < bool SimInfo::removeMolecule(Molecule* mol) {
203 >  bool SimInfo::removeMolecule(Molecule* mol) {
204      MoleculeIterator i;
205      i = molecules_.find(mol->getGlobalIndex());
206  
207      if (i != molecules_.end() ) {
208  
209 <        assert(mol == i->second);
209 >      assert(mol == i->second);
210          
211 <        nAtoms_ -= mol->getNAtoms();
212 <        nBonds_ -= mol->getNBonds();
213 <        nBends_ -= mol->getNBends();
214 <        nTorsions_ -= mol->getNTorsions();
215 <        nRigidBodies_ -= mol->getNRigidBodies();
216 <        nIntegrableObjects_ -= mol->getNIntegrableObjects();
217 <        nCutoffGroups_ -= mol->getNCutoffGroups();
218 <        nConstraints_ -= mol->getNConstraintPairs();
209 <
210 <        removeExcludePairs(mol);
211 <        molecules_.erase(mol->getGlobalIndex());
211 >      nAtoms_ -= mol->getNAtoms();
212 >      nBonds_ -= mol->getNBonds();
213 >      nBends_ -= mol->getNBends();
214 >      nTorsions_ -= mol->getNTorsions();
215 >      nRigidBodies_ -= mol->getNRigidBodies();
216 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
217 >      nCutoffGroups_ -= mol->getNCutoffGroups();
218 >      nConstraints_ -= mol->getNConstraintPairs();
219  
220 <        delete mol;
220 >      removeExcludePairs(mol);
221 >      molecules_.erase(mol->getGlobalIndex());
222 >
223 >      delete mol;
224          
225 <        return true;
225 >      return true;
226      } else {
227 <        return false;
227 >      return false;
228      }
229  
230  
231 < }    
231 >  }    
232  
233          
234 < Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
234 >  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
235      i = molecules_.begin();
236      return i == molecules_.end() ? NULL : i->second;
237 < }    
237 >  }    
238  
239 < Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
239 >  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
240      ++i;
241      return i == molecules_.end() ? NULL : i->second;    
242 < }
242 >  }
243  
244  
245 < void SimInfo::calcNdf() {
245 >  void SimInfo::calcNdf() {
246      int ndf_local;
247      MoleculeIterator i;
248      std::vector<StuntDouble*>::iterator j;
# Line 242 | Line 252 | void SimInfo::calcNdf() {
252      ndf_local = 0;
253      
254      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
255 <        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
256 <               integrableObject = mol->nextIntegrableObject(j)) {
255 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
256 >           integrableObject = mol->nextIntegrableObject(j)) {
257  
258 <            ndf_local += 3;
258 >        ndf_local += 3;
259  
260 <            if (integrableObject->isDirectional()) {
261 <                if (integrableObject->isLinear()) {
262 <                    ndf_local += 2;
263 <                } else {
264 <                    ndf_local += 3;
265 <                }
266 <            }
260 >        if (integrableObject->isDirectional()) {
261 >          if (integrableObject->isLinear()) {
262 >            ndf_local += 2;
263 >          } else {
264 >            ndf_local += 3;
265 >          }
266 >        }
267              
268 <        }//end for (integrableObject)
268 >      }//end for (integrableObject)
269      }// end for (mol)
270      
271      // n_constraints is local, so subtract them on each processor
# Line 271 | Line 281 | void SimInfo::calcNdf() {
281      // entire system:
282      ndf_ = ndf_ - 3 - nZconstraint_;
283  
284 < }
284 >  }
285  
286 < void SimInfo::calcNdfRaw() {
286 >  void SimInfo::calcNdfRaw() {
287      int ndfRaw_local;
288  
289      MoleculeIterator i;
# Line 285 | Line 295 | void SimInfo::calcNdfRaw() {
295      ndfRaw_local = 0;
296      
297      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
298 <        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
299 <               integrableObject = mol->nextIntegrableObject(j)) {
298 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
299 >           integrableObject = mol->nextIntegrableObject(j)) {
300  
301 <            ndfRaw_local += 3;
301 >        ndfRaw_local += 3;
302  
303 <            if (integrableObject->isDirectional()) {
304 <                if (integrableObject->isLinear()) {
305 <                    ndfRaw_local += 2;
306 <                } else {
307 <                    ndfRaw_local += 3;
308 <                }
309 <            }
303 >        if (integrableObject->isDirectional()) {
304 >          if (integrableObject->isLinear()) {
305 >            ndfRaw_local += 2;
306 >          } else {
307 >            ndfRaw_local += 3;
308 >          }
309 >        }
310              
311 <        }
311 >      }
312      }
313      
314   #ifdef IS_MPI
# Line 306 | Line 316 | void SimInfo::calcNdfRaw() {
316   #else
317      ndfRaw_ = ndfRaw_local;
318   #endif
319 < }
319 >  }
320  
321 < void SimInfo::calcNdfTrans() {
321 >  void SimInfo::calcNdfTrans() {
322      int ndfTrans_local;
323  
324      ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
# Line 322 | Line 332 | void SimInfo::calcNdfTrans() {
332  
333      ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
334  
335 < }
335 >  }
336  
337 < void SimInfo::addExcludePairs(Molecule* mol) {
337 >  void SimInfo::addExcludePairs(Molecule* mol) {
338      std::vector<Bond*>::iterator bondIter;
339      std::vector<Bend*>::iterator bendIter;
340      std::vector<Torsion*>::iterator torsionIter;
# Line 337 | Line 347 | void SimInfo::addExcludePairs(Molecule* mol) {
347      int d;
348      
349      for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
350 <        a = bond->getAtomA()->getGlobalIndex();
351 <        b = bond->getAtomB()->getGlobalIndex();        
352 <        exclude_.addPair(a, b);
350 >      a = bond->getAtomA()->getGlobalIndex();
351 >      b = bond->getAtomB()->getGlobalIndex();        
352 >      exclude_.addPair(a, b);
353      }
354  
355      for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
356 <        a = bend->getAtomA()->getGlobalIndex();
357 <        b = bend->getAtomB()->getGlobalIndex();        
358 <        c = bend->getAtomC()->getGlobalIndex();
356 >      a = bend->getAtomA()->getGlobalIndex();
357 >      b = bend->getAtomB()->getGlobalIndex();        
358 >      c = bend->getAtomC()->getGlobalIndex();
359  
360 <        exclude_.addPair(a, b);
361 <        exclude_.addPair(a, c);
362 <        exclude_.addPair(b, c);        
360 >      exclude_.addPair(a, b);
361 >      exclude_.addPair(a, c);
362 >      exclude_.addPair(b, c);        
363      }
364  
365      for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
366 <        a = torsion->getAtomA()->getGlobalIndex();
367 <        b = torsion->getAtomB()->getGlobalIndex();        
368 <        c = torsion->getAtomC()->getGlobalIndex();        
369 <        d = torsion->getAtomD()->getGlobalIndex();        
366 >      a = torsion->getAtomA()->getGlobalIndex();
367 >      b = torsion->getAtomB()->getGlobalIndex();        
368 >      c = torsion->getAtomC()->getGlobalIndex();        
369 >      d = torsion->getAtomD()->getGlobalIndex();        
370  
371 <        exclude_.addPair(a, b);
372 <        exclude_.addPair(a, c);
373 <        exclude_.addPair(a, d);
374 <        exclude_.addPair(b, c);
375 <        exclude_.addPair(b, d);
376 <        exclude_.addPair(c, d);        
371 >      exclude_.addPair(a, b);
372 >      exclude_.addPair(a, c);
373 >      exclude_.addPair(a, d);
374 >      exclude_.addPair(b, c);
375 >      exclude_.addPair(b, d);
376 >      exclude_.addPair(c, d);        
377      }
378  
379 <    
380 < }
379 >    Molecule::RigidBodyIterator rbIter;
380 >    RigidBody* rb;
381 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
382 >      std::vector<Atom*> atoms = rb->getAtoms();
383 >      for (int i = 0; i < atoms.size() -1 ; ++i) {
384 >        for (int j = i + 1; j < atoms.size(); ++j) {
385 >          a = atoms[i]->getGlobalIndex();
386 >          b = atoms[j]->getGlobalIndex();
387 >          exclude_.addPair(a, b);
388 >        }
389 >      }
390 >    }        
391  
392 < void SimInfo::removeExcludePairs(Molecule* mol) {
392 >  }
393 >
394 >  void SimInfo::removeExcludePairs(Molecule* mol) {
395      std::vector<Bond*>::iterator bondIter;
396      std::vector<Bend*>::iterator bendIter;
397      std::vector<Torsion*>::iterator torsionIter;
# Line 382 | Line 404 | void SimInfo::removeExcludePairs(Molecule* mol) {
404      int d;
405      
406      for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
407 <        a = bond->getAtomA()->getGlobalIndex();
408 <        b = bond->getAtomB()->getGlobalIndex();        
409 <        exclude_.removePair(a, b);
407 >      a = bond->getAtomA()->getGlobalIndex();
408 >      b = bond->getAtomB()->getGlobalIndex();        
409 >      exclude_.removePair(a, b);
410      }
411  
412      for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
413 <        a = bend->getAtomA()->getGlobalIndex();
414 <        b = bend->getAtomB()->getGlobalIndex();        
415 <        c = bend->getAtomC()->getGlobalIndex();
413 >      a = bend->getAtomA()->getGlobalIndex();
414 >      b = bend->getAtomB()->getGlobalIndex();        
415 >      c = bend->getAtomC()->getGlobalIndex();
416  
417 <        exclude_.removePair(a, b);
418 <        exclude_.removePair(a, c);
419 <        exclude_.removePair(b, c);        
417 >      exclude_.removePair(a, b);
418 >      exclude_.removePair(a, c);
419 >      exclude_.removePair(b, c);        
420      }
421  
422      for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
423 <        a = torsion->getAtomA()->getGlobalIndex();
424 <        b = torsion->getAtomB()->getGlobalIndex();        
425 <        c = torsion->getAtomC()->getGlobalIndex();        
426 <        d = torsion->getAtomD()->getGlobalIndex();        
423 >      a = torsion->getAtomA()->getGlobalIndex();
424 >      b = torsion->getAtomB()->getGlobalIndex();        
425 >      c = torsion->getAtomC()->getGlobalIndex();        
426 >      d = torsion->getAtomD()->getGlobalIndex();        
427  
428 <        exclude_.removePair(a, b);
429 <        exclude_.removePair(a, c);
430 <        exclude_.removePair(a, d);
431 <        exclude_.removePair(b, c);
432 <        exclude_.removePair(b, d);
433 <        exclude_.removePair(c, d);        
428 >      exclude_.removePair(a, b);
429 >      exclude_.removePair(a, c);
430 >      exclude_.removePair(a, d);
431 >      exclude_.removePair(b, c);
432 >      exclude_.removePair(b, d);
433 >      exclude_.removePair(c, d);        
434      }
435  
436 < }
436 >    Molecule::RigidBodyIterator rbIter;
437 >    RigidBody* rb;
438 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
439 >      std::vector<Atom*> atoms = rb->getAtoms();
440 >      for (int i = 0; i < atoms.size() -1 ; ++i) {
441 >        for (int j = i + 1; j < atoms.size(); ++j) {
442 >          a = atoms[i]->getGlobalIndex();
443 >          b = atoms[j]->getGlobalIndex();
444 >          exclude_.removePair(a, b);
445 >        }
446 >      }
447 >    }        
448  
449 +  }
450  
451 < void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
451 >
452 >  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
453      int curStampId;
454  
455      //index from 0
# Line 422 | Line 457 | void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp
457  
458      moleculeStamps_.push_back(molStamp);
459      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
460 < }
460 >  }
461  
462 < void SimInfo::update() {
462 >  void SimInfo::update() {
463  
464      setupSimType();
465  
# Line 437 | Line 472 | void SimInfo::update() {
472      //setup fortran force field
473      /** @deprecate */    
474      int isError = 0;
475 <    initFortranFF( &fInfo_.SIM_uses_RF , &isError );
475 >    
476 >    setupElectrostaticSummationMethod( isError );
477 >    setupSwitchingFunction();
478 >
479      if(isError){
480 <        sprintf( painCave.errMsg,
481 <         "ForceField error: There was an error initializing the forceField in fortran.\n" );
482 <        painCave.isFatal = 1;
483 <        simError();
480 >      sprintf( painCave.errMsg,
481 >               "ForceField error: There was an error initializing the forceField in fortran.\n" );
482 >      painCave.isFatal = 1;
483 >      simError();
484      }
485    
486      
# Line 453 | Line 491 | void SimInfo::update() {
491      calcNdfTrans();
492  
493      fortranInitialized_ = true;
494 < }
494 >  }
495  
496 < std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
496 >  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
497      SimInfo::MoleculeIterator mi;
498      Molecule* mol;
499      Molecule::AtomIterator ai;
# Line 464 | Line 502 | std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
502  
503      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
504  
505 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
506 <            atomTypes.insert(atom->getAtomType());
507 <        }
505 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
506 >        atomTypes.insert(atom->getAtomType());
507 >      }
508          
509      }
510  
511      return atomTypes;        
512 < }
512 >  }
513  
514 < void SimInfo::setupSimType() {
514 >  void SimInfo::setupSimType() {
515      std::set<AtomType*>::iterator i;
516      std::set<AtomType*> atomTypes;
517      atomTypes = getUniqueAtomTypes();
# Line 486 | Line 524 | void SimInfo::setupSimType() {
524      int useDipole = 0;
525      int useGayBerne = 0;
526      int useSticky = 0;
527 +    int useStickyPower = 0;
528      int useShape = 0;
529      int useFLARB = 0; //it is not in AtomType yet
530      int useDirectionalAtom = 0;    
531      int useElectrostatics = 0;
532      //usePBC and useRF are from simParams
533 <    int usePBC = simParams_->getPBC();
534 <    int useRF = simParams_->getUseRF();
533 >    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
534 >    int useRF;
535 >    int useSF;
536 >    std::string myMethod;
537  
538 +    // set the useRF logical
539 +    useRF = 0;
540 +    useSF = 0;
541 +
542 +
543 +    if (simParams_->haveElectrostaticSummationMethod()) {
544 +      std::string myMethod = simParams_->getElectrostaticSummationMethod();
545 +      toUpper(myMethod);
546 +      if (myMethod == "REACTION_FIELD") {
547 +        useRF=1;
548 +      } else {
549 +        if (myMethod == "SHIFTED_FORCE") {
550 +          useSF = 1;
551 +        }
552 +      }
553 +    }
554 +
555      //loop over all of the atom types
556      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
557 <        useLennardJones |= (*i)->isLennardJones();
558 <        useElectrostatic |= (*i)->isElectrostatic();
559 <        useEAM |= (*i)->isEAM();
560 <        useCharge |= (*i)->isCharge();
561 <        useDirectional |= (*i)->isDirectional();
562 <        useDipole |= (*i)->isDipole();
563 <        useGayBerne |= (*i)->isGayBerne();
564 <        useSticky |= (*i)->isSticky();
565 <        useShape |= (*i)->isShape();
557 >      useLennardJones |= (*i)->isLennardJones();
558 >      useElectrostatic |= (*i)->isElectrostatic();
559 >      useEAM |= (*i)->isEAM();
560 >      useCharge |= (*i)->isCharge();
561 >      useDirectional |= (*i)->isDirectional();
562 >      useDipole |= (*i)->isDipole();
563 >      useGayBerne |= (*i)->isGayBerne();
564 >      useSticky |= (*i)->isSticky();
565 >      useStickyPower |= (*i)->isStickyPower();
566 >      useShape |= (*i)->isShape();
567      }
568  
569 <    if (useSticky || useDipole || useGayBerne || useShape) {
570 <        useDirectionalAtom = 1;
569 >    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
570 >      useDirectionalAtom = 1;
571      }
572  
573      if (useCharge || useDipole) {
574 <        useElectrostatics = 1;
574 >      useElectrostatics = 1;
575      }
576  
577   #ifdef IS_MPI    
# Line 539 | Line 598 | void SimInfo::setupSimType() {
598      temp = useSticky;
599      MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
600  
601 +    temp = useStickyPower;
602 +    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
603 +    
604      temp = useGayBerne;
605      MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
606  
# Line 553 | Line 615 | void SimInfo::setupSimType() {
615  
616      temp = useRF;
617      MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
618 <    
618 >
619 >    temp = useSF;
620 >    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
621 >
622   #endif
623  
624      fInfo_.SIM_uses_PBC = usePBC;    
# Line 563 | Line 628 | void SimInfo::setupSimType() {
628      fInfo_.SIM_uses_Charges = useCharge;
629      fInfo_.SIM_uses_Dipoles = useDipole;
630      fInfo_.SIM_uses_Sticky = useSticky;
631 +    fInfo_.SIM_uses_StickyPower = useStickyPower;
632      fInfo_.SIM_uses_GayBerne = useGayBerne;
633      fInfo_.SIM_uses_EAM = useEAM;
634      fInfo_.SIM_uses_Shapes = useShape;
635      fInfo_.SIM_uses_FLARB = useFLARB;
636      fInfo_.SIM_uses_RF = useRF;
637 +    fInfo_.SIM_uses_SF = useSF;
638  
639 <    if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
640 <
641 <        if (simParams_->haveDielectric()) {
642 <            fInfo_.dielect = simParams_->getDielectric();
643 <        } else {
644 <            sprintf(painCave.errMsg,
645 <                    "SimSetup Error: No Dielectric constant was set.\n"
646 <                    "\tYou are trying to use Reaction Field without"
647 <                    "\tsetting a dielectric constant!\n");
648 <            painCave.isFatal = 1;
649 <            simError();
650 <        }
584 <        
585 <    } else {
586 <        fInfo_.dielect = 0.0;
639 >    if( myMethod == "REACTION_FIELD") {
640 >      
641 >      if (simParams_->haveDielectric()) {
642 >        fInfo_.dielect = simParams_->getDielectric();
643 >      } else {
644 >        sprintf(painCave.errMsg,
645 >                "SimSetup Error: No Dielectric constant was set.\n"
646 >                "\tYou are trying to use Reaction Field without"
647 >                "\tsetting a dielectric constant!\n");
648 >        painCave.isFatal = 1;
649 >        simError();
650 >      }      
651      }
652  
653 < }
653 >  }
654  
655 < void SimInfo::setupFortranSim() {
655 >  void SimInfo::setupFortranSim() {
656      int isError;
657      int nExclude;
658      std::vector<int> fortranGlobalGroupMembership;
# Line 598 | Line 662 | void SimInfo::setupFortranSim() {
662  
663      //globalGroupMembership_ is filled by SimCreator    
664      for (int i = 0; i < nGlobalAtoms_; i++) {
665 <        fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
665 >      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
666      }
667  
668      //calculate mass ratio of cutoff group
# Line 615 | Line 679 | void SimInfo::setupFortranSim() {
679      mfact.reserve(getNCutoffGroups());
680      
681      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
682 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
682 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
683  
684 <            totalMass = cg->getMass();
685 <            for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
686 <                        mfact.push_back(atom->getMass()/totalMass);
687 <            }
684 >        totalMass = cg->getMass();
685 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
686 >          // Check for massless groups - set mfact to 1 if true
687 >          if (totalMass != 0)
688 >            mfact.push_back(atom->getMass()/totalMass);
689 >          else
690 >            mfact.push_back( 1.0 );
691 >        }
692  
693 <        }      
693 >      }      
694      }
695  
696      //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
# Line 632 | Line 700 | void SimInfo::setupFortranSim() {
700      identArray.reserve(getNAtoms());
701      
702      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
703 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
704 <            identArray.push_back(atom->getIdent());
705 <        }
703 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
704 >        identArray.push_back(atom->getIdent());
705 >      }
706      }    
707  
708      //fill molMembershipArray
709      //molMembershipArray is filled by SimCreator    
710      std::vector<int> molMembershipArray(nGlobalAtoms_);
711      for (int i = 0; i < nGlobalAtoms_; i++) {
712 <        molMembershipArray[i] = globalMolMembership_[i] + 1;
712 >      molMembershipArray[i] = globalMolMembership_[i] + 1;
713      }
714      
715      //setup fortran simulation
648    //gloalExcludes and molMembershipArray should go away (They are never used)
649    //why the hell fortran need to know molecule?
650    //OOPSE = Object-Obfuscated Parallel Simulation Engine
716      int nGlobalExcludes = 0;
717      int* globalExcludes = NULL;
718      int* excludeList = exclude_.getExcludeList();
719      setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
720 <                  &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
721 <                  &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
720 >                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
721 >                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
722  
723      if( isError ){
724  
725 <        sprintf( painCave.errMsg,
726 <                 "There was an error setting the simulation information in fortran.\n" );
727 <        painCave.isFatal = 1;
728 <        painCave.severity = OOPSE_ERROR;
729 <        simError();
725 >      sprintf( painCave.errMsg,
726 >               "There was an error setting the simulation information in fortran.\n" );
727 >      painCave.isFatal = 1;
728 >      painCave.severity = OOPSE_ERROR;
729 >      simError();
730      }
731  
732   #ifdef IS_MPI
733      sprintf( checkPointMsg,
734 <       "succesfully sent the simulation information to fortran.\n");
734 >             "succesfully sent the simulation information to fortran.\n");
735      MPIcheckPoint();
736   #endif // is_mpi
737 < }
737 >  }
738  
739  
740   #ifdef IS_MPI
741 < void SimInfo::setupFortranParallel() {
741 >  void SimInfo::setupFortranParallel() {
742      
743      //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
744      std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
# Line 689 | Line 754 | void SimInfo::setupFortranParallel() {
754  
755      for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
756  
757 <        //local index(index in DataStorge) of atom is important
758 <        for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
759 <            localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
760 <        }
757 >      //local index(index in DataStorge) of atom is important
758 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
759 >        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
760 >      }
761  
762 <        //local index of cutoff group is trivial, it only depends on the order of travesing
763 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
764 <            localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
765 <        }        
762 >      //local index of cutoff group is trivial, it only depends on the order of travesing
763 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
764 >        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
765 >      }        
766          
767      }
768  
# Line 717 | Line 782 | void SimInfo::setupFortranParallel() {
782                      &localToGlobalCutoffGroupIndex[0], &isError);
783  
784      if (isError) {
785 <        sprintf(painCave.errMsg,
786 <                "mpiRefresh errror: fortran didn't like something we gave it.\n");
787 <        painCave.isFatal = 1;
788 <        simError();
785 >      sprintf(painCave.errMsg,
786 >              "mpiRefresh errror: fortran didn't like something we gave it.\n");
787 >      painCave.isFatal = 1;
788 >      simError();
789      }
790  
791      sprintf(checkPointMsg, " mpiRefresh successful.\n");
792      MPIcheckPoint();
793  
794  
795 < }
795 >  }
796  
797   #endif
798  
799 < double SimInfo::calcMaxCutoffRadius() {
799 >  double SimInfo::calcMaxCutoffRadius() {
800  
801  
802      std::set<AtomType*> atomTypes;
# Line 743 | Line 808 | double SimInfo::calcMaxCutoffRadius() {
808  
809      //query the max cutoff radius among these atom types
810      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
811 <        cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
811 >      cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
812      }
813  
814      double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
# Line 752 | Line 817 | double SimInfo::calcMaxCutoffRadius() {
817   #endif
818  
819      return maxCutoffRadius;
820 < }
820 >  }
821  
822 < void SimInfo::getCutoff(double& rcut, double& rsw) {
822 >  void SimInfo::getCutoff(double& rcut, double& rsw) {
823      
824      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
825          
826 <        if (!simParams_->haveRcut()){
827 <            sprintf(painCave.errMsg,
826 >      if (!simParams_->haveCutoffRadius()){
827 >        sprintf(painCave.errMsg,
828                  "SimCreator Warning: No value was set for the cutoffRadius.\n"
829                  "\tOOPSE will use a default value of 15.0 angstroms"
830                  "\tfor the cutoffRadius.\n");
831 <            painCave.isFatal = 0;
832 <            simError();
833 <            rcut = 15.0;
834 <        } else{
835 <            rcut = simParams_->getRcut();
836 <        }
831 >        painCave.isFatal = 0;
832 >        simError();
833 >        rcut = 15.0;
834 >      } else{
835 >        rcut = simParams_->getCutoffRadius();
836 >      }
837  
838 <        if (!simParams_->haveRsw()){
839 <            sprintf(painCave.errMsg,
838 >      if (!simParams_->haveSwitchingRadius()){
839 >        sprintf(painCave.errMsg,
840                  "SimCreator Warning: No value was set for switchingRadius.\n"
841                  "\tOOPSE will use a default value of\n"
842 <                "\t0.95 * cutoffRadius for the switchingRadius\n");
843 <            painCave.isFatal = 0;
844 <            simError();
845 <            rsw = 0.95 * rcut;
846 <        } else{
847 <            rsw = simParams_->getRsw();
848 <        }
842 >                "\t0.85 * cutoffRadius for the switchingRadius\n");
843 >        painCave.isFatal = 0;
844 >        simError();
845 >        rsw = 0.85 * rcut;
846 >      } else{
847 >        rsw = simParams_->getSwitchingRadius();
848 >      }
849  
850      } else {
851 <        // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
852 <        //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
851 >      // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
852 >      //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
853          
854 <        if (simParams_->haveRcut()) {
855 <            rcut = simParams_->getRcut();
856 <        } else {
857 <            //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
858 <            rcut = calcMaxCutoffRadius();
859 <        }
854 >      if (simParams_->haveCutoffRadius()) {
855 >        rcut = simParams_->getCutoffRadius();
856 >      } else {
857 >        //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
858 >        rcut = calcMaxCutoffRadius();
859 >      }
860  
861 <        if (simParams_->haveRsw()) {
862 <            rsw  = simParams_->getRsw();
863 <        } else {
864 <            rsw = rcut;
865 <        }
861 >      if (simParams_->haveSwitchingRadius()) {
862 >        rsw  = simParams_->getSwitchingRadius();
863 >      } else {
864 >        rsw = rcut;
865 >      }
866      
867      }
868 < }
868 >  }
869  
870 < void SimInfo::setupCutoff() {
870 >  void SimInfo::setupCutoff() {    
871      getCutoff(rcut_, rsw_);    
872      double rnblist = rcut_ + 1; // skin of neighbor list
873  
874      //Pass these cutoff radius etc. to fortran. This function should be called once and only once
875 <    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist);
876 < }
875 >    
876 >    int cp =  TRADITIONAL_CUTOFF_POLICY;
877 >    if (simParams_->haveCutoffPolicy()) {
878 >      std::string myPolicy = simParams_->getCutoffPolicy();
879 >      toUpper(myPolicy);
880 >      if (myPolicy == "MIX") {
881 >        cp = MIX_CUTOFF_POLICY;
882 >      } else {
883 >        if (myPolicy == "MAX") {
884 >          cp = MAX_CUTOFF_POLICY;
885 >        } else {
886 >          if (myPolicy == "TRADITIONAL") {            
887 >            cp = TRADITIONAL_CUTOFF_POLICY;
888 >          } else {
889 >            // throw error        
890 >            sprintf( painCave.errMsg,
891 >                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
892 >            painCave.isFatal = 1;
893 >            simError();
894 >          }    
895 >        }          
896 >      }
897 >    }
898  
813 void SimInfo::addProperty(GenericData* genData) {
814    properties_.addProperty(genData);  
815 }
899  
900 < void SimInfo::removeProperty(const std::string& propName) {
901 <    properties_.removeProperty(propName);  
902 < }
900 >    if (simParams_->haveSkinThickness()) {
901 >      double skinThickness = simParams_->getSkinThickness();
902 >    }
903  
904 < void SimInfo::clearProperties() {
905 <    properties_.clearProperties();
906 < }
904 >    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist, &cp);
905 >    // also send cutoff notification to electrostatics
906 >    setElectrostaticCutoffRadius(&rcut_, &rsw_);
907 >  }
908  
909 < std::vector<std::string> SimInfo::getPropertyNames() {
910 <    return properties_.getPropertyNames();  
911 < }
912 <      
913 < std::vector<GenericData*> SimInfo::getProperties() {
914 <    return properties_.getProperties();
915 < }
909 >  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
910 >    
911 >    int errorOut;
912 >    int esm =  NONE;
913 >    int sm = UNDAMPED;
914 >    double alphaVal;
915 >    double dielectric;
916  
917 < GenericData* SimInfo::getPropertyByName(const std::string& propName) {
918 <    return properties_.getPropertyByName(propName);
919 < }
917 >    errorOut = isError;
918 >    alphaVal = simParams_->getDampingAlpha();
919 >    dielectric = simParams_->getDielectric();
920  
921 < void SimInfo::setSnapshotManager(SnapshotManager* sman) {
922 <    if (sman_ == sman_) {
923 <        return;
921 >    if (simParams_->haveElectrostaticSummationMethod()) {
922 >      std::string myMethod = simParams_->getElectrostaticSummationMethod();
923 >      toUpper(myMethod);
924 >      if (myMethod == "NONE") {
925 >        esm = NONE;
926 >      } else {
927 >        if (myMethod == "SWITCHING_FUNCTION") {
928 >          esm = SWITCHING_FUNCTION;
929 >        } else {
930 >          if (myMethod == "SHIFTED_POTENTIAL") {
931 >            esm = SHIFTED_POTENTIAL;
932 >          } else {
933 >            if (myMethod == "SHIFTED_FORCE") {            
934 >              esm = SHIFTED_FORCE;
935 >            } else {
936 >              if (myMethod == "REACTION_FIELD") {            
937 >                esm = REACTION_FIELD;
938 >              } else {
939 >                // throw error        
940 >                sprintf( painCave.errMsg,
941 >                         "SimInfo error: Unknown electrostaticSummationMethod. (Input file specified %s .)\n\telectrostaticSummationMethod must be one of: \"none\", \"shifted_potential\", \"shifted_force\", or \"reaction_field\".", myMethod.c_str() );
942 >                painCave.isFatal = 1;
943 >                simError();
944 >              }    
945 >            }          
946 >          }
947 >        }
948 >      }
949      }
950      
951 +    if (simParams_->haveElectrostaticScreeningMethod()) {
952 +      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
953 +      toUpper(myScreen);
954 +      if (myScreen == "UNDAMPED") {
955 +        sm = UNDAMPED;
956 +      } else {
957 +        if (myScreen == "DAMPED") {
958 +          sm = DAMPED;
959 +          if (!simParams_->haveDampingAlpha()) {
960 +            //throw error
961 +            sprintf( painCave.errMsg,
962 +                     "SimInfo warning: dampingAlpha was not specified in the input file. A default value of %f (1/ang) will be used.", alphaVal);
963 +            painCave.isFatal = 0;
964 +            simError();
965 +          }
966 +        } else {
967 +          // throw error        
968 +          sprintf( painCave.errMsg,
969 +                   "SimInfo error: Unknown electrostaticScreeningMethod. (Input file specified %s .)\n\telectrostaticScreeningMethod must be one of: \"undamped\" or \"damped\".", myScreen.c_str() );
970 +          painCave.isFatal = 1;
971 +          simError();
972 +        }
973 +      }
974 +    }
975 +    
976 +    // let's pass some summation method variables to fortran
977 +    setElectrostaticSummationMethod( &esm );
978 +    setScreeningMethod( &sm );
979 +    setDampingAlpha( &alphaVal );
980 +    setReactionFieldDielectric( &dielectric );
981 +    initFortranFF( &esm, &errorOut );
982 +  }
983 +
984 +  void SimInfo::setupSwitchingFunction() {    
985 +    int ft = CUBIC;
986 +
987 +    if (simParams_->haveSwitchingFunctionType()) {
988 +      std::string funcType = simParams_->getSwitchingFunctionType();
989 +      toUpper(funcType);
990 +      if (funcType == "CUBIC") {
991 +        ft = CUBIC;
992 +      } else {
993 +        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
994 +          ft = FIFTH_ORDER_POLY;
995 +        } else {
996 +          // throw error        
997 +          sprintf( painCave.errMsg,
998 +                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
999 +          painCave.isFatal = 1;
1000 +          simError();
1001 +        }          
1002 +      }
1003 +    }
1004 +
1005 +    // send switching function notification to switcheroo
1006 +    setFunctionType(&ft);
1007 +
1008 +  }
1009 +
1010 +  void SimInfo::addProperty(GenericData* genData) {
1011 +    properties_.addProperty(genData);  
1012 +  }
1013 +
1014 +  void SimInfo::removeProperty(const std::string& propName) {
1015 +    properties_.removeProperty(propName);  
1016 +  }
1017 +
1018 +  void SimInfo::clearProperties() {
1019 +    properties_.clearProperties();
1020 +  }
1021 +
1022 +  std::vector<std::string> SimInfo::getPropertyNames() {
1023 +    return properties_.getPropertyNames();  
1024 +  }
1025 +      
1026 +  std::vector<GenericData*> SimInfo::getProperties() {
1027 +    return properties_.getProperties();
1028 +  }
1029 +
1030 +  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1031 +    return properties_.getPropertyByName(propName);
1032 +  }
1033 +
1034 +  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1035 +    if (sman_ == sman) {
1036 +      return;
1037 +    }    
1038      delete sman_;
1039      sman_ = sman;
1040  
# Line 851 | Line 1047 | void SimInfo::setSnapshotManager(SnapshotManager* sman
1047  
1048      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1049          
1050 <        for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1051 <            atom->setSnapshotManager(sman_);
1052 <        }
1050 >      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1051 >        atom->setSnapshotManager(sman_);
1052 >      }
1053          
1054 <        for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1055 <            rb->setSnapshotManager(sman_);
1056 <        }
1054 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1055 >        rb->setSnapshotManager(sman_);
1056 >      }
1057      }    
1058      
1059 < }
1059 >  }
1060  
1061 < Vector3d SimInfo::getComVel(){
1061 >  Vector3d SimInfo::getComVel(){
1062      SimInfo::MoleculeIterator i;
1063      Molecule* mol;
1064  
# Line 871 | Line 1067 | Vector3d SimInfo::getComVel(){
1067      
1068  
1069      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1070 <        double mass = mol->getMass();
1071 <        totalMass += mass;
1072 <        comVel += mass * mol->getComVel();
1070 >      double mass = mol->getMass();
1071 >      totalMass += mass;
1072 >      comVel += mass * mol->getComVel();
1073      }  
1074  
1075   #ifdef IS_MPI
# Line 886 | Line 1082 | Vector3d SimInfo::getComVel(){
1082      comVel /= totalMass;
1083  
1084      return comVel;
1085 < }
1085 >  }
1086  
1087 < Vector3d SimInfo::getCom(){
1087 >  Vector3d SimInfo::getCom(){
1088      SimInfo::MoleculeIterator i;
1089      Molecule* mol;
1090  
# Line 896 | Line 1092 | Vector3d SimInfo::getCom(){
1092      double totalMass = 0.0;
1093      
1094      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1095 <        double mass = mol->getMass();
1096 <        totalMass += mass;
1097 <        com += mass * mol->getCom();
1095 >      double mass = mol->getMass();
1096 >      totalMass += mass;
1097 >      com += mass * mol->getCom();
1098      }  
1099  
1100   #ifdef IS_MPI
# Line 912 | Line 1108 | Vector3d SimInfo::getCom(){
1108  
1109      return com;
1110  
1111 < }        
1111 >  }        
1112  
1113 < std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1113 >  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1114  
1115      return o;
1116 < }
1116 >  }
1117 >  
1118 >  
1119 >   /*
1120 >   Returns center of mass and center of mass velocity in one function call.
1121 >   */
1122 >  
1123 >   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1124 >      SimInfo::MoleculeIterator i;
1125 >      Molecule* mol;
1126 >      
1127 >    
1128 >      double totalMass = 0.0;
1129 >    
1130  
1131 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1132 +         double mass = mol->getMass();
1133 +         totalMass += mass;
1134 +         com += mass * mol->getCom();
1135 +         comVel += mass * mol->getComVel();          
1136 +      }  
1137 +      
1138 + #ifdef IS_MPI
1139 +      double tmpMass = totalMass;
1140 +      Vector3d tmpCom(com);  
1141 +      Vector3d tmpComVel(comVel);
1142 +      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1143 +      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1144 +      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1145 + #endif
1146 +      
1147 +      com /= totalMass;
1148 +      comVel /= totalMass;
1149 +   }        
1150 +  
1151 +   /*
1152 +   Return intertia tensor for entire system and angular momentum Vector.
1153 +
1154 +
1155 +       [  Ixx -Ixy  -Ixz ]
1156 +  J =| -Iyx  Iyy  -Iyz |
1157 +       [ -Izx -Iyz   Izz ]
1158 +    */
1159 +
1160 +   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1161 +      
1162 +
1163 +      double xx = 0.0;
1164 +      double yy = 0.0;
1165 +      double zz = 0.0;
1166 +      double xy = 0.0;
1167 +      double xz = 0.0;
1168 +      double yz = 0.0;
1169 +      Vector3d com(0.0);
1170 +      Vector3d comVel(0.0);
1171 +      
1172 +      getComAll(com, comVel);
1173 +      
1174 +      SimInfo::MoleculeIterator i;
1175 +      Molecule* mol;
1176 +      
1177 +      Vector3d thisq(0.0);
1178 +      Vector3d thisv(0.0);
1179 +
1180 +      double thisMass = 0.0;
1181 +    
1182 +      
1183 +      
1184 +  
1185 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1186 +        
1187 +         thisq = mol->getCom()-com;
1188 +         thisv = mol->getComVel()-comVel;
1189 +         thisMass = mol->getMass();
1190 +         // Compute moment of intertia coefficients.
1191 +         xx += thisq[0]*thisq[0]*thisMass;
1192 +         yy += thisq[1]*thisq[1]*thisMass;
1193 +         zz += thisq[2]*thisq[2]*thisMass;
1194 +        
1195 +         // compute products of intertia
1196 +         xy += thisq[0]*thisq[1]*thisMass;
1197 +         xz += thisq[0]*thisq[2]*thisMass;
1198 +         yz += thisq[1]*thisq[2]*thisMass;
1199 +            
1200 +         angularMomentum += cross( thisq, thisv ) * thisMass;
1201 +            
1202 +      }  
1203 +      
1204 +      
1205 +      inertiaTensor(0,0) = yy + zz;
1206 +      inertiaTensor(0,1) = -xy;
1207 +      inertiaTensor(0,2) = -xz;
1208 +      inertiaTensor(1,0) = -xy;
1209 +      inertiaTensor(1,1) = xx + zz;
1210 +      inertiaTensor(1,2) = -yz;
1211 +      inertiaTensor(2,0) = -xz;
1212 +      inertiaTensor(2,1) = -yz;
1213 +      inertiaTensor(2,2) = xx + yy;
1214 +      
1215 + #ifdef IS_MPI
1216 +      Mat3x3d tmpI(inertiaTensor);
1217 +      Vector3d tmpAngMom;
1218 +      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1219 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1220 + #endif
1221 +              
1222 +      return;
1223 +   }
1224 +
1225 +   //Returns the angular momentum of the system
1226 +   Vector3d SimInfo::getAngularMomentum(){
1227 +      
1228 +      Vector3d com(0.0);
1229 +      Vector3d comVel(0.0);
1230 +      Vector3d angularMomentum(0.0);
1231 +      
1232 +      getComAll(com,comVel);
1233 +      
1234 +      SimInfo::MoleculeIterator i;
1235 +      Molecule* mol;
1236 +      
1237 +      Vector3d thisr(0.0);
1238 +      Vector3d thisp(0.0);
1239 +      
1240 +      double thisMass;
1241 +      
1242 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1243 +        thisMass = mol->getMass();
1244 +        thisr = mol->getCom()-com;
1245 +        thisp = (mol->getComVel()-comVel)*thisMass;
1246 +        
1247 +        angularMomentum += cross( thisr, thisp );
1248 +        
1249 +      }  
1250 +      
1251 + #ifdef IS_MPI
1252 +      Vector3d tmpAngMom;
1253 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1254 + #endif
1255 +      
1256 +      return angularMomentum;
1257 +   }
1258 +  
1259 +  
1260   }//end namespace oopse
1261  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines