ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-2.0/src/brains/SimInfo.cpp
(Generate patch)

Comparing trunk/OOPSE-2.0/src/brains/SimInfo.cpp (file contents):
Revision 1636 by chrisfen, Fri Oct 22 22:54:01 2004 UTC vs.
Revision 2552 by chrisfen, Thu Jan 12 16:47:25 2006 UTC

# Line 1 | Line 1
1 < #include <stdlib.h>
2 < #include <string.h>
3 < #include <math.h>
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Acknowledgement of the program authors must be made in any
10 > *    publication of scientific results based in part on use of the
11 > *    program.  An acceptable form of acknowledgement is citation of
12 > *    the article in which the program was described (Matthew
13 > *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 > *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 > *    Parallel Simulation Engine for Molecular Dynamics,"
16 > *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 > *
18 > * 2. Redistributions of source code must retain the above copyright
19 > *    notice, this list of conditions and the following disclaimer.
20 > *
21 > * 3. Redistributions in binary form must reproduce the above copyright
22 > *    notice, this list of conditions and the following disclaimer in the
23 > *    documentation and/or other materials provided with the
24 > *    distribution.
25 > *
26 > * This software is provided "AS IS," without a warranty of any
27 > * kind. All express or implied conditions, representations and
28 > * warranties, including any implied warranty of merchantability,
29 > * fitness for a particular purpose or non-infringement, are hereby
30 > * excluded.  The University of Notre Dame and its licensors shall not
31 > * be liable for any damages suffered by licensee as a result of
32 > * using, modifying or distributing the software or its
33 > * derivatives. In no event will the University of Notre Dame or its
34 > * licensors be liable for any lost revenue, profit or data, or for
35 > * direct, indirect, special, consequential, incidental or punitive
36 > * damages, however caused and regardless of the theory of liability,
37 > * arising out of the use of or inability to use software, even if the
38 > * University of Notre Dame has been advised of the possibility of
39 > * such damages.
40 > */
41 >
42 > /**
43 > * @file SimInfo.cpp
44 > * @author    tlin
45 > * @date  11/02/2004
46 > * @version 1.0
47 > */
48  
49 < #include <iostream>
50 < using namespace std;
49 > #include <algorithm>
50 > #include <set>
51 > #include <map>
52  
53   #include "brains/SimInfo.hpp"
54 < #define __C
55 < #include "brains/fSimulation.h"
54 > #include "math/Vector3.hpp"
55 > #include "primitives/Molecule.hpp"
56 > #include "UseTheForce/fCutoffPolicy.h"
57 > #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
58 > #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
59 > #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
60 > #include "UseTheForce/doForces_interface.h"
61 > #include "UseTheForce/DarkSide/electrostatic_interface.h"
62 > #include "UseTheForce/DarkSide/switcheroo_interface.h"
63 > #include "utils/MemoryUtils.hpp"
64   #include "utils/simError.h"
65 < #include "UseTheForce/DarkSide/simulation_interface.h"
66 < #include "UseTheForce/notifyCutoffs_interface.h"
65 > #include "selection/SelectionManager.hpp"
66 > #include "io/ForceFieldOptions.hpp"
67 > #include "UseTheForce/ForceField.hpp"
68  
15 //#include "UseTheForce/fortranWrappers.hpp"
16
17 #include "math/MatVec3.h"
18
69   #ifdef IS_MPI
70 < #include "brains/mpiSimulation.hpp"
71 < #endif
70 > #include "UseTheForce/mpiComponentPlan.h"
71 > #include "UseTheForce/DarkSide/simParallel_interface.h"
72 > #endif
73  
74 < inline double roundMe( double x ){
75 <  return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
76 < }
77 <          
78 < inline double min( double a, double b ){
79 <  return (a < b ) ? a : b;
80 < }
74 > namespace oopse {
75 >  std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
76 >    std::map<int, std::set<int> >::iterator i = container.find(index);
77 >    std::set<int> result;
78 >    if (i != container.end()) {
79 >        result = i->second;
80 >    }
81  
82 < SimInfo* currentInfo;
82 >    return result;
83 >  }
84 >  
85 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
86 >    forceField_(ff), simParams_(simParams),
87 >    ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
88 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
89 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
90 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
91 >    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
92 >    sman_(NULL), fortranInitialized_(false) {
93  
94 < SimInfo::SimInfo(){
94 >      MoleculeStamp* molStamp;
95 >      int nMolWithSameStamp;
96 >      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
97 >      int nGroups = 0;      //total cutoff groups defined in meta-data file
98 >      CutoffGroupStamp* cgStamp;    
99 >      RigidBodyStamp* rbStamp;
100 >      int nRigidAtoms = 0;
101 >      std::vector<Component*> components = simParams->getComponents();
102 >      
103 >      for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
104 >        molStamp = (*i)->getMoleculeStamp();
105 >        nMolWithSameStamp = (*i)->getNMol();
106 >        
107 >        addMoleculeStamp(molStamp, nMolWithSameStamp);
108  
109 <  n_constraints = 0;
110 <  nZconstraints = 0;
37 <  n_oriented = 0;
38 <  n_dipoles = 0;
39 <  ndf = 0;
40 <  ndfRaw = 0;
41 <  nZconstraints = 0;
42 <  the_integrator = NULL;
43 <  setTemp = 0;
44 <  thermalTime = 0.0;
45 <  currentTime = 0.0;
46 <  rCut = 0.0;
47 <  rSw = 0.0;
109 >        //calculate atoms in molecules
110 >        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
111  
112 <  haveRcut = 0;
113 <  haveRsw = 0;
114 <  boxIsInit = 0;
115 <  
116 <  resetTime = 1e99;
112 >        //calculate atoms in cutoff groups
113 >        int nAtomsInGroups = 0;
114 >        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
115 >        
116 >        for (int j=0; j < nCutoffGroupsInStamp; j++) {
117 >          cgStamp = molStamp->getCutoffGroupStamp(j);
118 >          nAtomsInGroups += cgStamp->getNMembers();
119 >        }
120  
121 <  orthoRhombic = 0;
56 <  orthoTolerance = 1E-6;
57 <  useInitXSstate = true;
121 >        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
122  
123 <  usePBC = 0;
60 <  useDirectionalAtoms = 0;
61 <  useLennardJones = 0;
62 <  useElectrostatics = 0;
63 <  useCharges = 0;
64 <  useDipoles = 0;
65 <  useSticky = 0;
66 <  useGayBerne = 0;
67 <  useEAM = 0;
68 <  useShapes = 0;
69 <  useFLARB = 0;
123 >        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
124  
125 <  useSolidThermInt = 0;
126 <  useLiquidThermInt = 0;
125 >        //calculate atoms in rigid bodies
126 >        int nAtomsInRigidBodies = 0;
127 >        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
128 >        
129 >        for (int j=0; j < nRigidBodiesInStamp; j++) {
130 >          rbStamp = molStamp->getRigidBodyStamp(j);
131 >          nAtomsInRigidBodies += rbStamp->getNMembers();
132 >        }
133  
134 <  haveCutoffGroups = false;
134 >        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
135 >        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
136 >        
137 >      }
138  
139 <  excludes = Exclude::Instance();
139 >      //every free atom (atom does not belong to cutoff groups) is a cutoff
140 >      //group therefore the total number of cutoff groups in the system is
141 >      //equal to the total number of atoms minus number of atoms belong to
142 >      //cutoff group defined in meta-data file plus the number of cutoff
143 >      //groups defined in meta-data file
144 >      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
145  
146 <  myConfiguration = new SimState();
146 >      //every free atom (atom does not belong to rigid bodies) is an
147 >      //integrable object therefore the total number of integrable objects
148 >      //in the system is equal to the total number of atoms minus number of
149 >      //atoms belong to rigid body defined in meta-data file plus the number
150 >      //of rigid bodies defined in meta-data file
151 >      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
152 >                                                + nGlobalRigidBodies_;
153 >  
154 >      nGlobalMols_ = molStampIds_.size();
155  
156 <  has_minimizer = false;
157 <  the_minimizer =NULL;
156 > #ifdef IS_MPI    
157 >      molToProcMap_.resize(nGlobalMols_);
158 > #endif
159  
160 <  ngroup = 0;
160 >    }
161  
162 < }
162 >  SimInfo::~SimInfo() {
163 >    std::map<int, Molecule*>::iterator i;
164 >    for (i = molecules_.begin(); i != molecules_.end(); ++i) {
165 >      delete i->second;
166 >    }
167 >    molecules_.clear();
168 >      
169 >    delete sman_;
170 >    delete simParams_;
171 >    delete forceField_;
172 >  }
173  
174 +  int SimInfo::getNGlobalConstraints() {
175 +    int nGlobalConstraints;
176 + #ifdef IS_MPI
177 +    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
178 +                  MPI_COMM_WORLD);    
179 + #else
180 +    nGlobalConstraints =  nConstraints_;
181 + #endif
182 +    return nGlobalConstraints;
183 +  }
184  
185 < SimInfo::~SimInfo(){
185 >  bool SimInfo::addMolecule(Molecule* mol) {
186 >    MoleculeIterator i;
187  
188 <  delete myConfiguration;
188 >    i = molecules_.find(mol->getGlobalIndex());
189 >    if (i == molecules_.end() ) {
190  
191 <  map<string, GenericData*>::iterator i;
192 <  
193 <  for(i = properties.begin(); i != properties.end(); i++)
194 <    delete (*i).second;
191 >      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
192 >        
193 >      nAtoms_ += mol->getNAtoms();
194 >      nBonds_ += mol->getNBonds();
195 >      nBends_ += mol->getNBends();
196 >      nTorsions_ += mol->getNTorsions();
197 >      nRigidBodies_ += mol->getNRigidBodies();
198 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
199 >      nCutoffGroups_ += mol->getNCutoffGroups();
200 >      nConstraints_ += mol->getNConstraintPairs();
201  
202 < }
202 >      addExcludePairs(mol);
203 >        
204 >      return true;
205 >    } else {
206 >      return false;
207 >    }
208 >  }
209  
210 < void SimInfo::setBox(double newBox[3]) {
211 <  
212 <  int i, j;
102 <  double tempMat[3][3];
210 >  bool SimInfo::removeMolecule(Molecule* mol) {
211 >    MoleculeIterator i;
212 >    i = molecules_.find(mol->getGlobalIndex());
213  
214 <  for(i=0; i<3; i++)
105 <    for (j=0; j<3; j++) tempMat[i][j] = 0.0;;
214 >    if (i != molecules_.end() ) {
215  
216 <  tempMat[0][0] = newBox[0];
217 <  tempMat[1][1] = newBox[1];
218 <  tempMat[2][2] = newBox[2];
216 >      assert(mol == i->second);
217 >        
218 >      nAtoms_ -= mol->getNAtoms();
219 >      nBonds_ -= mol->getNBonds();
220 >      nBends_ -= mol->getNBends();
221 >      nTorsions_ -= mol->getNTorsions();
222 >      nRigidBodies_ -= mol->getNRigidBodies();
223 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
224 >      nCutoffGroups_ -= mol->getNCutoffGroups();
225 >      nConstraints_ -= mol->getNConstraintPairs();
226  
227 <  setBoxM( tempMat );
227 >      removeExcludePairs(mol);
228 >      molecules_.erase(mol->getGlobalIndex());
229  
230 < }
230 >      delete mol;
231 >        
232 >      return true;
233 >    } else {
234 >      return false;
235 >    }
236  
115 void SimInfo::setBoxM( double theBox[3][3] ){
116  
117  int i, j;
118  double FortranHmat[9]; // to preserve compatibility with Fortran the
119                         // ordering in the array is as follows:
120                         // [ 0 3 6 ]
121                         // [ 1 4 7 ]
122                         // [ 2 5 8 ]
123  double FortranHmatInv[9]; // the inverted Hmat (for Fortran);
237  
238 <  if( !boxIsInit ) boxIsInit = 1;
238 >  }    
239  
240 <  for(i=0; i < 3; i++)
241 <    for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j];
242 <  
243 <  calcBoxL();
244 <  calcHmatInv();
240 >        
241 >  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
242 >    i = molecules_.begin();
243 >    return i == molecules_.end() ? NULL : i->second;
244 >  }    
245  
246 <  for(i=0; i < 3; i++) {
247 <    for (j=0; j < 3; j++) {
248 <      FortranHmat[3*j + i] = Hmat[i][j];
136 <      FortranHmatInv[3*j + i] = HmatInv[i][j];
137 <    }
246 >  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
247 >    ++i;
248 >    return i == molecules_.end() ? NULL : i->second;    
249    }
250  
140  setFortranBox(FortranHmat, FortranHmatInv, &orthoRhombic);
141
142 }
143
251  
252 < void SimInfo::getBoxM (double theBox[3][3]) {
252 >  void SimInfo::calcNdf() {
253 >    int ndf_local;
254 >    MoleculeIterator i;
255 >    std::vector<StuntDouble*>::iterator j;
256 >    Molecule* mol;
257 >    StuntDouble* integrableObject;
258  
259 <  int i, j;
260 <  for(i=0; i<3; i++)
261 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j];
262 < }
259 >    ndf_local = 0;
260 >    
261 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
262 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
263 >           integrableObject = mol->nextIntegrableObject(j)) {
264  
265 +        ndf_local += 3;
266  
267 < void SimInfo::scaleBox(double scale) {
268 <  double theBox[3][3];
269 <  int i, j;
270 <
271 <  // cerr << "Scaling box by " << scale << "\n";
272 <
273 <  for(i=0; i<3; i++)
274 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale;
161 <
162 <  setBoxM(theBox);
163 <
164 < }
165 <
166 < void SimInfo::calcHmatInv( void ) {
167 <  
168 <  int oldOrtho;
169 <  int i,j;
170 <  double smallDiag;
171 <  double tol;
172 <  double sanity[3][3];
173 <
174 <  invertMat3( Hmat, HmatInv );
175 <
176 <  // check to see if Hmat is orthorhombic
177 <  
178 <  oldOrtho = orthoRhombic;
179 <
180 <  smallDiag = fabs(Hmat[0][0]);
181 <  if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]);
182 <  if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]);
183 <  tol = smallDiag * orthoTolerance;
184 <
185 <  orthoRhombic = 1;
186 <  
187 <  for (i = 0; i < 3; i++ ) {
188 <    for (j = 0 ; j < 3; j++) {
189 <      if (i != j) {
190 <        if (orthoRhombic) {
191 <          if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0;
192 <        }        
267 >        if (integrableObject->isDirectional()) {
268 >          if (integrableObject->isLinear()) {
269 >            ndf_local += 2;
270 >          } else {
271 >            ndf_local += 3;
272 >          }
273 >        }
274 >            
275        }
276      }
195  }
196
197  if( oldOrtho != orthoRhombic ){
277      
278 <    if( orthoRhombic ) {
279 <      sprintf( painCave.errMsg,
201 <               "OOPSE is switching from the default Non-Orthorhombic\n"
202 <               "\tto the faster Orthorhombic periodic boundary computations.\n"
203 <               "\tThis is usually a good thing, but if you wan't the\n"
204 <               "\tNon-Orthorhombic computations, make the orthoBoxTolerance\n"
205 <               "\tvariable ( currently set to %G ) smaller.\n",
206 <               orthoTolerance);
207 <      painCave.severity = OOPSE_INFO;
208 <      simError();
209 <    }
210 <    else {
211 <      sprintf( painCave.errMsg,
212 <               "OOPSE is switching from the faster Orthorhombic to the more\n"
213 <               "\tflexible Non-Orthorhombic periodic boundary computations.\n"
214 <               "\tThis is usually because the box has deformed under\n"
215 <               "\tNPTf integration. If you wan't to live on the edge with\n"
216 <               "\tthe Orthorhombic computations, make the orthoBoxTolerance\n"
217 <               "\tvariable ( currently set to %G ) larger.\n",
218 <               orthoTolerance);
219 <      painCave.severity = OOPSE_WARNING;
220 <      simError();
221 <    }
222 <  }
223 < }
278 >    // n_constraints is local, so subtract them on each processor
279 >    ndf_local -= nConstraints_;
280  
281 < void SimInfo::calcBoxL( void ){
281 > #ifdef IS_MPI
282 >    MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
283 > #else
284 >    ndf_ = ndf_local;
285 > #endif
286  
287 <  double dx, dy, dz, dsq;
287 >    // nZconstraints_ is global, as are the 3 COM translations for the
288 >    // entire system:
289 >    ndf_ = ndf_ - 3 - nZconstraint_;
290  
291 <  // boxVol = Determinant of Hmat
291 >  }
292  
293 <  boxVol = matDet3( Hmat );
293 >  void SimInfo::calcNdfRaw() {
294 >    int ndfRaw_local;
295  
296 <  // boxLx
297 <  
298 <  dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0];
299 <  dsq = dx*dx + dy*dy + dz*dz;
237 <  boxL[0] = sqrt( dsq );
238 <  //maxCutoff = 0.5 * boxL[0];
296 >    MoleculeIterator i;
297 >    std::vector<StuntDouble*>::iterator j;
298 >    Molecule* mol;
299 >    StuntDouble* integrableObject;
300  
301 <  // boxLy
302 <  
242 <  dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1];
243 <  dsq = dx*dx + dy*dy + dz*dz;
244 <  boxL[1] = sqrt( dsq );
245 <  //if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1];
246 <
247 <
248 <  // boxLz
249 <  
250 <  dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2];
251 <  dsq = dx*dx + dy*dy + dz*dz;
252 <  boxL[2] = sqrt( dsq );
253 <  //if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2];
254 <
255 <  //calculate the max cutoff
256 <  maxCutoff =  calcMaxCutOff();
257 <  
258 <  checkCutOffs();
259 <
260 < }
261 <
262 <
263 < double SimInfo::calcMaxCutOff(){
264 <
265 <  double ri[3], rj[3], rk[3];
266 <  double rij[3], rjk[3], rki[3];
267 <  double minDist;
268 <
269 <  ri[0] = Hmat[0][0];
270 <  ri[1] = Hmat[1][0];
271 <  ri[2] = Hmat[2][0];
272 <
273 <  rj[0] = Hmat[0][1];
274 <  rj[1] = Hmat[1][1];
275 <  rj[2] = Hmat[2][1];
276 <
277 <  rk[0] = Hmat[0][2];
278 <  rk[1] = Hmat[1][2];
279 <  rk[2] = Hmat[2][2];
301 >    // Raw degrees of freedom that we have to set
302 >    ndfRaw_local = 0;
303      
304 <  crossProduct3(ri, rj, rij);
305 <  distXY = dotProduct3(rk,rij) / norm3(rij);
304 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
305 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
306 >           integrableObject = mol->nextIntegrableObject(j)) {
307  
308 <  crossProduct3(rj,rk, rjk);
285 <  distYZ = dotProduct3(ri,rjk) / norm3(rjk);
308 >        ndfRaw_local += 3;
309  
310 <  crossProduct3(rk,ri, rki);
311 <  distZX = dotProduct3(rj,rki) / norm3(rki);
312 <
313 <  minDist = min(min(distXY, distYZ), distZX);
314 <  return minDist/2;
315 <  
316 < }
317 <
318 < void SimInfo::wrapVector( double thePos[3] ){
319 <
297 <  int i;
298 <  double scaled[3];
299 <
300 <  if( !orthoRhombic ){
301 <    // calc the scaled coordinates.
302 <  
303 <
304 <    matVecMul3(HmatInv, thePos, scaled);
310 >        if (integrableObject->isDirectional()) {
311 >          if (integrableObject->isLinear()) {
312 >            ndfRaw_local += 2;
313 >          } else {
314 >            ndfRaw_local += 3;
315 >          }
316 >        }
317 >            
318 >      }
319 >    }
320      
321 <    for(i=0; i<3; i++)
322 <      scaled[i] -= roundMe(scaled[i]);
323 <    
324 <    // calc the wrapped real coordinates from the wrapped scaled coordinates
325 <    
311 <    matVecMul3(Hmat, scaled, thePos);
312 <
321 > #ifdef IS_MPI
322 >    MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
323 > #else
324 >    ndfRaw_ = ndfRaw_local;
325 > #endif
326    }
314  else{
315    // calc the scaled coordinates.
316    
317    for(i=0; i<3; i++)
318      scaled[i] = thePos[i]*HmatInv[i][i];
319    
320    // wrap the scaled coordinates
321    
322    for(i=0; i<3; i++)
323      scaled[i] -= roundMe(scaled[i]);
324    
325    // calc the wrapped real coordinates from the wrapped scaled coordinates
326    
327    for(i=0; i<3; i++)
328      thePos[i] = scaled[i]*Hmat[i][i];
329  }
330    
331 }
327  
328 +  void SimInfo::calcNdfTrans() {
329 +    int ndfTrans_local;
330  
331 < int SimInfo::getNDF(){
335 <  int ndf_local;
331 >    ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
332  
337  ndf_local = 0;
338  
339  for(int i = 0; i < integrableObjects.size(); i++){
340    ndf_local += 3;
341    if (integrableObjects[i]->isDirectional()) {
342      if (integrableObjects[i]->isLinear())
343        ndf_local += 2;
344      else
345        ndf_local += 3;
346    }
347  }
333  
349  // n_constraints is local, so subtract them on each processor:
350
351  ndf_local -= n_constraints;
352
334   #ifdef IS_MPI
335 <  MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
335 >    MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
336   #else
337 <  ndf = ndf_local;
337 >    ndfTrans_ = ndfTrans_local;
338   #endif
339  
340 <  // nZconstraints is global, as are the 3 COM translations for the
341 <  // entire system:
340 >    ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
341 >
342 >  }
343  
344 <  ndf = ndf - 3 - nZconstraints;
344 >  void SimInfo::addExcludePairs(Molecule* mol) {
345 >    std::vector<Bond*>::iterator bondIter;
346 >    std::vector<Bend*>::iterator bendIter;
347 >    std::vector<Torsion*>::iterator torsionIter;
348 >    Bond* bond;
349 >    Bend* bend;
350 >    Torsion* torsion;
351 >    int a;
352 >    int b;
353 >    int c;
354 >    int d;
355  
356 <  return ndf;
365 < }
356 >    std::map<int, std::set<int> > atomGroups;
357  
358 < int SimInfo::getNDFraw() {
359 <  int ndfRaw_local;
358 >    Molecule::RigidBodyIterator rbIter;
359 >    RigidBody* rb;
360 >    Molecule::IntegrableObjectIterator ii;
361 >    StuntDouble* integrableObject;
362 >    
363 >    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
364 >           integrableObject = mol->nextIntegrableObject(ii)) {
365  
366 <  // Raw degrees of freedom that we have to set
367 <  ndfRaw_local = 0;
366 >      if (integrableObject->isRigidBody()) {
367 >          rb = static_cast<RigidBody*>(integrableObject);
368 >          std::vector<Atom*> atoms = rb->getAtoms();
369 >          std::set<int> rigidAtoms;
370 >          for (int i = 0; i < atoms.size(); ++i) {
371 >            rigidAtoms.insert(atoms[i]->getGlobalIndex());
372 >          }
373 >          for (int i = 0; i < atoms.size(); ++i) {
374 >            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
375 >          }      
376 >      } else {
377 >        std::set<int> oneAtomSet;
378 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
379 >        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
380 >      }
381 >    }  
382  
373  for(int i = 0; i < integrableObjects.size(); i++){
374    ndfRaw_local += 3;
375    if (integrableObjects[i]->isDirectional()) {
376       if (integrableObjects[i]->isLinear())
377        ndfRaw_local += 2;
378      else
379        ndfRaw_local += 3;
380    }
381  }
383      
384 < #ifdef IS_MPI
385 <  MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
386 < #else
387 <  ndfRaw = ndfRaw_local;
388 < #endif
384 >    
385 >    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
386 >      a = bond->getAtomA()->getGlobalIndex();
387 >      b = bond->getAtomB()->getGlobalIndex();        
388 >      exclude_.addPair(a, b);
389 >    }
390  
391 <  return ndfRaw;
392 < }
391 >    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
392 >      a = bend->getAtomA()->getGlobalIndex();
393 >      b = bend->getAtomB()->getGlobalIndex();        
394 >      c = bend->getAtomC()->getGlobalIndex();
395 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
396 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
397 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
398  
399 < int SimInfo::getNDFtranslational() {
400 <  int ndfTrans_local;
399 >      exclude_.addPairs(rigidSetA, rigidSetB);
400 >      exclude_.addPairs(rigidSetA, rigidSetC);
401 >      exclude_.addPairs(rigidSetB, rigidSetC);
402 >      
403 >      //exclude_.addPair(a, b);
404 >      //exclude_.addPair(a, c);
405 >      //exclude_.addPair(b, c);        
406 >    }
407  
408 <  ndfTrans_local = 3 * integrableObjects.size() - n_constraints;
408 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
409 >      a = torsion->getAtomA()->getGlobalIndex();
410 >      b = torsion->getAtomB()->getGlobalIndex();        
411 >      c = torsion->getAtomC()->getGlobalIndex();        
412 >      d = torsion->getAtomD()->getGlobalIndex();        
413 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
414 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
415 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
416 >      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
417  
418 +      exclude_.addPairs(rigidSetA, rigidSetB);
419 +      exclude_.addPairs(rigidSetA, rigidSetC);
420 +      exclude_.addPairs(rigidSetA, rigidSetD);
421 +      exclude_.addPairs(rigidSetB, rigidSetC);
422 +      exclude_.addPairs(rigidSetB, rigidSetD);
423 +      exclude_.addPairs(rigidSetC, rigidSetD);
424  
425 < #ifdef IS_MPI
426 <  MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
427 < #else
428 <  ndfTrans = ndfTrans_local;
429 < #endif
425 >      /*
426 >      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
427 >      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
428 >      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
429 >      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
430 >      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
431 >      exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
432 >        
433 >      
434 >      exclude_.addPair(a, b);
435 >      exclude_.addPair(a, c);
436 >      exclude_.addPair(a, d);
437 >      exclude_.addPair(b, c);
438 >      exclude_.addPair(b, d);
439 >      exclude_.addPair(c, d);        
440 >      */
441 >    }
442  
443 <  ndfTrans = ndfTrans - 3 - nZconstraints;
443 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
444 >      std::vector<Atom*> atoms = rb->getAtoms();
445 >      for (int i = 0; i < atoms.size() -1 ; ++i) {
446 >        for (int j = i + 1; j < atoms.size(); ++j) {
447 >          a = atoms[i]->getGlobalIndex();
448 >          b = atoms[j]->getGlobalIndex();
449 >          exclude_.addPair(a, b);
450 >        }
451 >      }
452 >    }        
453  
454 <  return ndfTrans;
407 < }
454 >  }
455  
456 < int SimInfo::getTotIntegrableObjects() {
457 <  int nObjs_local;
458 <  int nObjs;
456 >  void SimInfo::removeExcludePairs(Molecule* mol) {
457 >    std::vector<Bond*>::iterator bondIter;
458 >    std::vector<Bend*>::iterator bendIter;
459 >    std::vector<Torsion*>::iterator torsionIter;
460 >    Bond* bond;
461 >    Bend* bend;
462 >    Torsion* torsion;
463 >    int a;
464 >    int b;
465 >    int c;
466 >    int d;
467  
468 <  nObjs_local =  integrableObjects.size();
468 >    std::map<int, std::set<int> > atomGroups;
469  
470 +    Molecule::RigidBodyIterator rbIter;
471 +    RigidBody* rb;
472 +    Molecule::IntegrableObjectIterator ii;
473 +    StuntDouble* integrableObject;
474 +    
475 +    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
476 +           integrableObject = mol->nextIntegrableObject(ii)) {
477  
478 +      if (integrableObject->isRigidBody()) {
479 +          rb = static_cast<RigidBody*>(integrableObject);
480 +          std::vector<Atom*> atoms = rb->getAtoms();
481 +          std::set<int> rigidAtoms;
482 +          for (int i = 0; i < atoms.size(); ++i) {
483 +            rigidAtoms.insert(atoms[i]->getGlobalIndex());
484 +          }
485 +          for (int i = 0; i < atoms.size(); ++i) {
486 +            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
487 +          }      
488 +      } else {
489 +        std::set<int> oneAtomSet;
490 +        oneAtomSet.insert(integrableObject->getGlobalIndex());
491 +        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
492 +      }
493 +    }  
494 +
495 +    
496 +    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
497 +      a = bond->getAtomA()->getGlobalIndex();
498 +      b = bond->getAtomB()->getGlobalIndex();        
499 +      exclude_.removePair(a, b);
500 +    }
501 +
502 +    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
503 +      a = bend->getAtomA()->getGlobalIndex();
504 +      b = bend->getAtomB()->getGlobalIndex();        
505 +      c = bend->getAtomC()->getGlobalIndex();
506 +
507 +      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
508 +      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
509 +      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
510 +
511 +      exclude_.removePairs(rigidSetA, rigidSetB);
512 +      exclude_.removePairs(rigidSetA, rigidSetC);
513 +      exclude_.removePairs(rigidSetB, rigidSetC);
514 +      
515 +      //exclude_.removePair(a, b);
516 +      //exclude_.removePair(a, c);
517 +      //exclude_.removePair(b, c);        
518 +    }
519 +
520 +    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
521 +      a = torsion->getAtomA()->getGlobalIndex();
522 +      b = torsion->getAtomB()->getGlobalIndex();        
523 +      c = torsion->getAtomC()->getGlobalIndex();        
524 +      d = torsion->getAtomD()->getGlobalIndex();        
525 +
526 +      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
527 +      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
528 +      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
529 +      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
530 +
531 +      exclude_.removePairs(rigidSetA, rigidSetB);
532 +      exclude_.removePairs(rigidSetA, rigidSetC);
533 +      exclude_.removePairs(rigidSetA, rigidSetD);
534 +      exclude_.removePairs(rigidSetB, rigidSetC);
535 +      exclude_.removePairs(rigidSetB, rigidSetD);
536 +      exclude_.removePairs(rigidSetC, rigidSetD);
537 +
538 +      /*
539 +      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
540 +      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
541 +      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
542 +      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
543 +      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
544 +      exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
545 +
546 +      
547 +      exclude_.removePair(a, b);
548 +      exclude_.removePair(a, c);
549 +      exclude_.removePair(a, d);
550 +      exclude_.removePair(b, c);
551 +      exclude_.removePair(b, d);
552 +      exclude_.removePair(c, d);        
553 +      */
554 +    }
555 +
556 +    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
557 +      std::vector<Atom*> atoms = rb->getAtoms();
558 +      for (int i = 0; i < atoms.size() -1 ; ++i) {
559 +        for (int j = i + 1; j < atoms.size(); ++j) {
560 +          a = atoms[i]->getGlobalIndex();
561 +          b = atoms[j]->getGlobalIndex();
562 +          exclude_.removePair(a, b);
563 +        }
564 +      }
565 +    }        
566 +
567 +  }
568 +
569 +
570 +  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
571 +    int curStampId;
572 +
573 +    //index from 0
574 +    curStampId = moleculeStamps_.size();
575 +
576 +    moleculeStamps_.push_back(molStamp);
577 +    molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
578 +  }
579 +
580 +  void SimInfo::update() {
581 +
582 +    setupSimType();
583 +
584   #ifdef IS_MPI
585 <  MPI_Allreduce(&nObjs_local,&nObjs,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
418 < #else
419 <  nObjs = nObjs_local;
585 >    setupFortranParallel();
586   #endif
587  
588 +    setupFortranSim();
589  
590 <  return nObjs;
591 < }
590 >    //setup fortran force field
591 >    /** @deprecate */    
592 >    int isError = 0;
593 >    
594 >    setupElectrostaticSummationMethod( isError );
595 >    setupSwitchingFunction();
596  
597 < void SimInfo::refreshSim(){
597 >    if(isError){
598 >      sprintf( painCave.errMsg,
599 >               "ForceField error: There was an error initializing the forceField in fortran.\n" );
600 >      painCave.isFatal = 1;
601 >      simError();
602 >    }
603 >  
604 >    
605 >    setupCutoff();
606  
607 <  simtype fInfo;
608 <  int isError;
609 <  int n_global;
431 <  int* excl;
607 >    calcNdf();
608 >    calcNdfRaw();
609 >    calcNdfTrans();
610  
611 <  fInfo.dielect = 0.0;
434 <
435 <  if( useDipoles ){
436 <    if( useReactionField )fInfo.dielect = dielectric;
611 >    fortranInitialized_ = true;
612    }
613  
614 <  fInfo.SIM_uses_PBC = usePBC;
614 >  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
615 >    SimInfo::MoleculeIterator mi;
616 >    Molecule* mol;
617 >    Molecule::AtomIterator ai;
618 >    Atom* atom;
619 >    std::set<AtomType*> atomTypes;
620  
621 <  if (useSticky || useDipoles || useGayBerne || useShapes) {
622 <    useDirectionalAtoms = 1;
623 <    fInfo.SIM_uses_DirectionalAtoms = useDirectionalAtoms;
621 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
622 >
623 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
624 >        atomTypes.insert(atom->getAtomType());
625 >      }
626 >        
627 >    }
628 >
629 >    return atomTypes;        
630    }
631  
632 <  fInfo.SIM_uses_LennardJones = useLennardJones;
632 >  void SimInfo::setupSimType() {
633 >    std::set<AtomType*>::iterator i;
634 >    std::set<AtomType*> atomTypes;
635 >    atomTypes = getUniqueAtomTypes();
636 >    
637 >    int useLennardJones = 0;
638 >    int useElectrostatic = 0;
639 >    int useEAM = 0;
640 >    int useSC = 0;
641 >    int useCharge = 0;
642 >    int useDirectional = 0;
643 >    int useDipole = 0;
644 >    int useGayBerne = 0;
645 >    int useSticky = 0;
646 >    int useStickyPower = 0;
647 >    int useShape = 0;
648 >    int useFLARB = 0; //it is not in AtomType yet
649 >    int useDirectionalAtom = 0;    
650 >    int useElectrostatics = 0;
651 >    //usePBC and useRF are from simParams
652 >    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
653 >    int useRF;
654 >    int useSF;
655 >    std::string myMethod;
656  
657 <  if (useCharges || useDipoles) {
658 <    useElectrostatics = 1;
659 <    fInfo.SIM_uses_Electrostatics = useElectrostatics;
660 <  }
657 >    // set the useRF logical
658 >    useRF = 0;
659 >    useSF = 0;
660 >
661 >
662 >    if (simParams_->haveElectrostaticSummationMethod()) {
663 >      std::string myMethod = simParams_->getElectrostaticSummationMethod();
664 >      toUpper(myMethod);
665 >      if (myMethod == "REACTION_FIELD") {
666 >        useRF=1;
667 >      } else {
668 >        if (myMethod == "SHIFTED_FORCE") {
669 >          useSF = 1;
670 >        }
671 >      }
672 >    }
673  
674 <  fInfo.SIM_uses_Charges = useCharges;
675 <  fInfo.SIM_uses_Dipoles = useDipoles;
676 <  fInfo.SIM_uses_Sticky = useSticky;
677 <  fInfo.SIM_uses_GayBerne = useGayBerne;
678 <  fInfo.SIM_uses_EAM = useEAM;
679 <  fInfo.SIM_uses_Shapes = useShapes;
680 <  fInfo.SIM_uses_FLARB = useFLARB;
681 <  fInfo.SIM_uses_RF = useReactionField;
674 >    //loop over all of the atom types
675 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
676 >      useLennardJones |= (*i)->isLennardJones();
677 >      useElectrostatic |= (*i)->isElectrostatic();
678 >      useEAM |= (*i)->isEAM();
679 >      useSC |= (*i)->isSC();
680 >      useCharge |= (*i)->isCharge();
681 >      useDirectional |= (*i)->isDirectional();
682 >      useDipole |= (*i)->isDipole();
683 >      useGayBerne |= (*i)->isGayBerne();
684 >      useSticky |= (*i)->isSticky();
685 >      useStickyPower |= (*i)->isStickyPower();
686 >      useShape |= (*i)->isShape();
687 >    }
688  
689 <  n_exclude = excludes->getSize();
690 <  excl = excludes->getFortranArray();
691 <  
465 < #ifdef IS_MPI
466 <  n_global = mpiSim->getNAtomsGlobal();
467 < #else
468 <  n_global = n_atoms;
469 < #endif
470 <  
471 <  isError = 0;
472 <  
473 <  getFortranGroupArrays(this, FglobalGroupMembership, mfact);
474 <  //it may not be a good idea to pass the address of first element in vector
475 <  //since c++ standard does not require vector to be stored continuously in meomory
476 <  //Most of the compilers will organize the memory of vector continuously
477 <  setFortranSim( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl,
478 <                  &nGlobalExcludes, globalExcludes, molMembershipArray,
479 <                  &mfact[0], &ngroup, &FglobalGroupMembership[0], &isError);
689 >    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
690 >      useDirectionalAtom = 1;
691 >    }
692  
693 <  if( isError ){
693 >    if (useCharge || useDipole) {
694 >      useElectrostatics = 1;
695 >    }
696 >
697 > #ifdef IS_MPI    
698 >    int temp;
699 >
700 >    temp = usePBC;
701 >    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
702 >
703 >    temp = useDirectionalAtom;
704 >    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
705 >
706 >    temp = useLennardJones;
707 >    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
708 >
709 >    temp = useElectrostatics;
710 >    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
711 >
712 >    temp = useCharge;
713 >    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
714 >
715 >    temp = useDipole;
716 >    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
717 >
718 >    temp = useSticky;
719 >    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
720 >
721 >    temp = useStickyPower;
722 >    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
723      
724 <    sprintf( painCave.errMsg,
725 <             "There was an error setting the simulation information in fortran.\n" );
726 <    painCave.isFatal = 1;
727 <    painCave.severity = OOPSE_ERROR;
728 <    simError();
724 >    temp = useGayBerne;
725 >    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
726 >
727 >    temp = useEAM;
728 >    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
729 >
730 >    temp = useSC;
731 >    MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
732 >    
733 >    temp = useShape;
734 >    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
735 >
736 >    temp = useFLARB;
737 >    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
738 >
739 >    temp = useRF;
740 >    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
741 >
742 >    temp = useSF;
743 >    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
744 >
745 > #endif
746 >
747 >    fInfo_.SIM_uses_PBC = usePBC;    
748 >    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
749 >    fInfo_.SIM_uses_LennardJones = useLennardJones;
750 >    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
751 >    fInfo_.SIM_uses_Charges = useCharge;
752 >    fInfo_.SIM_uses_Dipoles = useDipole;
753 >    fInfo_.SIM_uses_Sticky = useSticky;
754 >    fInfo_.SIM_uses_StickyPower = useStickyPower;
755 >    fInfo_.SIM_uses_GayBerne = useGayBerne;
756 >    fInfo_.SIM_uses_EAM = useEAM;
757 >    fInfo_.SIM_uses_SC = useSC;
758 >    fInfo_.SIM_uses_Shapes = useShape;
759 >    fInfo_.SIM_uses_FLARB = useFLARB;
760 >    fInfo_.SIM_uses_RF = useRF;
761 >    fInfo_.SIM_uses_SF = useSF;
762 >
763 >    if( myMethod == "REACTION_FIELD") {
764 >      
765 >      if (simParams_->haveDielectric()) {
766 >        fInfo_.dielect = simParams_->getDielectric();
767 >      } else {
768 >        sprintf(painCave.errMsg,
769 >                "SimSetup Error: No Dielectric constant was set.\n"
770 >                "\tYou are trying to use Reaction Field without"
771 >                "\tsetting a dielectric constant!\n");
772 >        painCave.isFatal = 1;
773 >        simError();
774 >      }      
775 >    }
776 >
777    }
489  
490 #ifdef IS_MPI
491  sprintf( checkPointMsg,
492           "succesfully sent the simulation information to fortran.\n");
493  MPIcheckPoint();
494 #endif // is_mpi
495  
496  this->ndf = this->getNDF();
497  this->ndfRaw = this->getNDFraw();
498  this->ndfTrans = this->getNDFtranslational();
499 }
778  
779 < void SimInfo::setDefaultRcut( double theRcut ){
780 <  
781 <  haveRcut = 1;
782 <  rCut = theRcut;
783 <  rList = rCut + 1.0;
784 <  
785 <  notifyFortranCutoffs( &rCut, &rSw, &rList );
508 < }
779 >  void SimInfo::setupFortranSim() {
780 >    int isError;
781 >    int nExclude;
782 >    std::vector<int> fortranGlobalGroupMembership;
783 >    
784 >    nExclude = exclude_.getSize();
785 >    isError = 0;
786  
787 < void SimInfo::setDefaultRcut( double theRcut, double theRsw ){
787 >    //globalGroupMembership_ is filled by SimCreator    
788 >    for (int i = 0; i < nGlobalAtoms_; i++) {
789 >      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
790 >    }
791  
792 <  rSw = theRsw;
793 <  setDefaultRcut( theRcut );
794 < }
792 >    //calculate mass ratio of cutoff group
793 >    std::vector<double> mfact;
794 >    SimInfo::MoleculeIterator mi;
795 >    Molecule* mol;
796 >    Molecule::CutoffGroupIterator ci;
797 >    CutoffGroup* cg;
798 >    Molecule::AtomIterator ai;
799 >    Atom* atom;
800 >    double totalMass;
801  
802 +    //to avoid memory reallocation, reserve enough space for mfact
803 +    mfact.reserve(getNCutoffGroups());
804 +    
805 +    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
806 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
807  
808 < void SimInfo::checkCutOffs( void ){
809 <  
810 <  if( boxIsInit ){
808 >        totalMass = cg->getMass();
809 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
810 >          // Check for massless groups - set mfact to 1 if true
811 >          if (totalMass != 0)
812 >            mfact.push_back(atom->getMass()/totalMass);
813 >          else
814 >            mfact.push_back( 1.0 );
815 >        }
816 >
817 >      }      
818 >    }
819 >
820 >    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
821 >    std::vector<int> identArray;
822 >
823 >    //to avoid memory reallocation, reserve enough space identArray
824 >    identArray.reserve(getNAtoms());
825      
826 <    //we need to check cutOffs against the box
826 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
827 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
828 >        identArray.push_back(atom->getIdent());
829 >      }
830 >    }    
831 >
832 >    //fill molMembershipArray
833 >    //molMembershipArray is filled by SimCreator    
834 >    std::vector<int> molMembershipArray(nGlobalAtoms_);
835 >    for (int i = 0; i < nGlobalAtoms_; i++) {
836 >      molMembershipArray[i] = globalMolMembership_[i] + 1;
837 >    }
838      
839 <    if( rCut > maxCutoff ){
839 >    //setup fortran simulation
840 >    int nGlobalExcludes = 0;
841 >    int* globalExcludes = NULL;
842 >    int* excludeList = exclude_.getExcludeList();
843 >    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
844 >                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
845 >                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
846 >
847 >    if( isError ){
848 >
849        sprintf( painCave.errMsg,
850 <               "cutoffRadius is too large for the current periodic box.\n"
526 <               "\tCurrent Value of cutoffRadius = %G at time %G\n "
527 <               "\tThis is larger than half of at least one of the\n"
528 <               "\tperiodic box vectors.  Right now, the Box matrix is:\n"
529 <               "\n"
530 <               "\t[ %G %G %G ]\n"
531 <               "\t[ %G %G %G ]\n"
532 <               "\t[ %G %G %G ]\n",
533 <               rCut, currentTime,
534 <               Hmat[0][0], Hmat[0][1], Hmat[0][2],
535 <               Hmat[1][0], Hmat[1][1], Hmat[1][2],
536 <               Hmat[2][0], Hmat[2][1], Hmat[2][2]);
537 <      painCave.severity = OOPSE_ERROR;
850 >               "There was an error setting the simulation information in fortran.\n" );
851        painCave.isFatal = 1;
852 +      painCave.severity = OOPSE_ERROR;
853        simError();
854 <    }    
855 <  } else {
856 <    // initialize this stuff before using it, OK?
857 <    sprintf( painCave.errMsg,
858 <             "Trying to check cutoffs without a box.\n"
859 <             "\tOOPSE should have better programmers than that.\n" );
860 <    painCave.severity = OOPSE_ERROR;
547 <    painCave.isFatal = 1;
548 <    simError();      
854 >    }
855 >
856 > #ifdef IS_MPI
857 >    sprintf( checkPointMsg,
858 >             "succesfully sent the simulation information to fortran.\n");
859 >    MPIcheckPoint();
860 > #endif // is_mpi
861    }
550  
551 }
862  
553 void SimInfo::addProperty(GenericData* prop){
863  
864 <  map<string, GenericData*>::iterator result;
865 <  result = properties.find(prop->getID());
557 <  
558 <  //we can't simply use  properties[prop->getID()] = prop,
559 <  //it will cause memory leak if we already contain a propery which has the same name of prop
560 <  
561 <  if(result != properties.end()){
864 > #ifdef IS_MPI
865 >  void SimInfo::setupFortranParallel() {
866      
867 <    delete (*result).second;
868 <    (*result).second = prop;
869 <      
870 <  }
871 <  else{
867 >    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
868 >    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
869 >    std::vector<int> localToGlobalCutoffGroupIndex;
870 >    SimInfo::MoleculeIterator mi;
871 >    Molecule::AtomIterator ai;
872 >    Molecule::CutoffGroupIterator ci;
873 >    Molecule* mol;
874 >    Atom* atom;
875 >    CutoffGroup* cg;
876 >    mpiSimData parallelData;
877 >    int isError;
878  
879 <    properties[prop->getID()] = prop;
879 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
880  
881 <  }
882 <    
883 < }
881 >      //local index(index in DataStorge) of atom is important
882 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
883 >        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
884 >      }
885  
886 < GenericData* SimInfo::getProperty(const string& propName){
887 <
888 <  map<string, GenericData*>::iterator result;
889 <  
890 <  //string lowerCaseName = ();
891 <  
581 <  result = properties.find(propName);
582 <  
583 <  if(result != properties.end())
584 <    return (*result).second;  
585 <  else  
586 <    return NULL;  
587 < }
886 >      //local index of cutoff group is trivial, it only depends on the order of travesing
887 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
888 >        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
889 >      }        
890 >        
891 >    }
892  
893 +    //fill up mpiSimData struct
894 +    parallelData.nMolGlobal = getNGlobalMolecules();
895 +    parallelData.nMolLocal = getNMolecules();
896 +    parallelData.nAtomsGlobal = getNGlobalAtoms();
897 +    parallelData.nAtomsLocal = getNAtoms();
898 +    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
899 +    parallelData.nGroupsLocal = getNCutoffGroups();
900 +    parallelData.myNode = worldRank;
901 +    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
902  
903 < void SimInfo::getFortranGroupArrays(SimInfo* info,
904 <                                    vector<int>& FglobalGroupMembership,
905 <                                    vector<double>& mfact){
906 <  
594 <  Molecule* myMols;
595 <  Atom** myAtoms;
596 <  int numAtom;
597 <  double mtot;
598 <  int numMol;
599 <  int numCutoffGroups;
600 <  CutoffGroup* myCutoffGroup;
601 <  vector<CutoffGroup*>::iterator iterCutoff;
602 <  Atom* cutoffAtom;
603 <  vector<Atom*>::iterator iterAtom;
604 <  int atomIndex;
605 <  double totalMass;
606 <  
607 <  mfact.clear();
608 <  FglobalGroupMembership.clear();
609 <  
903 >    //pass mpiSimData struct and index arrays to fortran
904 >    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
905 >                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
906 >                    &localToGlobalCutoffGroupIndex[0], &isError);
907  
908 <  // Fix the silly fortran indexing problem
909 < #ifdef IS_MPI
910 <  numAtom = mpiSim->getNAtomsGlobal();
911 < #else
912 <  numAtom = n_atoms;
908 >    if (isError) {
909 >      sprintf(painCave.errMsg,
910 >              "mpiRefresh errror: fortran didn't like something we gave it.\n");
911 >      painCave.isFatal = 1;
912 >      simError();
913 >    }
914 >
915 >    sprintf(checkPointMsg, " mpiRefresh successful.\n");
916 >    MPIcheckPoint();
917 >
918 >
919 >  }
920 >
921   #endif
617  for (int i = 0; i < numAtom; i++)
618    FglobalGroupMembership.push_back(globalGroupMembership[i] + 1);
619  
922  
923 <  myMols = info->molecules;
924 <  numMol = info->n_mol;
925 <  for(int i  = 0; i < numMol; i++){
624 <    numCutoffGroups = myMols[i].getNCutoffGroups();
625 <    for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff);
626 <        myCutoffGroup != NULL;
627 <        myCutoffGroup =myMols[i].nextCutoffGroup(iterCutoff)){
923 >  void SimInfo::setupCutoff() {          
924 >    
925 >    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
926  
927 <      totalMass = myCutoffGroup->getMass();
928 <      
929 <      for(cutoffAtom = myCutoffGroup->beginAtom(iterAtom);
930 <          cutoffAtom != NULL;
931 <          cutoffAtom = myCutoffGroup->nextAtom(iterAtom)){
932 <        mfact.push_back(cutoffAtom->getMass()/totalMass);
933 <      }  
927 >    // Check the cutoff policy
928 >    int cp =  TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
929 >
930 >    std::string myPolicy;
931 >    if (forceFieldOptions_.haveCutoffPolicy()){
932 >      myPolicy = forceFieldOptions_.getCutoffPolicy();
933 >    }else if (simParams_->haveCutoffPolicy()) {
934 >      myPolicy = simParams_->getCutoffPolicy();
935 >    }
936 >
937 >    if (!myPolicy.empty()){
938 >      toUpper(myPolicy);
939 >      if (myPolicy == "MIX") {
940 >        cp = MIX_CUTOFF_POLICY;
941 >      } else {
942 >        if (myPolicy == "MAX") {
943 >          cp = MAX_CUTOFF_POLICY;
944 >        } else {
945 >          if (myPolicy == "TRADITIONAL") {            
946 >            cp = TRADITIONAL_CUTOFF_POLICY;
947 >          } else {
948 >            // throw error        
949 >            sprintf( painCave.errMsg,
950 >                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
951 >            painCave.isFatal = 1;
952 >            simError();
953 >          }    
954 >        }          
955 >      }
956 >    }          
957 >    notifyFortranCutoffPolicy(&cp);
958 >
959 >    // Check the Skin Thickness for neighborlists
960 >    double skin;
961 >    if (simParams_->haveSkinThickness()) {
962 >      skin = simParams_->getSkinThickness();
963 >      notifyFortranSkinThickness(&skin);
964 >    }            
965 >        
966 >    // Check if the cutoff was set explicitly:
967 >    if (simParams_->haveCutoffRadius()) {
968 >      rcut_ = simParams_->getCutoffRadius();
969 >      if (simParams_->haveSwitchingRadius()) {
970 >        rsw_  = simParams_->getSwitchingRadius();
971 >      } else {
972 >        rsw_ = rcut_;
973 >      }
974 >      notifyFortranCutoffs(&rcut_, &rsw_);
975 >      
976 >    } else {
977 >      
978 >      // For electrostatic atoms, we'll assume a large safe value:
979 >      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
980 >        sprintf(painCave.errMsg,
981 >                "SimCreator Warning: No value was set for the cutoffRadius.\n"
982 >                "\tOOPSE will use a default value of 15.0 angstroms"
983 >                "\tfor the cutoffRadius.\n");
984 >        painCave.isFatal = 0;
985 >        simError();
986 >        rcut_ = 15.0;
987 >      
988 >        if (simParams_->haveElectrostaticSummationMethod()) {
989 >          std::string myMethod = simParams_->getElectrostaticSummationMethod();
990 >          toUpper(myMethod);
991 >          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
992 >            if (simParams_->haveSwitchingRadius()){
993 >              sprintf(painCave.errMsg,
994 >                      "SimInfo Warning: A value was set for the switchingRadius\n"
995 >                      "\teven though the electrostaticSummationMethod was\n"
996 >                      "\tset to %s\n", myMethod.c_str());
997 >              painCave.isFatal = 1;
998 >              simError();            
999 >            }
1000 >          }
1001 >        }
1002 >      
1003 >        if (simParams_->haveSwitchingRadius()){
1004 >          rsw_ = simParams_->getSwitchingRadius();
1005 >        } else {        
1006 >          sprintf(painCave.errMsg,
1007 >                  "SimCreator Warning: No value was set for switchingRadius.\n"
1008 >                  "\tOOPSE will use a default value of\n"
1009 >                  "\t0.85 * cutoffRadius for the switchingRadius\n");
1010 >          painCave.isFatal = 0;
1011 >          simError();
1012 >          rsw_ = 0.85 * rcut_;
1013 >        }
1014 >        notifyFortranCutoffs(&rcut_, &rsw_);
1015 >      } else {
1016 >        // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1017 >        // We'll punt and let fortran figure out the cutoffs later.
1018 >        
1019 >        notifyFortranYouAreOnYourOwn();
1020 >
1021 >      }
1022      }
1023    }
1024  
1025 < }
1025 >  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
1026 >    
1027 >    int errorOut;
1028 >    int esm =  NONE;
1029 >    int sm = UNDAMPED;
1030 >    double alphaVal;
1031 >    double dielectric;
1032 >
1033 >    errorOut = isError;
1034 >    alphaVal = simParams_->getDampingAlpha();
1035 >    dielectric = simParams_->getDielectric();
1036 >
1037 >    if (simParams_->haveElectrostaticSummationMethod()) {
1038 >      std::string myMethod = simParams_->getElectrostaticSummationMethod();
1039 >      toUpper(myMethod);
1040 >      if (myMethod == "NONE") {
1041 >        esm = NONE;
1042 >      } else {
1043 >        if (myMethod == "SWITCHING_FUNCTION") {
1044 >          esm = SWITCHING_FUNCTION;
1045 >        } else {
1046 >          if (myMethod == "SHIFTED_POTENTIAL") {
1047 >            esm = SHIFTED_POTENTIAL;
1048 >          } else {
1049 >            if (myMethod == "SHIFTED_FORCE") {            
1050 >              esm = SHIFTED_FORCE;
1051 >            } else {
1052 >              if (myMethod == "REACTION_FIELD") {            
1053 >                esm = REACTION_FIELD;
1054 >              } else {
1055 >                // throw error        
1056 >                sprintf( painCave.errMsg,
1057 >                         "SimInfo error: Unknown electrostaticSummationMethod.\n"
1058 >                         "\t(Input file specified %s .)\n"
1059 >                         "\telectrostaticSummationMethod must be one of: \"none\",\n"
1060 >                         "\t\"shifted_potential\", \"shifted_force\", or \n"
1061 >                         "\t\"reaction_field\".\n", myMethod.c_str() );
1062 >                painCave.isFatal = 1;
1063 >                simError();
1064 >              }    
1065 >            }          
1066 >          }
1067 >        }
1068 >      }
1069 >    }
1070 >    
1071 >    if (simParams_->haveElectrostaticScreeningMethod()) {
1072 >      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1073 >      toUpper(myScreen);
1074 >      if (myScreen == "UNDAMPED") {
1075 >        sm = UNDAMPED;
1076 >      } else {
1077 >        if (myScreen == "DAMPED") {
1078 >          sm = DAMPED;
1079 >          if (!simParams_->haveDampingAlpha()) {
1080 >            //throw error
1081 >            sprintf( painCave.errMsg,
1082 >                     "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1083 >                     "\tA default value of %f (1/ang) will be used.\n", alphaVal);
1084 >            painCave.isFatal = 0;
1085 >            simError();
1086 >          }
1087 >        } else {
1088 >          // throw error        
1089 >          sprintf( painCave.errMsg,
1090 >                   "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1091 >                   "\t(Input file specified %s .)\n"
1092 >                   "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1093 >                   "or \"damped\".\n", myScreen.c_str() );
1094 >          painCave.isFatal = 1;
1095 >          simError();
1096 >        }
1097 >      }
1098 >    }
1099 >    
1100 >    // let's pass some summation method variables to fortran
1101 >    setElectrostaticSummationMethod( &esm );
1102 >    setFortranElectrostaticMethod( &esm );
1103 >    setScreeningMethod( &sm );
1104 >    setDampingAlpha( &alphaVal );
1105 >    setReactionFieldDielectric( &dielectric );
1106 >    initFortranFF( &errorOut );
1107 >  }
1108 >
1109 >  void SimInfo::setupSwitchingFunction() {    
1110 >    int ft = CUBIC;
1111 >
1112 >    if (simParams_->haveSwitchingFunctionType()) {
1113 >      std::string funcType = simParams_->getSwitchingFunctionType();
1114 >      toUpper(funcType);
1115 >      if (funcType == "CUBIC") {
1116 >        ft = CUBIC;
1117 >      } else {
1118 >        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1119 >          ft = FIFTH_ORDER_POLY;
1120 >        } else {
1121 >          // throw error        
1122 >          sprintf( painCave.errMsg,
1123 >                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1124 >          painCave.isFatal = 1;
1125 >          simError();
1126 >        }          
1127 >      }
1128 >    }
1129 >
1130 >    // send switching function notification to switcheroo
1131 >    setFunctionType(&ft);
1132 >
1133 >  }
1134 >
1135 >  void SimInfo::addProperty(GenericData* genData) {
1136 >    properties_.addProperty(genData);  
1137 >  }
1138 >
1139 >  void SimInfo::removeProperty(const std::string& propName) {
1140 >    properties_.removeProperty(propName);  
1141 >  }
1142 >
1143 >  void SimInfo::clearProperties() {
1144 >    properties_.clearProperties();
1145 >  }
1146 >
1147 >  std::vector<std::string> SimInfo::getPropertyNames() {
1148 >    return properties_.getPropertyNames();  
1149 >  }
1150 >      
1151 >  std::vector<GenericData*> SimInfo::getProperties() {
1152 >    return properties_.getProperties();
1153 >  }
1154 >
1155 >  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1156 >    return properties_.getPropertyByName(propName);
1157 >  }
1158 >
1159 >  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1160 >    if (sman_ == sman) {
1161 >      return;
1162 >    }    
1163 >    delete sman_;
1164 >    sman_ = sman;
1165 >
1166 >    Molecule* mol;
1167 >    RigidBody* rb;
1168 >    Atom* atom;
1169 >    SimInfo::MoleculeIterator mi;
1170 >    Molecule::RigidBodyIterator rbIter;
1171 >    Molecule::AtomIterator atomIter;;
1172 >
1173 >    for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1174 >        
1175 >      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1176 >        atom->setSnapshotManager(sman_);
1177 >      }
1178 >        
1179 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1180 >        rb->setSnapshotManager(sman_);
1181 >      }
1182 >    }    
1183 >    
1184 >  }
1185 >
1186 >  Vector3d SimInfo::getComVel(){
1187 >    SimInfo::MoleculeIterator i;
1188 >    Molecule* mol;
1189 >
1190 >    Vector3d comVel(0.0);
1191 >    double totalMass = 0.0;
1192 >    
1193 >
1194 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1195 >      double mass = mol->getMass();
1196 >      totalMass += mass;
1197 >      comVel += mass * mol->getComVel();
1198 >    }  
1199 >
1200 > #ifdef IS_MPI
1201 >    double tmpMass = totalMass;
1202 >    Vector3d tmpComVel(comVel);    
1203 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1204 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1205 > #endif
1206 >
1207 >    comVel /= totalMass;
1208 >
1209 >    return comVel;
1210 >  }
1211 >
1212 >  Vector3d SimInfo::getCom(){
1213 >    SimInfo::MoleculeIterator i;
1214 >    Molecule* mol;
1215 >
1216 >    Vector3d com(0.0);
1217 >    double totalMass = 0.0;
1218 >    
1219 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1220 >      double mass = mol->getMass();
1221 >      totalMass += mass;
1222 >      com += mass * mol->getCom();
1223 >    }  
1224 >
1225 > #ifdef IS_MPI
1226 >    double tmpMass = totalMass;
1227 >    Vector3d tmpCom(com);    
1228 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1229 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1230 > #endif
1231 >
1232 >    com /= totalMass;
1233 >
1234 >    return com;
1235 >
1236 >  }        
1237 >
1238 >  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1239 >
1240 >    return o;
1241 >  }
1242 >  
1243 >  
1244 >   /*
1245 >   Returns center of mass and center of mass velocity in one function call.
1246 >   */
1247 >  
1248 >   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1249 >      SimInfo::MoleculeIterator i;
1250 >      Molecule* mol;
1251 >      
1252 >    
1253 >      double totalMass = 0.0;
1254 >    
1255 >
1256 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1257 >         double mass = mol->getMass();
1258 >         totalMass += mass;
1259 >         com += mass * mol->getCom();
1260 >         comVel += mass * mol->getComVel();          
1261 >      }  
1262 >      
1263 > #ifdef IS_MPI
1264 >      double tmpMass = totalMass;
1265 >      Vector3d tmpCom(com);  
1266 >      Vector3d tmpComVel(comVel);
1267 >      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1268 >      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1269 >      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1270 > #endif
1271 >      
1272 >      com /= totalMass;
1273 >      comVel /= totalMass;
1274 >   }        
1275 >  
1276 >   /*
1277 >   Return intertia tensor for entire system and angular momentum Vector.
1278 >
1279 >
1280 >       [  Ixx -Ixy  -Ixz ]
1281 >  J =| -Iyx  Iyy  -Iyz |
1282 >       [ -Izx -Iyz   Izz ]
1283 >    */
1284 >
1285 >   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1286 >      
1287 >
1288 >      double xx = 0.0;
1289 >      double yy = 0.0;
1290 >      double zz = 0.0;
1291 >      double xy = 0.0;
1292 >      double xz = 0.0;
1293 >      double yz = 0.0;
1294 >      Vector3d com(0.0);
1295 >      Vector3d comVel(0.0);
1296 >      
1297 >      getComAll(com, comVel);
1298 >      
1299 >      SimInfo::MoleculeIterator i;
1300 >      Molecule* mol;
1301 >      
1302 >      Vector3d thisq(0.0);
1303 >      Vector3d thisv(0.0);
1304 >
1305 >      double thisMass = 0.0;
1306 >    
1307 >      
1308 >      
1309 >  
1310 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1311 >        
1312 >         thisq = mol->getCom()-com;
1313 >         thisv = mol->getComVel()-comVel;
1314 >         thisMass = mol->getMass();
1315 >         // Compute moment of intertia coefficients.
1316 >         xx += thisq[0]*thisq[0]*thisMass;
1317 >         yy += thisq[1]*thisq[1]*thisMass;
1318 >         zz += thisq[2]*thisq[2]*thisMass;
1319 >        
1320 >         // compute products of intertia
1321 >         xy += thisq[0]*thisq[1]*thisMass;
1322 >         xz += thisq[0]*thisq[2]*thisMass;
1323 >         yz += thisq[1]*thisq[2]*thisMass;
1324 >            
1325 >         angularMomentum += cross( thisq, thisv ) * thisMass;
1326 >            
1327 >      }  
1328 >      
1329 >      
1330 >      inertiaTensor(0,0) = yy + zz;
1331 >      inertiaTensor(0,1) = -xy;
1332 >      inertiaTensor(0,2) = -xz;
1333 >      inertiaTensor(1,0) = -xy;
1334 >      inertiaTensor(1,1) = xx + zz;
1335 >      inertiaTensor(1,2) = -yz;
1336 >      inertiaTensor(2,0) = -xz;
1337 >      inertiaTensor(2,1) = -yz;
1338 >      inertiaTensor(2,2) = xx + yy;
1339 >      
1340 > #ifdef IS_MPI
1341 >      Mat3x3d tmpI(inertiaTensor);
1342 >      Vector3d tmpAngMom;
1343 >      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1344 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1345 > #endif
1346 >              
1347 >      return;
1348 >   }
1349 >
1350 >   //Returns the angular momentum of the system
1351 >   Vector3d SimInfo::getAngularMomentum(){
1352 >      
1353 >      Vector3d com(0.0);
1354 >      Vector3d comVel(0.0);
1355 >      Vector3d angularMomentum(0.0);
1356 >      
1357 >      getComAll(com,comVel);
1358 >      
1359 >      SimInfo::MoleculeIterator i;
1360 >      Molecule* mol;
1361 >      
1362 >      Vector3d thisr(0.0);
1363 >      Vector3d thisp(0.0);
1364 >      
1365 >      double thisMass;
1366 >      
1367 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1368 >        thisMass = mol->getMass();
1369 >        thisr = mol->getCom()-com;
1370 >        thisp = (mol->getComVel()-comVel)*thisMass;
1371 >        
1372 >        angularMomentum += cross( thisr, thisp );
1373 >        
1374 >      }  
1375 >      
1376 > #ifdef IS_MPI
1377 >      Vector3d tmpAngMom;
1378 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1379 > #endif
1380 >      
1381 >      return angularMomentum;
1382 >   }
1383 >  
1384 >  
1385 > }//end namespace oopse
1386 >

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines