ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-2.0/src/brains/SimInfo.cpp
Revision: 2279
Committed: Tue Aug 30 18:23:50 2005 UTC (18 years, 10 months ago) by chrisfen
File size: 32732 byte(s)
Log Message:
made some changes for implementing the wolf potential

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Acknowledgement of the program authors must be made in any
10 * publication of scientific results based in part on use of the
11 * program. An acceptable form of acknowledgement is citation of
12 * the article in which the program was described (Matthew
13 * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 * Parallel Simulation Engine for Molecular Dynamics,"
16 * J. Comput. Chem. 26, pp. 252-271 (2005))
17 *
18 * 2. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 *
21 * 3. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the
24 * distribution.
25 *
26 * This software is provided "AS IS," without a warranty of any
27 * kind. All express or implied conditions, representations and
28 * warranties, including any implied warranty of merchantability,
29 * fitness for a particular purpose or non-infringement, are hereby
30 * excluded. The University of Notre Dame and its licensors shall not
31 * be liable for any damages suffered by licensee as a result of
32 * using, modifying or distributing the software or its
33 * derivatives. In no event will the University of Notre Dame or its
34 * licensors be liable for any lost revenue, profit or data, or for
35 * direct, indirect, special, consequential, incidental or punitive
36 * damages, however caused and regardless of the theory of liability,
37 * arising out of the use of or inability to use software, even if the
38 * University of Notre Dame has been advised of the possibility of
39 * such damages.
40 */
41
42 /**
43 * @file SimInfo.cpp
44 * @author tlin
45 * @date 11/02/2004
46 * @version 1.0
47 */
48
49 #include <algorithm>
50 #include <set>
51
52 #include "brains/SimInfo.hpp"
53 #include "math/Vector3.hpp"
54 #include "primitives/Molecule.hpp"
55 #include "UseTheForce/doForces_interface.h"
56 #include "UseTheForce/notifyCutoffs_interface.h"
57 #include "utils/MemoryUtils.hpp"
58 #include "utils/simError.h"
59 #include "selection/SelectionManager.hpp"
60
61 #ifdef IS_MPI
62 #include "UseTheForce/mpiComponentPlan.h"
63 #include "UseTheForce/DarkSide/simParallel_interface.h"
64 #endif
65
66 namespace oopse {
67
68 SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
69 ForceField* ff, Globals* simParams) :
70 stamps_(stamps), forceField_(ff), simParams_(simParams),
71 ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
72 nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
73 nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
74 nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nRigidBodies_(0),
75 nIntegrableObjects_(0), nCutoffGroups_(0), nConstraints_(0),
76 sman_(NULL), fortranInitialized_(false) {
77
78
79 std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
80 MoleculeStamp* molStamp;
81 int nMolWithSameStamp;
82 int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
83 int nGroups = 0; //total cutoff groups defined in meta-data file
84 CutoffGroupStamp* cgStamp;
85 RigidBodyStamp* rbStamp;
86 int nRigidAtoms = 0;
87
88 for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
89 molStamp = i->first;
90 nMolWithSameStamp = i->second;
91
92 addMoleculeStamp(molStamp, nMolWithSameStamp);
93
94 //calculate atoms in molecules
95 nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;
96
97
98 //calculate atoms in cutoff groups
99 int nAtomsInGroups = 0;
100 int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
101
102 for (int j=0; j < nCutoffGroupsInStamp; j++) {
103 cgStamp = molStamp->getCutoffGroup(j);
104 nAtomsInGroups += cgStamp->getNMembers();
105 }
106
107 nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
108 nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;
109
110 //calculate atoms in rigid bodies
111 int nAtomsInRigidBodies = 0;
112 int nRigidBodiesInStamp = molStamp->getNRigidBodies();
113
114 for (int j=0; j < nRigidBodiesInStamp; j++) {
115 rbStamp = molStamp->getRigidBody(j);
116 nAtomsInRigidBodies += rbStamp->getNMembers();
117 }
118
119 nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
120 nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;
121
122 }
123
124 //every free atom (atom does not belong to cutoff groups) is a cutoff group
125 //therefore the total number of cutoff groups in the system is equal to
126 //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
127 //file plus the number of cutoff groups defined in meta-data file
128 nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
129
130 //every free atom (atom does not belong to rigid bodies) is an integrable object
131 //therefore the total number of integrable objects in the system is equal to
132 //the total number of atoms minus number of atoms belong to rigid body defined in meta-data
133 //file plus the number of rigid bodies defined in meta-data file
134 nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
135
136 nGlobalMols_ = molStampIds_.size();
137
138 #ifdef IS_MPI
139 molToProcMap_.resize(nGlobalMols_);
140 #endif
141
142 }
143
144 SimInfo::~SimInfo() {
145 std::map<int, Molecule*>::iterator i;
146 for (i = molecules_.begin(); i != molecules_.end(); ++i) {
147 delete i->second;
148 }
149 molecules_.clear();
150
151 delete stamps_;
152 delete sman_;
153 delete simParams_;
154 delete forceField_;
155 }
156
157 int SimInfo::getNGlobalConstraints() {
158 int nGlobalConstraints;
159 #ifdef IS_MPI
160 MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
161 MPI_COMM_WORLD);
162 #else
163 nGlobalConstraints = nConstraints_;
164 #endif
165 return nGlobalConstraints;
166 }
167
168 bool SimInfo::addMolecule(Molecule* mol) {
169 MoleculeIterator i;
170
171 i = molecules_.find(mol->getGlobalIndex());
172 if (i == molecules_.end() ) {
173
174 molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
175
176 nAtoms_ += mol->getNAtoms();
177 nBonds_ += mol->getNBonds();
178 nBends_ += mol->getNBends();
179 nTorsions_ += mol->getNTorsions();
180 nRigidBodies_ += mol->getNRigidBodies();
181 nIntegrableObjects_ += mol->getNIntegrableObjects();
182 nCutoffGroups_ += mol->getNCutoffGroups();
183 nConstraints_ += mol->getNConstraintPairs();
184
185 addExcludePairs(mol);
186
187 return true;
188 } else {
189 return false;
190 }
191 }
192
193 bool SimInfo::removeMolecule(Molecule* mol) {
194 MoleculeIterator i;
195 i = molecules_.find(mol->getGlobalIndex());
196
197 if (i != molecules_.end() ) {
198
199 assert(mol == i->second);
200
201 nAtoms_ -= mol->getNAtoms();
202 nBonds_ -= mol->getNBonds();
203 nBends_ -= mol->getNBends();
204 nTorsions_ -= mol->getNTorsions();
205 nRigidBodies_ -= mol->getNRigidBodies();
206 nIntegrableObjects_ -= mol->getNIntegrableObjects();
207 nCutoffGroups_ -= mol->getNCutoffGroups();
208 nConstraints_ -= mol->getNConstraintPairs();
209
210 removeExcludePairs(mol);
211 molecules_.erase(mol->getGlobalIndex());
212
213 delete mol;
214
215 return true;
216 } else {
217 return false;
218 }
219
220
221 }
222
223
224 Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
225 i = molecules_.begin();
226 return i == molecules_.end() ? NULL : i->second;
227 }
228
229 Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
230 ++i;
231 return i == molecules_.end() ? NULL : i->second;
232 }
233
234
235 void SimInfo::calcNdf() {
236 int ndf_local;
237 MoleculeIterator i;
238 std::vector<StuntDouble*>::iterator j;
239 Molecule* mol;
240 StuntDouble* integrableObject;
241
242 ndf_local = 0;
243
244 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
245 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
246 integrableObject = mol->nextIntegrableObject(j)) {
247
248 ndf_local += 3;
249
250 if (integrableObject->isDirectional()) {
251 if (integrableObject->isLinear()) {
252 ndf_local += 2;
253 } else {
254 ndf_local += 3;
255 }
256 }
257
258 }//end for (integrableObject)
259 }// end for (mol)
260
261 // n_constraints is local, so subtract them on each processor
262 ndf_local -= nConstraints_;
263
264 #ifdef IS_MPI
265 MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
266 #else
267 ndf_ = ndf_local;
268 #endif
269
270 // nZconstraints_ is global, as are the 3 COM translations for the
271 // entire system:
272 ndf_ = ndf_ - 3 - nZconstraint_;
273
274 }
275
276 void SimInfo::calcNdfRaw() {
277 int ndfRaw_local;
278
279 MoleculeIterator i;
280 std::vector<StuntDouble*>::iterator j;
281 Molecule* mol;
282 StuntDouble* integrableObject;
283
284 // Raw degrees of freedom that we have to set
285 ndfRaw_local = 0;
286
287 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
288 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
289 integrableObject = mol->nextIntegrableObject(j)) {
290
291 ndfRaw_local += 3;
292
293 if (integrableObject->isDirectional()) {
294 if (integrableObject->isLinear()) {
295 ndfRaw_local += 2;
296 } else {
297 ndfRaw_local += 3;
298 }
299 }
300
301 }
302 }
303
304 #ifdef IS_MPI
305 MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
306 #else
307 ndfRaw_ = ndfRaw_local;
308 #endif
309 }
310
311 void SimInfo::calcNdfTrans() {
312 int ndfTrans_local;
313
314 ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
315
316
317 #ifdef IS_MPI
318 MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
319 #else
320 ndfTrans_ = ndfTrans_local;
321 #endif
322
323 ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
324
325 }
326
327 void SimInfo::addExcludePairs(Molecule* mol) {
328 std::vector<Bond*>::iterator bondIter;
329 std::vector<Bend*>::iterator bendIter;
330 std::vector<Torsion*>::iterator torsionIter;
331 Bond* bond;
332 Bend* bend;
333 Torsion* torsion;
334 int a;
335 int b;
336 int c;
337 int d;
338
339 for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
340 a = bond->getAtomA()->getGlobalIndex();
341 b = bond->getAtomB()->getGlobalIndex();
342 exclude_.addPair(a, b);
343 }
344
345 for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
346 a = bend->getAtomA()->getGlobalIndex();
347 b = bend->getAtomB()->getGlobalIndex();
348 c = bend->getAtomC()->getGlobalIndex();
349
350 exclude_.addPair(a, b);
351 exclude_.addPair(a, c);
352 exclude_.addPair(b, c);
353 }
354
355 for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
356 a = torsion->getAtomA()->getGlobalIndex();
357 b = torsion->getAtomB()->getGlobalIndex();
358 c = torsion->getAtomC()->getGlobalIndex();
359 d = torsion->getAtomD()->getGlobalIndex();
360
361 exclude_.addPair(a, b);
362 exclude_.addPair(a, c);
363 exclude_.addPair(a, d);
364 exclude_.addPair(b, c);
365 exclude_.addPair(b, d);
366 exclude_.addPair(c, d);
367 }
368
369 Molecule::RigidBodyIterator rbIter;
370 RigidBody* rb;
371 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
372 std::vector<Atom*> atoms = rb->getAtoms();
373 for (int i = 0; i < atoms.size() -1 ; ++i) {
374 for (int j = i + 1; j < atoms.size(); ++j) {
375 a = atoms[i]->getGlobalIndex();
376 b = atoms[j]->getGlobalIndex();
377 exclude_.addPair(a, b);
378 }
379 }
380 }
381
382 }
383
384 void SimInfo::removeExcludePairs(Molecule* mol) {
385 std::vector<Bond*>::iterator bondIter;
386 std::vector<Bend*>::iterator bendIter;
387 std::vector<Torsion*>::iterator torsionIter;
388 Bond* bond;
389 Bend* bend;
390 Torsion* torsion;
391 int a;
392 int b;
393 int c;
394 int d;
395
396 for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
397 a = bond->getAtomA()->getGlobalIndex();
398 b = bond->getAtomB()->getGlobalIndex();
399 exclude_.removePair(a, b);
400 }
401
402 for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
403 a = bend->getAtomA()->getGlobalIndex();
404 b = bend->getAtomB()->getGlobalIndex();
405 c = bend->getAtomC()->getGlobalIndex();
406
407 exclude_.removePair(a, b);
408 exclude_.removePair(a, c);
409 exclude_.removePair(b, c);
410 }
411
412 for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
413 a = torsion->getAtomA()->getGlobalIndex();
414 b = torsion->getAtomB()->getGlobalIndex();
415 c = torsion->getAtomC()->getGlobalIndex();
416 d = torsion->getAtomD()->getGlobalIndex();
417
418 exclude_.removePair(a, b);
419 exclude_.removePair(a, c);
420 exclude_.removePair(a, d);
421 exclude_.removePair(b, c);
422 exclude_.removePair(b, d);
423 exclude_.removePair(c, d);
424 }
425
426 Molecule::RigidBodyIterator rbIter;
427 RigidBody* rb;
428 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
429 std::vector<Atom*> atoms = rb->getAtoms();
430 for (int i = 0; i < atoms.size() -1 ; ++i) {
431 for (int j = i + 1; j < atoms.size(); ++j) {
432 a = atoms[i]->getGlobalIndex();
433 b = atoms[j]->getGlobalIndex();
434 exclude_.removePair(a, b);
435 }
436 }
437 }
438
439 }
440
441
442 void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
443 int curStampId;
444
445 //index from 0
446 curStampId = moleculeStamps_.size();
447
448 moleculeStamps_.push_back(molStamp);
449 molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
450 }
451
452 void SimInfo::update() {
453
454 setupSimType();
455
456 #ifdef IS_MPI
457 setupFortranParallel();
458 #endif
459
460 setupFortranSim();
461
462 //setup fortran force field
463 /** @deprecate */
464 int isError = 0;
465 initFortranFF( &fInfo_.SIM_uses_RF, &fInfo_.SIM_uses_UW,
466 &fInfo_.SIM_uses_DW, &isError );
467 if(isError){
468 sprintf( painCave.errMsg,
469 "ForceField error: There was an error initializing the forceField in fortran.\n" );
470 painCave.isFatal = 1;
471 simError();
472 }
473
474
475 setupCutoff();
476
477 calcNdf();
478 calcNdfRaw();
479 calcNdfTrans();
480
481 fortranInitialized_ = true;
482 }
483
484 std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
485 SimInfo::MoleculeIterator mi;
486 Molecule* mol;
487 Molecule::AtomIterator ai;
488 Atom* atom;
489 std::set<AtomType*> atomTypes;
490
491 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
492
493 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
494 atomTypes.insert(atom->getAtomType());
495 }
496
497 }
498
499 return atomTypes;
500 }
501
502 void SimInfo::setupSimType() {
503 std::set<AtomType*>::iterator i;
504 std::set<AtomType*> atomTypes;
505 atomTypes = getUniqueAtomTypes();
506
507 int useLennardJones = 0;
508 int useElectrostatic = 0;
509 int useEAM = 0;
510 int useCharge = 0;
511 int useDirectional = 0;
512 int useDipole = 0;
513 int useGayBerne = 0;
514 int useSticky = 0;
515 int useStickyPower = 0;
516 int useShape = 0;
517 int useFLARB = 0; //it is not in AtomType yet
518 int useDirectionalAtom = 0;
519 int useElectrostatics = 0;
520 //usePBC and useRF are from simParams
521 int usePBC = simParams_->getPBC();
522 int useRF = simParams_->getUseRF();
523 int useUW = simParams_->getUseUndampedWolf();
524 int useDW = simParams_->getUseDampedWolf();
525
526 //loop over all of the atom types
527 for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
528 useLennardJones |= (*i)->isLennardJones();
529 useElectrostatic |= (*i)->isElectrostatic();
530 useEAM |= (*i)->isEAM();
531 useCharge |= (*i)->isCharge();
532 useDirectional |= (*i)->isDirectional();
533 useDipole |= (*i)->isDipole();
534 useGayBerne |= (*i)->isGayBerne();
535 useSticky |= (*i)->isSticky();
536 useStickyPower |= (*i)->isStickyPower();
537 useShape |= (*i)->isShape();
538 }
539
540 if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
541 useDirectionalAtom = 1;
542 }
543
544 if (useCharge || useDipole) {
545 useElectrostatics = 1;
546 }
547
548 #ifdef IS_MPI
549 int temp;
550
551 temp = usePBC;
552 MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
553
554 temp = useDirectionalAtom;
555 MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
556
557 temp = useLennardJones;
558 MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
559
560 temp = useElectrostatics;
561 MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
562
563 temp = useCharge;
564 MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
565
566 temp = useDipole;
567 MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
568
569 temp = useSticky;
570 MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
571
572 temp = useStickyPower;
573 MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
574
575 temp = useGayBerne;
576 MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
577
578 temp = useEAM;
579 MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
580
581 temp = useShape;
582 MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
583
584 temp = useFLARB;
585 MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
586
587 temp = useRF;
588 MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
589
590 temp = useUW;
591 MPI_Allreduce(&temp, &useUW, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
592
593 temp = useDW;
594 MPI_Allreduce(&temp, &useDW, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
595
596 #endif
597
598 fInfo_.SIM_uses_PBC = usePBC;
599 fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
600 fInfo_.SIM_uses_LennardJones = useLennardJones;
601 fInfo_.SIM_uses_Electrostatics = useElectrostatics;
602 fInfo_.SIM_uses_Charges = useCharge;
603 fInfo_.SIM_uses_Dipoles = useDipole;
604 fInfo_.SIM_uses_Sticky = useSticky;
605 fInfo_.SIM_uses_StickyPower = useStickyPower;
606 fInfo_.SIM_uses_GayBerne = useGayBerne;
607 fInfo_.SIM_uses_EAM = useEAM;
608 fInfo_.SIM_uses_Shapes = useShape;
609 fInfo_.SIM_uses_FLARB = useFLARB;
610 fInfo_.SIM_uses_RF = useRF;
611 fInfo_.SIM_uses_UW = useUW;
612 fInfo_.SIM_uses_DW = useDW;
613
614 if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
615
616 if (simParams_->haveDielectric()) {
617 fInfo_.dielect = simParams_->getDielectric();
618 } else {
619 sprintf(painCave.errMsg,
620 "SimSetup Error: No Dielectric constant was set.\n"
621 "\tYou are trying to use Reaction Field without"
622 "\tsetting a dielectric constant!\n");
623 painCave.isFatal = 1;
624 simError();
625 }
626
627 } else {
628 fInfo_.dielect = 0.0;
629 }
630
631 }
632
633 void SimInfo::setupFortranSim() {
634 int isError;
635 int nExclude;
636 std::vector<int> fortranGlobalGroupMembership;
637
638 nExclude = exclude_.getSize();
639 isError = 0;
640
641 //globalGroupMembership_ is filled by SimCreator
642 for (int i = 0; i < nGlobalAtoms_; i++) {
643 fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
644 }
645
646 //calculate mass ratio of cutoff group
647 std::vector<double> mfact;
648 SimInfo::MoleculeIterator mi;
649 Molecule* mol;
650 Molecule::CutoffGroupIterator ci;
651 CutoffGroup* cg;
652 Molecule::AtomIterator ai;
653 Atom* atom;
654 double totalMass;
655
656 //to avoid memory reallocation, reserve enough space for mfact
657 mfact.reserve(getNCutoffGroups());
658
659 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
660 for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
661
662 totalMass = cg->getMass();
663 for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
664 mfact.push_back(atom->getMass()/totalMass);
665 }
666
667 }
668 }
669
670 //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
671 std::vector<int> identArray;
672
673 //to avoid memory reallocation, reserve enough space identArray
674 identArray.reserve(getNAtoms());
675
676 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
677 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
678 identArray.push_back(atom->getIdent());
679 }
680 }
681
682 //fill molMembershipArray
683 //molMembershipArray is filled by SimCreator
684 std::vector<int> molMembershipArray(nGlobalAtoms_);
685 for (int i = 0; i < nGlobalAtoms_; i++) {
686 molMembershipArray[i] = globalMolMembership_[i] + 1;
687 }
688
689 //setup fortran simulation
690 int nGlobalExcludes = 0;
691 int* globalExcludes = NULL;
692 int* excludeList = exclude_.getExcludeList();
693 setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
694 &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
695 &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
696
697 if( isError ){
698
699 sprintf( painCave.errMsg,
700 "There was an error setting the simulation information in fortran.\n" );
701 painCave.isFatal = 1;
702 painCave.severity = OOPSE_ERROR;
703 simError();
704 }
705
706 #ifdef IS_MPI
707 sprintf( checkPointMsg,
708 "succesfully sent the simulation information to fortran.\n");
709 MPIcheckPoint();
710 #endif // is_mpi
711 }
712
713
714 #ifdef IS_MPI
715 void SimInfo::setupFortranParallel() {
716
717 //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
718 std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
719 std::vector<int> localToGlobalCutoffGroupIndex;
720 SimInfo::MoleculeIterator mi;
721 Molecule::AtomIterator ai;
722 Molecule::CutoffGroupIterator ci;
723 Molecule* mol;
724 Atom* atom;
725 CutoffGroup* cg;
726 mpiSimData parallelData;
727 int isError;
728
729 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
730
731 //local index(index in DataStorge) of atom is important
732 for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
733 localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
734 }
735
736 //local index of cutoff group is trivial, it only depends on the order of travesing
737 for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
738 localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
739 }
740
741 }
742
743 //fill up mpiSimData struct
744 parallelData.nMolGlobal = getNGlobalMolecules();
745 parallelData.nMolLocal = getNMolecules();
746 parallelData.nAtomsGlobal = getNGlobalAtoms();
747 parallelData.nAtomsLocal = getNAtoms();
748 parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
749 parallelData.nGroupsLocal = getNCutoffGroups();
750 parallelData.myNode = worldRank;
751 MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
752
753 //pass mpiSimData struct and index arrays to fortran
754 setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
755 &localToGlobalAtomIndex[0], &(parallelData.nGroupsLocal),
756 &localToGlobalCutoffGroupIndex[0], &isError);
757
758 if (isError) {
759 sprintf(painCave.errMsg,
760 "mpiRefresh errror: fortran didn't like something we gave it.\n");
761 painCave.isFatal = 1;
762 simError();
763 }
764
765 sprintf(checkPointMsg, " mpiRefresh successful.\n");
766 MPIcheckPoint();
767
768
769 }
770
771 #endif
772
773 double SimInfo::calcMaxCutoffRadius() {
774
775
776 std::set<AtomType*> atomTypes;
777 std::set<AtomType*>::iterator i;
778 std::vector<double> cutoffRadius;
779
780 //get the unique atom types
781 atomTypes = getUniqueAtomTypes();
782
783 //query the max cutoff radius among these atom types
784 for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
785 cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
786 }
787
788 double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
789 #ifdef IS_MPI
790 //pick the max cutoff radius among the processors
791 #endif
792
793 return maxCutoffRadius;
794 }
795
796 void SimInfo::getCutoff(double& rcut, double& rsw) {
797
798 if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
799
800 if (!simParams_->haveRcut()){
801 sprintf(painCave.errMsg,
802 "SimCreator Warning: No value was set for the cutoffRadius.\n"
803 "\tOOPSE will use a default value of 15.0 angstroms"
804 "\tfor the cutoffRadius.\n");
805 painCave.isFatal = 0;
806 simError();
807 rcut = 15.0;
808 } else{
809 rcut = simParams_->getRcut();
810 }
811
812 if (!simParams_->haveRsw()){
813 sprintf(painCave.errMsg,
814 "SimCreator Warning: No value was set for switchingRadius.\n"
815 "\tOOPSE will use a default value of\n"
816 "\t0.95 * cutoffRadius for the switchingRadius\n");
817 painCave.isFatal = 0;
818 simError();
819 rsw = 0.95 * rcut;
820 } else{
821 rsw = simParams_->getRsw();
822 }
823
824 } else {
825 // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
826 //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
827
828 if (simParams_->haveRcut()) {
829 rcut = simParams_->getRcut();
830 } else {
831 //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
832 rcut = calcMaxCutoffRadius();
833 }
834
835 if (simParams_->haveRsw()) {
836 rsw = simParams_->getRsw();
837 } else {
838 rsw = rcut;
839 }
840
841 }
842 }
843
844 void SimInfo::setupCutoff() {
845 getCutoff(rcut_, rsw_);
846 double rnblist = rcut_ + 1; // skin of neighbor list
847
848 //Pass these cutoff radius etc. to fortran. This function should be called once and only once
849 notifyFortranCutoffs(&rcut_, &rsw_, &rnblist);
850 }
851
852 void SimInfo::addProperty(GenericData* genData) {
853 properties_.addProperty(genData);
854 }
855
856 void SimInfo::removeProperty(const std::string& propName) {
857 properties_.removeProperty(propName);
858 }
859
860 void SimInfo::clearProperties() {
861 properties_.clearProperties();
862 }
863
864 std::vector<std::string> SimInfo::getPropertyNames() {
865 return properties_.getPropertyNames();
866 }
867
868 std::vector<GenericData*> SimInfo::getProperties() {
869 return properties_.getProperties();
870 }
871
872 GenericData* SimInfo::getPropertyByName(const std::string& propName) {
873 return properties_.getPropertyByName(propName);
874 }
875
876 void SimInfo::setSnapshotManager(SnapshotManager* sman) {
877 if (sman_ == sman) {
878 return;
879 }
880 delete sman_;
881 sman_ = sman;
882
883 Molecule* mol;
884 RigidBody* rb;
885 Atom* atom;
886 SimInfo::MoleculeIterator mi;
887 Molecule::RigidBodyIterator rbIter;
888 Molecule::AtomIterator atomIter;;
889
890 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
891
892 for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
893 atom->setSnapshotManager(sman_);
894 }
895
896 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
897 rb->setSnapshotManager(sman_);
898 }
899 }
900
901 }
902
903 Vector3d SimInfo::getComVel(){
904 SimInfo::MoleculeIterator i;
905 Molecule* mol;
906
907 Vector3d comVel(0.0);
908 double totalMass = 0.0;
909
910
911 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
912 double mass = mol->getMass();
913 totalMass += mass;
914 comVel += mass * mol->getComVel();
915 }
916
917 #ifdef IS_MPI
918 double tmpMass = totalMass;
919 Vector3d tmpComVel(comVel);
920 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
921 MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
922 #endif
923
924 comVel /= totalMass;
925
926 return comVel;
927 }
928
929 Vector3d SimInfo::getCom(){
930 SimInfo::MoleculeIterator i;
931 Molecule* mol;
932
933 Vector3d com(0.0);
934 double totalMass = 0.0;
935
936 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
937 double mass = mol->getMass();
938 totalMass += mass;
939 com += mass * mol->getCom();
940 }
941
942 #ifdef IS_MPI
943 double tmpMass = totalMass;
944 Vector3d tmpCom(com);
945 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
946 MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
947 #endif
948
949 com /= totalMass;
950
951 return com;
952
953 }
954
955 std::ostream& operator <<(std::ostream& o, SimInfo& info) {
956
957 return o;
958 }
959
960
961 /*
962 Returns center of mass and center of mass velocity in one function call.
963 */
964
965 void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
966 SimInfo::MoleculeIterator i;
967 Molecule* mol;
968
969
970 double totalMass = 0.0;
971
972
973 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
974 double mass = mol->getMass();
975 totalMass += mass;
976 com += mass * mol->getCom();
977 comVel += mass * mol->getComVel();
978 }
979
980 #ifdef IS_MPI
981 double tmpMass = totalMass;
982 Vector3d tmpCom(com);
983 Vector3d tmpComVel(comVel);
984 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
985 MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
986 MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
987 #endif
988
989 com /= totalMass;
990 comVel /= totalMass;
991 }
992
993 /*
994 Return intertia tensor for entire system and angular momentum Vector.
995
996
997 [ Ixx -Ixy -Ixz ]
998 J =| -Iyx Iyy -Iyz |
999 [ -Izx -Iyz Izz ]
1000 */
1001
1002 void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1003
1004
1005 double xx = 0.0;
1006 double yy = 0.0;
1007 double zz = 0.0;
1008 double xy = 0.0;
1009 double xz = 0.0;
1010 double yz = 0.0;
1011 Vector3d com(0.0);
1012 Vector3d comVel(0.0);
1013
1014 getComAll(com, comVel);
1015
1016 SimInfo::MoleculeIterator i;
1017 Molecule* mol;
1018
1019 Vector3d thisq(0.0);
1020 Vector3d thisv(0.0);
1021
1022 double thisMass = 0.0;
1023
1024
1025
1026
1027 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1028
1029 thisq = mol->getCom()-com;
1030 thisv = mol->getComVel()-comVel;
1031 thisMass = mol->getMass();
1032 // Compute moment of intertia coefficients.
1033 xx += thisq[0]*thisq[0]*thisMass;
1034 yy += thisq[1]*thisq[1]*thisMass;
1035 zz += thisq[2]*thisq[2]*thisMass;
1036
1037 // compute products of intertia
1038 xy += thisq[0]*thisq[1]*thisMass;
1039 xz += thisq[0]*thisq[2]*thisMass;
1040 yz += thisq[1]*thisq[2]*thisMass;
1041
1042 angularMomentum += cross( thisq, thisv ) * thisMass;
1043
1044 }
1045
1046
1047 inertiaTensor(0,0) = yy + zz;
1048 inertiaTensor(0,1) = -xy;
1049 inertiaTensor(0,2) = -xz;
1050 inertiaTensor(1,0) = -xy;
1051 inertiaTensor(1,1) = xx + zz;
1052 inertiaTensor(1,2) = -yz;
1053 inertiaTensor(2,0) = -xz;
1054 inertiaTensor(2,1) = -yz;
1055 inertiaTensor(2,2) = xx + yy;
1056
1057 #ifdef IS_MPI
1058 Mat3x3d tmpI(inertiaTensor);
1059 Vector3d tmpAngMom;
1060 MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1061 MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1062 #endif
1063
1064 return;
1065 }
1066
1067 //Returns the angular momentum of the system
1068 Vector3d SimInfo::getAngularMomentum(){
1069
1070 Vector3d com(0.0);
1071 Vector3d comVel(0.0);
1072 Vector3d angularMomentum(0.0);
1073
1074 getComAll(com,comVel);
1075
1076 SimInfo::MoleculeIterator i;
1077 Molecule* mol;
1078
1079 Vector3d thisr(0.0);
1080 Vector3d thisp(0.0);
1081
1082 double thisMass;
1083
1084 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1085 thisMass = mol->getMass();
1086 thisr = mol->getCom()-com;
1087 thisp = (mol->getComVel()-comVel)*thisMass;
1088
1089 angularMomentum += cross( thisr, thisp );
1090
1091 }
1092
1093 #ifdef IS_MPI
1094 Vector3d tmpAngMom;
1095 MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1096 #endif
1097
1098 return angularMomentum;
1099 }
1100
1101
1102 }//end namespace oopse
1103