ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-2.0/src/brains/SimInfo.cpp
Revision: 2404
Committed: Tue Nov 1 19:14:27 2005 UTC (18 years, 8 months ago) by chrisfen
File size: 36002 byte(s)
Log Message:
fixed a capitalization problem with NPT integrator initialization

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Acknowledgement of the program authors must be made in any
10 * publication of scientific results based in part on use of the
11 * program. An acceptable form of acknowledgement is citation of
12 * the article in which the program was described (Matthew
13 * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 * Parallel Simulation Engine for Molecular Dynamics,"
16 * J. Comput. Chem. 26, pp. 252-271 (2005))
17 *
18 * 2. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 *
21 * 3. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the
24 * distribution.
25 *
26 * This software is provided "AS IS," without a warranty of any
27 * kind. All express or implied conditions, representations and
28 * warranties, including any implied warranty of merchantability,
29 * fitness for a particular purpose or non-infringement, are hereby
30 * excluded. The University of Notre Dame and its licensors shall not
31 * be liable for any damages suffered by licensee as a result of
32 * using, modifying or distributing the software or its
33 * derivatives. In no event will the University of Notre Dame or its
34 * licensors be liable for any lost revenue, profit or data, or for
35 * direct, indirect, special, consequential, incidental or punitive
36 * damages, however caused and regardless of the theory of liability,
37 * arising out of the use of or inability to use software, even if the
38 * University of Notre Dame has been advised of the possibility of
39 * such damages.
40 */
41
42 /**
43 * @file SimInfo.cpp
44 * @author tlin
45 * @date 11/02/2004
46 * @version 1.0
47 */
48
49 #include <algorithm>
50 #include <set>
51
52 #include "brains/SimInfo.hpp"
53 #include "math/Vector3.hpp"
54 #include "primitives/Molecule.hpp"
55 #include "UseTheForce/fCutoffPolicy.h"
56 #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
57 #include "UseTheForce/doForces_interface.h"
58 #include "UseTheForce/DarkSide/electrostatic_interface.h"
59 #include "UseTheForce/notifyCutoffs_interface.h"
60 #include "utils/MemoryUtils.hpp"
61 #include "utils/simError.h"
62 #include "selection/SelectionManager.hpp"
63
64 #ifdef IS_MPI
65 #include "UseTheForce/mpiComponentPlan.h"
66 #include "UseTheForce/DarkSide/simParallel_interface.h"
67 #endif
68
69 namespace oopse {
70
71 SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
72 ForceField* ff, Globals* simParams) :
73 stamps_(stamps), forceField_(ff), simParams_(simParams),
74 ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
75 nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
76 nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
77 nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nRigidBodies_(0),
78 nIntegrableObjects_(0), nCutoffGroups_(0), nConstraints_(0),
79 sman_(NULL), fortranInitialized_(false) {
80
81
82 std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
83 MoleculeStamp* molStamp;
84 int nMolWithSameStamp;
85 int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
86 int nGroups = 0; //total cutoff groups defined in meta-data file
87 CutoffGroupStamp* cgStamp;
88 RigidBodyStamp* rbStamp;
89 int nRigidAtoms = 0;
90
91 for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
92 molStamp = i->first;
93 nMolWithSameStamp = i->second;
94
95 addMoleculeStamp(molStamp, nMolWithSameStamp);
96
97 //calculate atoms in molecules
98 nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;
99
100
101 //calculate atoms in cutoff groups
102 int nAtomsInGroups = 0;
103 int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
104
105 for (int j=0; j < nCutoffGroupsInStamp; j++) {
106 cgStamp = molStamp->getCutoffGroup(j);
107 nAtomsInGroups += cgStamp->getNMembers();
108 }
109
110 nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
111
112 nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;
113
114 //calculate atoms in rigid bodies
115 int nAtomsInRigidBodies = 0;
116 int nRigidBodiesInStamp = molStamp->getNRigidBodies();
117
118 for (int j=0; j < nRigidBodiesInStamp; j++) {
119 rbStamp = molStamp->getRigidBody(j);
120 nAtomsInRigidBodies += rbStamp->getNMembers();
121 }
122
123 nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
124 nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;
125
126 }
127
128 //every free atom (atom does not belong to cutoff groups) is a cutoff
129 //group therefore the total number of cutoff groups in the system is
130 //equal to the total number of atoms minus number of atoms belong to
131 //cutoff group defined in meta-data file plus the number of cutoff
132 //groups defined in meta-data file
133 nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
134
135 //every free atom (atom does not belong to rigid bodies) is an
136 //integrable object therefore the total number of integrable objects
137 //in the system is equal to the total number of atoms minus number of
138 //atoms belong to rigid body defined in meta-data file plus the number
139 //of rigid bodies defined in meta-data file
140 nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
141 + nGlobalRigidBodies_;
142
143 nGlobalMols_ = molStampIds_.size();
144
145 #ifdef IS_MPI
146 molToProcMap_.resize(nGlobalMols_);
147 #endif
148
149 }
150
151 SimInfo::~SimInfo() {
152 std::map<int, Molecule*>::iterator i;
153 for (i = molecules_.begin(); i != molecules_.end(); ++i) {
154 delete i->second;
155 }
156 molecules_.clear();
157
158 delete stamps_;
159 delete sman_;
160 delete simParams_;
161 delete forceField_;
162 }
163
164 int SimInfo::getNGlobalConstraints() {
165 int nGlobalConstraints;
166 #ifdef IS_MPI
167 MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
168 MPI_COMM_WORLD);
169 #else
170 nGlobalConstraints = nConstraints_;
171 #endif
172 return nGlobalConstraints;
173 }
174
175 bool SimInfo::addMolecule(Molecule* mol) {
176 MoleculeIterator i;
177
178 i = molecules_.find(mol->getGlobalIndex());
179 if (i == molecules_.end() ) {
180
181 molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
182
183 nAtoms_ += mol->getNAtoms();
184 nBonds_ += mol->getNBonds();
185 nBends_ += mol->getNBends();
186 nTorsions_ += mol->getNTorsions();
187 nRigidBodies_ += mol->getNRigidBodies();
188 nIntegrableObjects_ += mol->getNIntegrableObjects();
189 nCutoffGroups_ += mol->getNCutoffGroups();
190 nConstraints_ += mol->getNConstraintPairs();
191
192 addExcludePairs(mol);
193
194 return true;
195 } else {
196 return false;
197 }
198 }
199
200 bool SimInfo::removeMolecule(Molecule* mol) {
201 MoleculeIterator i;
202 i = molecules_.find(mol->getGlobalIndex());
203
204 if (i != molecules_.end() ) {
205
206 assert(mol == i->second);
207
208 nAtoms_ -= mol->getNAtoms();
209 nBonds_ -= mol->getNBonds();
210 nBends_ -= mol->getNBends();
211 nTorsions_ -= mol->getNTorsions();
212 nRigidBodies_ -= mol->getNRigidBodies();
213 nIntegrableObjects_ -= mol->getNIntegrableObjects();
214 nCutoffGroups_ -= mol->getNCutoffGroups();
215 nConstraints_ -= mol->getNConstraintPairs();
216
217 removeExcludePairs(mol);
218 molecules_.erase(mol->getGlobalIndex());
219
220 delete mol;
221
222 return true;
223 } else {
224 return false;
225 }
226
227
228 }
229
230
231 Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
232 i = molecules_.begin();
233 return i == molecules_.end() ? NULL : i->second;
234 }
235
236 Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
237 ++i;
238 return i == molecules_.end() ? NULL : i->second;
239 }
240
241
242 void SimInfo::calcNdf() {
243 int ndf_local;
244 MoleculeIterator i;
245 std::vector<StuntDouble*>::iterator j;
246 Molecule* mol;
247 StuntDouble* integrableObject;
248
249 ndf_local = 0;
250
251 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
252 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
253 integrableObject = mol->nextIntegrableObject(j)) {
254
255 ndf_local += 3;
256
257 if (integrableObject->isDirectional()) {
258 if (integrableObject->isLinear()) {
259 ndf_local += 2;
260 } else {
261 ndf_local += 3;
262 }
263 }
264
265 }//end for (integrableObject)
266 }// end for (mol)
267
268 // n_constraints is local, so subtract them on each processor
269 ndf_local -= nConstraints_;
270
271 #ifdef IS_MPI
272 MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
273 #else
274 ndf_ = ndf_local;
275 #endif
276
277 // nZconstraints_ is global, as are the 3 COM translations for the
278 // entire system:
279 ndf_ = ndf_ - 3 - nZconstraint_;
280
281 }
282
283 void SimInfo::calcNdfRaw() {
284 int ndfRaw_local;
285
286 MoleculeIterator i;
287 std::vector<StuntDouble*>::iterator j;
288 Molecule* mol;
289 StuntDouble* integrableObject;
290
291 // Raw degrees of freedom that we have to set
292 ndfRaw_local = 0;
293
294 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
295 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
296 integrableObject = mol->nextIntegrableObject(j)) {
297
298 ndfRaw_local += 3;
299
300 if (integrableObject->isDirectional()) {
301 if (integrableObject->isLinear()) {
302 ndfRaw_local += 2;
303 } else {
304 ndfRaw_local += 3;
305 }
306 }
307
308 }
309 }
310
311 #ifdef IS_MPI
312 MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
313 #else
314 ndfRaw_ = ndfRaw_local;
315 #endif
316 }
317
318 void SimInfo::calcNdfTrans() {
319 int ndfTrans_local;
320
321 ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
322
323
324 #ifdef IS_MPI
325 MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
326 #else
327 ndfTrans_ = ndfTrans_local;
328 #endif
329
330 ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
331
332 }
333
334 void SimInfo::addExcludePairs(Molecule* mol) {
335 std::vector<Bond*>::iterator bondIter;
336 std::vector<Bend*>::iterator bendIter;
337 std::vector<Torsion*>::iterator torsionIter;
338 Bond* bond;
339 Bend* bend;
340 Torsion* torsion;
341 int a;
342 int b;
343 int c;
344 int d;
345
346 for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
347 a = bond->getAtomA()->getGlobalIndex();
348 b = bond->getAtomB()->getGlobalIndex();
349 exclude_.addPair(a, b);
350 }
351
352 for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
353 a = bend->getAtomA()->getGlobalIndex();
354 b = bend->getAtomB()->getGlobalIndex();
355 c = bend->getAtomC()->getGlobalIndex();
356
357 exclude_.addPair(a, b);
358 exclude_.addPair(a, c);
359 exclude_.addPair(b, c);
360 }
361
362 for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
363 a = torsion->getAtomA()->getGlobalIndex();
364 b = torsion->getAtomB()->getGlobalIndex();
365 c = torsion->getAtomC()->getGlobalIndex();
366 d = torsion->getAtomD()->getGlobalIndex();
367
368 exclude_.addPair(a, b);
369 exclude_.addPair(a, c);
370 exclude_.addPair(a, d);
371 exclude_.addPair(b, c);
372 exclude_.addPair(b, d);
373 exclude_.addPair(c, d);
374 }
375
376 Molecule::RigidBodyIterator rbIter;
377 RigidBody* rb;
378 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
379 std::vector<Atom*> atoms = rb->getAtoms();
380 for (int i = 0; i < atoms.size() -1 ; ++i) {
381 for (int j = i + 1; j < atoms.size(); ++j) {
382 a = atoms[i]->getGlobalIndex();
383 b = atoms[j]->getGlobalIndex();
384 exclude_.addPair(a, b);
385 }
386 }
387 }
388
389 }
390
391 void SimInfo::removeExcludePairs(Molecule* mol) {
392 std::vector<Bond*>::iterator bondIter;
393 std::vector<Bend*>::iterator bendIter;
394 std::vector<Torsion*>::iterator torsionIter;
395 Bond* bond;
396 Bend* bend;
397 Torsion* torsion;
398 int a;
399 int b;
400 int c;
401 int d;
402
403 for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
404 a = bond->getAtomA()->getGlobalIndex();
405 b = bond->getAtomB()->getGlobalIndex();
406 exclude_.removePair(a, b);
407 }
408
409 for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
410 a = bend->getAtomA()->getGlobalIndex();
411 b = bend->getAtomB()->getGlobalIndex();
412 c = bend->getAtomC()->getGlobalIndex();
413
414 exclude_.removePair(a, b);
415 exclude_.removePair(a, c);
416 exclude_.removePair(b, c);
417 }
418
419 for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
420 a = torsion->getAtomA()->getGlobalIndex();
421 b = torsion->getAtomB()->getGlobalIndex();
422 c = torsion->getAtomC()->getGlobalIndex();
423 d = torsion->getAtomD()->getGlobalIndex();
424
425 exclude_.removePair(a, b);
426 exclude_.removePair(a, c);
427 exclude_.removePair(a, d);
428 exclude_.removePair(b, c);
429 exclude_.removePair(b, d);
430 exclude_.removePair(c, d);
431 }
432
433 Molecule::RigidBodyIterator rbIter;
434 RigidBody* rb;
435 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
436 std::vector<Atom*> atoms = rb->getAtoms();
437 for (int i = 0; i < atoms.size() -1 ; ++i) {
438 for (int j = i + 1; j < atoms.size(); ++j) {
439 a = atoms[i]->getGlobalIndex();
440 b = atoms[j]->getGlobalIndex();
441 exclude_.removePair(a, b);
442 }
443 }
444 }
445
446 }
447
448
449 void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
450 int curStampId;
451
452 //index from 0
453 curStampId = moleculeStamps_.size();
454
455 moleculeStamps_.push_back(molStamp);
456 molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
457 }
458
459 void SimInfo::update() {
460
461 setupSimType();
462
463 #ifdef IS_MPI
464 setupFortranParallel();
465 #endif
466
467 setupFortranSim();
468
469 //setup fortran force field
470 /** @deprecate */
471 int isError = 0;
472
473 setupElectrostaticSummationMethod( isError );
474
475 if(isError){
476 sprintf( painCave.errMsg,
477 "ForceField error: There was an error initializing the forceField in fortran.\n" );
478 painCave.isFatal = 1;
479 simError();
480 }
481
482
483 setupCutoff();
484
485 calcNdf();
486 calcNdfRaw();
487 calcNdfTrans();
488
489 fortranInitialized_ = true;
490 }
491
492 std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
493 SimInfo::MoleculeIterator mi;
494 Molecule* mol;
495 Molecule::AtomIterator ai;
496 Atom* atom;
497 std::set<AtomType*> atomTypes;
498
499 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
500
501 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
502 atomTypes.insert(atom->getAtomType());
503 }
504
505 }
506
507 return atomTypes;
508 }
509
510 void SimInfo::setupSimType() {
511 std::set<AtomType*>::iterator i;
512 std::set<AtomType*> atomTypes;
513 atomTypes = getUniqueAtomTypes();
514
515 int useLennardJones = 0;
516 int useElectrostatic = 0;
517 int useEAM = 0;
518 int useCharge = 0;
519 int useDirectional = 0;
520 int useDipole = 0;
521 int useGayBerne = 0;
522 int useSticky = 0;
523 int useStickyPower = 0;
524 int useShape = 0;
525 int useFLARB = 0; //it is not in AtomType yet
526 int useDirectionalAtom = 0;
527 int useElectrostatics = 0;
528 //usePBC and useRF are from simParams
529 int usePBC = simParams_->getUsePeriodicBoundaryConditions();
530 int useRF;
531 int useDW;
532 std::string myMethod;
533
534 // set the useRF logical
535 useRF = 0;
536 useDW = 0;
537
538
539 if (simParams_->haveElectrostaticSummationMethod()) {
540 std::string myMethod = simParams_->getElectrostaticSummationMethod();
541 toUpper(myMethod);
542 if (myMethod == "REACTION_FIELD") {
543 useRF=1;
544 } else {
545 if (myMethod == "DAMPED_WOLF") {
546 useDW = 1;
547 }
548 }
549 }
550
551 //loop over all of the atom types
552 for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
553 useLennardJones |= (*i)->isLennardJones();
554 useElectrostatic |= (*i)->isElectrostatic();
555 useEAM |= (*i)->isEAM();
556 useCharge |= (*i)->isCharge();
557 useDirectional |= (*i)->isDirectional();
558 useDipole |= (*i)->isDipole();
559 useGayBerne |= (*i)->isGayBerne();
560 useSticky |= (*i)->isSticky();
561 useStickyPower |= (*i)->isStickyPower();
562 useShape |= (*i)->isShape();
563 }
564
565 if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
566 useDirectionalAtom = 1;
567 }
568
569 if (useCharge || useDipole) {
570 useElectrostatics = 1;
571 }
572
573 #ifdef IS_MPI
574 int temp;
575
576 temp = usePBC;
577 MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
578
579 temp = useDirectionalAtom;
580 MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
581
582 temp = useLennardJones;
583 MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
584
585 temp = useElectrostatics;
586 MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
587
588 temp = useCharge;
589 MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
590
591 temp = useDipole;
592 MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
593
594 temp = useSticky;
595 MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
596
597 temp = useStickyPower;
598 MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
599
600 temp = useGayBerne;
601 MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
602
603 temp = useEAM;
604 MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
605
606 temp = useShape;
607 MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
608
609 temp = useFLARB;
610 MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
611
612 temp = useRF;
613 MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
614
615 temp = useDW;
616 MPI_Allreduce(&temp, &useDW, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
617
618 #endif
619
620 fInfo_.SIM_uses_PBC = usePBC;
621 fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
622 fInfo_.SIM_uses_LennardJones = useLennardJones;
623 fInfo_.SIM_uses_Electrostatics = useElectrostatics;
624 fInfo_.SIM_uses_Charges = useCharge;
625 fInfo_.SIM_uses_Dipoles = useDipole;
626 fInfo_.SIM_uses_Sticky = useSticky;
627 fInfo_.SIM_uses_StickyPower = useStickyPower;
628 fInfo_.SIM_uses_GayBerne = useGayBerne;
629 fInfo_.SIM_uses_EAM = useEAM;
630 fInfo_.SIM_uses_Shapes = useShape;
631 fInfo_.SIM_uses_FLARB = useFLARB;
632 fInfo_.SIM_uses_RF = useRF;
633 fInfo_.SIM_uses_DampedWolf = useDW;
634
635 if( myMethod == "REACTION_FIELD") {
636
637 if (simParams_->haveDielectric()) {
638 fInfo_.dielect = simParams_->getDielectric();
639 } else {
640 sprintf(painCave.errMsg,
641 "SimSetup Error: No Dielectric constant was set.\n"
642 "\tYou are trying to use Reaction Field without"
643 "\tsetting a dielectric constant!\n");
644 painCave.isFatal = 1;
645 simError();
646 }
647 }
648
649 }
650
651 void SimInfo::setupFortranSim() {
652 int isError;
653 int nExclude;
654 std::vector<int> fortranGlobalGroupMembership;
655
656 nExclude = exclude_.getSize();
657 isError = 0;
658
659 //globalGroupMembership_ is filled by SimCreator
660 for (int i = 0; i < nGlobalAtoms_; i++) {
661 fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
662 }
663
664 //calculate mass ratio of cutoff group
665 std::vector<double> mfact;
666 SimInfo::MoleculeIterator mi;
667 Molecule* mol;
668 Molecule::CutoffGroupIterator ci;
669 CutoffGroup* cg;
670 Molecule::AtomIterator ai;
671 Atom* atom;
672 double totalMass;
673
674 //to avoid memory reallocation, reserve enough space for mfact
675 mfact.reserve(getNCutoffGroups());
676
677 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
678 for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
679
680 totalMass = cg->getMass();
681 for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
682 // Check for massless groups - set mfact to 1 if true
683 if (totalMass != 0)
684 mfact.push_back(atom->getMass()/totalMass);
685 else
686 mfact.push_back( 1.0 );
687 }
688
689 }
690 }
691
692 //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
693 std::vector<int> identArray;
694
695 //to avoid memory reallocation, reserve enough space identArray
696 identArray.reserve(getNAtoms());
697
698 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
699 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
700 identArray.push_back(atom->getIdent());
701 }
702 }
703
704 //fill molMembershipArray
705 //molMembershipArray is filled by SimCreator
706 std::vector<int> molMembershipArray(nGlobalAtoms_);
707 for (int i = 0; i < nGlobalAtoms_; i++) {
708 molMembershipArray[i] = globalMolMembership_[i] + 1;
709 }
710
711 //setup fortran simulation
712 int nGlobalExcludes = 0;
713 int* globalExcludes = NULL;
714 int* excludeList = exclude_.getExcludeList();
715 setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
716 &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
717 &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
718
719 if( isError ){
720
721 sprintf( painCave.errMsg,
722 "There was an error setting the simulation information in fortran.\n" );
723 painCave.isFatal = 1;
724 painCave.severity = OOPSE_ERROR;
725 simError();
726 }
727
728 #ifdef IS_MPI
729 sprintf( checkPointMsg,
730 "succesfully sent the simulation information to fortran.\n");
731 MPIcheckPoint();
732 #endif // is_mpi
733 }
734
735
736 #ifdef IS_MPI
737 void SimInfo::setupFortranParallel() {
738
739 //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
740 std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
741 std::vector<int> localToGlobalCutoffGroupIndex;
742 SimInfo::MoleculeIterator mi;
743 Molecule::AtomIterator ai;
744 Molecule::CutoffGroupIterator ci;
745 Molecule* mol;
746 Atom* atom;
747 CutoffGroup* cg;
748 mpiSimData parallelData;
749 int isError;
750
751 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
752
753 //local index(index in DataStorge) of atom is important
754 for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
755 localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
756 }
757
758 //local index of cutoff group is trivial, it only depends on the order of travesing
759 for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
760 localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
761 }
762
763 }
764
765 //fill up mpiSimData struct
766 parallelData.nMolGlobal = getNGlobalMolecules();
767 parallelData.nMolLocal = getNMolecules();
768 parallelData.nAtomsGlobal = getNGlobalAtoms();
769 parallelData.nAtomsLocal = getNAtoms();
770 parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
771 parallelData.nGroupsLocal = getNCutoffGroups();
772 parallelData.myNode = worldRank;
773 MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
774
775 //pass mpiSimData struct and index arrays to fortran
776 setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
777 &localToGlobalAtomIndex[0], &(parallelData.nGroupsLocal),
778 &localToGlobalCutoffGroupIndex[0], &isError);
779
780 if (isError) {
781 sprintf(painCave.errMsg,
782 "mpiRefresh errror: fortran didn't like something we gave it.\n");
783 painCave.isFatal = 1;
784 simError();
785 }
786
787 sprintf(checkPointMsg, " mpiRefresh successful.\n");
788 MPIcheckPoint();
789
790
791 }
792
793 #endif
794
795 double SimInfo::calcMaxCutoffRadius() {
796
797
798 std::set<AtomType*> atomTypes;
799 std::set<AtomType*>::iterator i;
800 std::vector<double> cutoffRadius;
801
802 //get the unique atom types
803 atomTypes = getUniqueAtomTypes();
804
805 //query the max cutoff radius among these atom types
806 for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
807 cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
808 }
809
810 double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
811 #ifdef IS_MPI
812 //pick the max cutoff radius among the processors
813 #endif
814
815 return maxCutoffRadius;
816 }
817
818 void SimInfo::getCutoff(double& rcut, double& rsw) {
819
820 if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
821
822 if (!simParams_->haveCutoffRadius()){
823 sprintf(painCave.errMsg,
824 "SimCreator Warning: No value was set for the cutoffRadius.\n"
825 "\tOOPSE will use a default value of 15.0 angstroms"
826 "\tfor the cutoffRadius.\n");
827 painCave.isFatal = 0;
828 simError();
829 rcut = 15.0;
830 } else{
831 rcut = simParams_->getCutoffRadius();
832 }
833
834 if (!simParams_->haveSwitchingRadius()){
835 sprintf(painCave.errMsg,
836 "SimCreator Warning: No value was set for switchingRadius.\n"
837 "\tOOPSE will use a default value of\n"
838 "\t0.85 * cutoffRadius for the switchingRadius\n");
839 painCave.isFatal = 0;
840 simError();
841 rsw = 0.85 * rcut;
842 } else{
843 rsw = simParams_->getSwitchingRadius();
844 }
845
846 } else {
847 // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
848 //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
849
850 if (simParams_->haveCutoffRadius()) {
851 rcut = simParams_->getCutoffRadius();
852 } else {
853 //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
854 rcut = calcMaxCutoffRadius();
855 }
856
857 if (simParams_->haveSwitchingRadius()) {
858 rsw = simParams_->getSwitchingRadius();
859 } else {
860 rsw = rcut;
861 }
862
863 }
864 }
865
866 void SimInfo::setupCutoff() {
867 getCutoff(rcut_, rsw_);
868 double rnblist = rcut_ + 1; // skin of neighbor list
869
870 //Pass these cutoff radius etc. to fortran. This function should be called once and only once
871
872 int cp = TRADITIONAL_CUTOFF_POLICY;
873 if (simParams_->haveCutoffPolicy()) {
874 std::string myPolicy = simParams_->getCutoffPolicy();
875 toUpper(myPolicy);
876 if (myPolicy == "MIX") {
877 cp = MIX_CUTOFF_POLICY;
878 } else {
879 if (myPolicy == "MAX") {
880 cp = MAX_CUTOFF_POLICY;
881 } else {
882 if (myPolicy == "TRADITIONAL") {
883 cp = TRADITIONAL_CUTOFF_POLICY;
884 } else {
885 // throw error
886 sprintf( painCave.errMsg,
887 "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
888 painCave.isFatal = 1;
889 simError();
890 }
891 }
892 }
893 }
894
895
896 if (simParams_->haveSkinThickness()) {
897 double skinThickness = simParams_->getSkinThickness();
898 }
899
900 notifyFortranCutoffs(&rcut_, &rsw_, &rnblist, &cp);
901 // also send cutoff notification to electrostatics
902 setElectrostaticCutoffRadius(&rcut_, &rsw_);
903 }
904
905 void SimInfo::setupElectrostaticSummationMethod( int isError ) {
906
907 int errorOut;
908 int esm = NONE;
909 double alphaVal;
910 double dielectric;
911
912 errorOut = isError;
913 alphaVal = simParams_->getDampingAlpha();
914 dielectric = simParams_->getDielectric();
915
916 if (simParams_->haveElectrostaticSummationMethod()) {
917 std::string myMethod = simParams_->getElectrostaticSummationMethod();
918 toUpper(myMethod);
919 if (myMethod == "NONE") {
920 esm = NONE;
921 } else {
922 if (myMethod == "UNDAMPED_WOLF") {
923 esm = UNDAMPED_WOLF;
924 } else {
925 if (myMethod == "DAMPED_WOLF") {
926 esm = DAMPED_WOLF;
927 if (!simParams_->haveDampingAlpha()) {
928 //throw error
929 sprintf( painCave.errMsg,
930 "SimInfo warning: dampingAlpha was not specified in the input file. A default value of %f (1/ang) will be used for the Damped Wolf Method.", alphaVal);
931 painCave.isFatal = 0;
932 simError();
933 }
934 } else {
935 if (myMethod == "REACTION_FIELD") {
936 esm = REACTION_FIELD;
937 } else {
938 // throw error
939 sprintf( painCave.errMsg,
940 "SimInfo error: Unknown electrostaticSummationMethod. (Input file specified %s .)\n\telectrostaticSummationMethod must be one of: \"none\", \"undamped_wolf\", \"damped_wolf\", or \"reaction_field\".", myMethod.c_str() );
941 painCave.isFatal = 1;
942 simError();
943 }
944 }
945 }
946 }
947 }
948 // let's pass some summation method variables to fortran
949 setElectrostaticSummationMethod( &esm );
950 setDampedWolfAlpha( &alphaVal );
951 setReactionFieldDielectric( &dielectric );
952 initFortranFF( &esm, &errorOut );
953 }
954
955 void SimInfo::addProperty(GenericData* genData) {
956 properties_.addProperty(genData);
957 }
958
959 void SimInfo::removeProperty(const std::string& propName) {
960 properties_.removeProperty(propName);
961 }
962
963 void SimInfo::clearProperties() {
964 properties_.clearProperties();
965 }
966
967 std::vector<std::string> SimInfo::getPropertyNames() {
968 return properties_.getPropertyNames();
969 }
970
971 std::vector<GenericData*> SimInfo::getProperties() {
972 return properties_.getProperties();
973 }
974
975 GenericData* SimInfo::getPropertyByName(const std::string& propName) {
976 return properties_.getPropertyByName(propName);
977 }
978
979 void SimInfo::setSnapshotManager(SnapshotManager* sman) {
980 if (sman_ == sman) {
981 return;
982 }
983 delete sman_;
984 sman_ = sman;
985
986 Molecule* mol;
987 RigidBody* rb;
988 Atom* atom;
989 SimInfo::MoleculeIterator mi;
990 Molecule::RigidBodyIterator rbIter;
991 Molecule::AtomIterator atomIter;;
992
993 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
994
995 for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
996 atom->setSnapshotManager(sman_);
997 }
998
999 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1000 rb->setSnapshotManager(sman_);
1001 }
1002 }
1003
1004 }
1005
1006 Vector3d SimInfo::getComVel(){
1007 SimInfo::MoleculeIterator i;
1008 Molecule* mol;
1009
1010 Vector3d comVel(0.0);
1011 double totalMass = 0.0;
1012
1013
1014 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1015 double mass = mol->getMass();
1016 totalMass += mass;
1017 comVel += mass * mol->getComVel();
1018 }
1019
1020 #ifdef IS_MPI
1021 double tmpMass = totalMass;
1022 Vector3d tmpComVel(comVel);
1023 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1024 MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1025 #endif
1026
1027 comVel /= totalMass;
1028
1029 return comVel;
1030 }
1031
1032 Vector3d SimInfo::getCom(){
1033 SimInfo::MoleculeIterator i;
1034 Molecule* mol;
1035
1036 Vector3d com(0.0);
1037 double totalMass = 0.0;
1038
1039 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1040 double mass = mol->getMass();
1041 totalMass += mass;
1042 com += mass * mol->getCom();
1043 }
1044
1045 #ifdef IS_MPI
1046 double tmpMass = totalMass;
1047 Vector3d tmpCom(com);
1048 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1049 MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1050 #endif
1051
1052 com /= totalMass;
1053
1054 return com;
1055
1056 }
1057
1058 std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1059
1060 return o;
1061 }
1062
1063
1064 /*
1065 Returns center of mass and center of mass velocity in one function call.
1066 */
1067
1068 void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1069 SimInfo::MoleculeIterator i;
1070 Molecule* mol;
1071
1072
1073 double totalMass = 0.0;
1074
1075
1076 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1077 double mass = mol->getMass();
1078 totalMass += mass;
1079 com += mass * mol->getCom();
1080 comVel += mass * mol->getComVel();
1081 }
1082
1083 #ifdef IS_MPI
1084 double tmpMass = totalMass;
1085 Vector3d tmpCom(com);
1086 Vector3d tmpComVel(comVel);
1087 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1088 MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1089 MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1090 #endif
1091
1092 com /= totalMass;
1093 comVel /= totalMass;
1094 }
1095
1096 /*
1097 Return intertia tensor for entire system and angular momentum Vector.
1098
1099
1100 [ Ixx -Ixy -Ixz ]
1101 J =| -Iyx Iyy -Iyz |
1102 [ -Izx -Iyz Izz ]
1103 */
1104
1105 void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1106
1107
1108 double xx = 0.0;
1109 double yy = 0.0;
1110 double zz = 0.0;
1111 double xy = 0.0;
1112 double xz = 0.0;
1113 double yz = 0.0;
1114 Vector3d com(0.0);
1115 Vector3d comVel(0.0);
1116
1117 getComAll(com, comVel);
1118
1119 SimInfo::MoleculeIterator i;
1120 Molecule* mol;
1121
1122 Vector3d thisq(0.0);
1123 Vector3d thisv(0.0);
1124
1125 double thisMass = 0.0;
1126
1127
1128
1129
1130 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1131
1132 thisq = mol->getCom()-com;
1133 thisv = mol->getComVel()-comVel;
1134 thisMass = mol->getMass();
1135 // Compute moment of intertia coefficients.
1136 xx += thisq[0]*thisq[0]*thisMass;
1137 yy += thisq[1]*thisq[1]*thisMass;
1138 zz += thisq[2]*thisq[2]*thisMass;
1139
1140 // compute products of intertia
1141 xy += thisq[0]*thisq[1]*thisMass;
1142 xz += thisq[0]*thisq[2]*thisMass;
1143 yz += thisq[1]*thisq[2]*thisMass;
1144
1145 angularMomentum += cross( thisq, thisv ) * thisMass;
1146
1147 }
1148
1149
1150 inertiaTensor(0,0) = yy + zz;
1151 inertiaTensor(0,1) = -xy;
1152 inertiaTensor(0,2) = -xz;
1153 inertiaTensor(1,0) = -xy;
1154 inertiaTensor(1,1) = xx + zz;
1155 inertiaTensor(1,2) = -yz;
1156 inertiaTensor(2,0) = -xz;
1157 inertiaTensor(2,1) = -yz;
1158 inertiaTensor(2,2) = xx + yy;
1159
1160 #ifdef IS_MPI
1161 Mat3x3d tmpI(inertiaTensor);
1162 Vector3d tmpAngMom;
1163 MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1164 MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1165 #endif
1166
1167 return;
1168 }
1169
1170 //Returns the angular momentum of the system
1171 Vector3d SimInfo::getAngularMomentum(){
1172
1173 Vector3d com(0.0);
1174 Vector3d comVel(0.0);
1175 Vector3d angularMomentum(0.0);
1176
1177 getComAll(com,comVel);
1178
1179 SimInfo::MoleculeIterator i;
1180 Molecule* mol;
1181
1182 Vector3d thisr(0.0);
1183 Vector3d thisp(0.0);
1184
1185 double thisMass;
1186
1187 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1188 thisMass = mol->getMass();
1189 thisr = mol->getCom()-com;
1190 thisp = (mol->getComVel()-comVel)*thisMass;
1191
1192 angularMomentum += cross( thisr, thisp );
1193
1194 }
1195
1196 #ifdef IS_MPI
1197 Vector3d tmpAngMom;
1198 MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1199 #endif
1200
1201 return angularMomentum;
1202 }
1203
1204
1205 }//end namespace oopse
1206