ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-2.0/src/brains/SimInfo.cpp
Revision: 2463
Committed: Mon Nov 21 22:59:21 2005 UTC (18 years, 7 months ago) by gezelter
File size: 43289 byte(s)
Log Message:
Cutoff Mixing fixes

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Acknowledgement of the program authors must be made in any
10 * publication of scientific results based in part on use of the
11 * program. An acceptable form of acknowledgement is citation of
12 * the article in which the program was described (Matthew
13 * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 * Parallel Simulation Engine for Molecular Dynamics,"
16 * J. Comput. Chem. 26, pp. 252-271 (2005))
17 *
18 * 2. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 *
21 * 3. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the
24 * distribution.
25 *
26 * This software is provided "AS IS," without a warranty of any
27 * kind. All express or implied conditions, representations and
28 * warranties, including any implied warranty of merchantability,
29 * fitness for a particular purpose or non-infringement, are hereby
30 * excluded. The University of Notre Dame and its licensors shall not
31 * be liable for any damages suffered by licensee as a result of
32 * using, modifying or distributing the software or its
33 * derivatives. In no event will the University of Notre Dame or its
34 * licensors be liable for any lost revenue, profit or data, or for
35 * direct, indirect, special, consequential, incidental or punitive
36 * damages, however caused and regardless of the theory of liability,
37 * arising out of the use of or inability to use software, even if the
38 * University of Notre Dame has been advised of the possibility of
39 * such damages.
40 */
41
42 /**
43 * @file SimInfo.cpp
44 * @author tlin
45 * @date 11/02/2004
46 * @version 1.0
47 */
48
49 #include <algorithm>
50 #include <set>
51 #include <map>
52
53 #include "brains/SimInfo.hpp"
54 #include "math/Vector3.hpp"
55 #include "primitives/Molecule.hpp"
56 #include "UseTheForce/fCutoffPolicy.h"
57 #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
58 #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
59 #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
60 #include "UseTheForce/doForces_interface.h"
61 #include "UseTheForce/DarkSide/electrostatic_interface.h"
62 #include "UseTheForce/DarkSide/switcheroo_interface.h"
63 #include "utils/MemoryUtils.hpp"
64 #include "utils/simError.h"
65 #include "selection/SelectionManager.hpp"
66
67 #ifdef IS_MPI
68 #include "UseTheForce/mpiComponentPlan.h"
69 #include "UseTheForce/DarkSide/simParallel_interface.h"
70 #endif
71
72 namespace oopse {
73 std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
74 std::map<int, std::set<int> >::iterator i = container.find(index);
75 std::set<int> result;
76 if (i != container.end()) {
77 result = i->second;
78 }
79
80 return result;
81 }
82
83 SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
84 ForceField* ff, Globals* simParams) :
85 stamps_(stamps), forceField_(ff), simParams_(simParams),
86 ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
87 nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
88 nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
89 nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nRigidBodies_(0),
90 nIntegrableObjects_(0), nCutoffGroups_(0), nConstraints_(0),
91 sman_(NULL), fortranInitialized_(false) {
92
93
94 std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
95 MoleculeStamp* molStamp;
96 int nMolWithSameStamp;
97 int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
98 int nGroups = 0; //total cutoff groups defined in meta-data file
99 CutoffGroupStamp* cgStamp;
100 RigidBodyStamp* rbStamp;
101 int nRigidAtoms = 0;
102
103 for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
104 molStamp = i->first;
105 nMolWithSameStamp = i->second;
106
107 addMoleculeStamp(molStamp, nMolWithSameStamp);
108
109 //calculate atoms in molecules
110 nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;
111
112
113 //calculate atoms in cutoff groups
114 int nAtomsInGroups = 0;
115 int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
116
117 for (int j=0; j < nCutoffGroupsInStamp; j++) {
118 cgStamp = molStamp->getCutoffGroup(j);
119 nAtomsInGroups += cgStamp->getNMembers();
120 }
121
122 nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
123
124 nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;
125
126 //calculate atoms in rigid bodies
127 int nAtomsInRigidBodies = 0;
128 int nRigidBodiesInStamp = molStamp->getNRigidBodies();
129
130 for (int j=0; j < nRigidBodiesInStamp; j++) {
131 rbStamp = molStamp->getRigidBody(j);
132 nAtomsInRigidBodies += rbStamp->getNMembers();
133 }
134
135 nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
136 nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;
137
138 }
139
140 //every free atom (atom does not belong to cutoff groups) is a cutoff
141 //group therefore the total number of cutoff groups in the system is
142 //equal to the total number of atoms minus number of atoms belong to
143 //cutoff group defined in meta-data file plus the number of cutoff
144 //groups defined in meta-data file
145 nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
146
147 //every free atom (atom does not belong to rigid bodies) is an
148 //integrable object therefore the total number of integrable objects
149 //in the system is equal to the total number of atoms minus number of
150 //atoms belong to rigid body defined in meta-data file plus the number
151 //of rigid bodies defined in meta-data file
152 nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
153 + nGlobalRigidBodies_;
154
155 nGlobalMols_ = molStampIds_.size();
156
157 #ifdef IS_MPI
158 molToProcMap_.resize(nGlobalMols_);
159 #endif
160
161 }
162
163 SimInfo::~SimInfo() {
164 std::map<int, Molecule*>::iterator i;
165 for (i = molecules_.begin(); i != molecules_.end(); ++i) {
166 delete i->second;
167 }
168 molecules_.clear();
169
170 delete stamps_;
171 delete sman_;
172 delete simParams_;
173 delete forceField_;
174 }
175
176 int SimInfo::getNGlobalConstraints() {
177 int nGlobalConstraints;
178 #ifdef IS_MPI
179 MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
180 MPI_COMM_WORLD);
181 #else
182 nGlobalConstraints = nConstraints_;
183 #endif
184 return nGlobalConstraints;
185 }
186
187 bool SimInfo::addMolecule(Molecule* mol) {
188 MoleculeIterator i;
189
190 i = molecules_.find(mol->getGlobalIndex());
191 if (i == molecules_.end() ) {
192
193 molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
194
195 nAtoms_ += mol->getNAtoms();
196 nBonds_ += mol->getNBonds();
197 nBends_ += mol->getNBends();
198 nTorsions_ += mol->getNTorsions();
199 nRigidBodies_ += mol->getNRigidBodies();
200 nIntegrableObjects_ += mol->getNIntegrableObjects();
201 nCutoffGroups_ += mol->getNCutoffGroups();
202 nConstraints_ += mol->getNConstraintPairs();
203
204 addExcludePairs(mol);
205
206 return true;
207 } else {
208 return false;
209 }
210 }
211
212 bool SimInfo::removeMolecule(Molecule* mol) {
213 MoleculeIterator i;
214 i = molecules_.find(mol->getGlobalIndex());
215
216 if (i != molecules_.end() ) {
217
218 assert(mol == i->second);
219
220 nAtoms_ -= mol->getNAtoms();
221 nBonds_ -= mol->getNBonds();
222 nBends_ -= mol->getNBends();
223 nTorsions_ -= mol->getNTorsions();
224 nRigidBodies_ -= mol->getNRigidBodies();
225 nIntegrableObjects_ -= mol->getNIntegrableObjects();
226 nCutoffGroups_ -= mol->getNCutoffGroups();
227 nConstraints_ -= mol->getNConstraintPairs();
228
229 removeExcludePairs(mol);
230 molecules_.erase(mol->getGlobalIndex());
231
232 delete mol;
233
234 return true;
235 } else {
236 return false;
237 }
238
239
240 }
241
242
243 Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
244 i = molecules_.begin();
245 return i == molecules_.end() ? NULL : i->second;
246 }
247
248 Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
249 ++i;
250 return i == molecules_.end() ? NULL : i->second;
251 }
252
253
254 void SimInfo::calcNdf() {
255 int ndf_local;
256 MoleculeIterator i;
257 std::vector<StuntDouble*>::iterator j;
258 Molecule* mol;
259 StuntDouble* integrableObject;
260
261 ndf_local = 0;
262
263 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
264 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
265 integrableObject = mol->nextIntegrableObject(j)) {
266
267 ndf_local += 3;
268
269 if (integrableObject->isDirectional()) {
270 if (integrableObject->isLinear()) {
271 ndf_local += 2;
272 } else {
273 ndf_local += 3;
274 }
275 }
276
277 }//end for (integrableObject)
278 }// end for (mol)
279
280 // n_constraints is local, so subtract them on each processor
281 ndf_local -= nConstraints_;
282
283 #ifdef IS_MPI
284 MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
285 #else
286 ndf_ = ndf_local;
287 #endif
288
289 // nZconstraints_ is global, as are the 3 COM translations for the
290 // entire system:
291 ndf_ = ndf_ - 3 - nZconstraint_;
292
293 }
294
295 void SimInfo::calcNdfRaw() {
296 int ndfRaw_local;
297
298 MoleculeIterator i;
299 std::vector<StuntDouble*>::iterator j;
300 Molecule* mol;
301 StuntDouble* integrableObject;
302
303 // Raw degrees of freedom that we have to set
304 ndfRaw_local = 0;
305
306 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
307 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
308 integrableObject = mol->nextIntegrableObject(j)) {
309
310 ndfRaw_local += 3;
311
312 if (integrableObject->isDirectional()) {
313 if (integrableObject->isLinear()) {
314 ndfRaw_local += 2;
315 } else {
316 ndfRaw_local += 3;
317 }
318 }
319
320 }
321 }
322
323 #ifdef IS_MPI
324 MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
325 #else
326 ndfRaw_ = ndfRaw_local;
327 #endif
328 }
329
330 void SimInfo::calcNdfTrans() {
331 int ndfTrans_local;
332
333 ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
334
335
336 #ifdef IS_MPI
337 MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
338 #else
339 ndfTrans_ = ndfTrans_local;
340 #endif
341
342 ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
343
344 }
345
346 void SimInfo::addExcludePairs(Molecule* mol) {
347 std::vector<Bond*>::iterator bondIter;
348 std::vector<Bend*>::iterator bendIter;
349 std::vector<Torsion*>::iterator torsionIter;
350 Bond* bond;
351 Bend* bend;
352 Torsion* torsion;
353 int a;
354 int b;
355 int c;
356 int d;
357
358 std::map<int, std::set<int> > atomGroups;
359
360 Molecule::RigidBodyIterator rbIter;
361 RigidBody* rb;
362 Molecule::IntegrableObjectIterator ii;
363 StuntDouble* integrableObject;
364
365 for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
366 integrableObject = mol->nextIntegrableObject(ii)) {
367
368 if (integrableObject->isRigidBody()) {
369 rb = static_cast<RigidBody*>(integrableObject);
370 std::vector<Atom*> atoms = rb->getAtoms();
371 std::set<int> rigidAtoms;
372 for (int i = 0; i < atoms.size(); ++i) {
373 rigidAtoms.insert(atoms[i]->getGlobalIndex());
374 }
375 for (int i = 0; i < atoms.size(); ++i) {
376 atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
377 }
378 } else {
379 std::set<int> oneAtomSet;
380 oneAtomSet.insert(integrableObject->getGlobalIndex());
381 atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));
382 }
383 }
384
385
386
387 for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
388 a = bond->getAtomA()->getGlobalIndex();
389 b = bond->getAtomB()->getGlobalIndex();
390 exclude_.addPair(a, b);
391 }
392
393 for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
394 a = bend->getAtomA()->getGlobalIndex();
395 b = bend->getAtomB()->getGlobalIndex();
396 c = bend->getAtomC()->getGlobalIndex();
397 std::set<int> rigidSetA = getRigidSet(a, atomGroups);
398 std::set<int> rigidSetB = getRigidSet(b, atomGroups);
399 std::set<int> rigidSetC = getRigidSet(c, atomGroups);
400
401 exclude_.addPairs(rigidSetA, rigidSetB);
402 exclude_.addPairs(rigidSetA, rigidSetC);
403 exclude_.addPairs(rigidSetB, rigidSetC);
404
405 //exclude_.addPair(a, b);
406 //exclude_.addPair(a, c);
407 //exclude_.addPair(b, c);
408 }
409
410 for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
411 a = torsion->getAtomA()->getGlobalIndex();
412 b = torsion->getAtomB()->getGlobalIndex();
413 c = torsion->getAtomC()->getGlobalIndex();
414 d = torsion->getAtomD()->getGlobalIndex();
415 std::set<int> rigidSetA = getRigidSet(a, atomGroups);
416 std::set<int> rigidSetB = getRigidSet(b, atomGroups);
417 std::set<int> rigidSetC = getRigidSet(c, atomGroups);
418 std::set<int> rigidSetD = getRigidSet(d, atomGroups);
419
420 exclude_.addPairs(rigidSetA, rigidSetB);
421 exclude_.addPairs(rigidSetA, rigidSetC);
422 exclude_.addPairs(rigidSetA, rigidSetD);
423 exclude_.addPairs(rigidSetB, rigidSetC);
424 exclude_.addPairs(rigidSetB, rigidSetD);
425 exclude_.addPairs(rigidSetC, rigidSetD);
426
427 /*
428 exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
429 exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
430 exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
431 exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
432 exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
433 exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
434
435
436 exclude_.addPair(a, b);
437 exclude_.addPair(a, c);
438 exclude_.addPair(a, d);
439 exclude_.addPair(b, c);
440 exclude_.addPair(b, d);
441 exclude_.addPair(c, d);
442 */
443 }
444
445 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
446 std::vector<Atom*> atoms = rb->getAtoms();
447 for (int i = 0; i < atoms.size() -1 ; ++i) {
448 for (int j = i + 1; j < atoms.size(); ++j) {
449 a = atoms[i]->getGlobalIndex();
450 b = atoms[j]->getGlobalIndex();
451 exclude_.addPair(a, b);
452 }
453 }
454 }
455
456 }
457
458 void SimInfo::removeExcludePairs(Molecule* mol) {
459 std::vector<Bond*>::iterator bondIter;
460 std::vector<Bend*>::iterator bendIter;
461 std::vector<Torsion*>::iterator torsionIter;
462 Bond* bond;
463 Bend* bend;
464 Torsion* torsion;
465 int a;
466 int b;
467 int c;
468 int d;
469
470 std::map<int, std::set<int> > atomGroups;
471
472 Molecule::RigidBodyIterator rbIter;
473 RigidBody* rb;
474 Molecule::IntegrableObjectIterator ii;
475 StuntDouble* integrableObject;
476
477 for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
478 integrableObject = mol->nextIntegrableObject(ii)) {
479
480 if (integrableObject->isRigidBody()) {
481 rb = static_cast<RigidBody*>(integrableObject);
482 std::vector<Atom*> atoms = rb->getAtoms();
483 std::set<int> rigidAtoms;
484 for (int i = 0; i < atoms.size(); ++i) {
485 rigidAtoms.insert(atoms[i]->getGlobalIndex());
486 }
487 for (int i = 0; i < atoms.size(); ++i) {
488 atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
489 }
490 } else {
491 std::set<int> oneAtomSet;
492 oneAtomSet.insert(integrableObject->getGlobalIndex());
493 atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));
494 }
495 }
496
497
498 for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
499 a = bond->getAtomA()->getGlobalIndex();
500 b = bond->getAtomB()->getGlobalIndex();
501 exclude_.removePair(a, b);
502 }
503
504 for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
505 a = bend->getAtomA()->getGlobalIndex();
506 b = bend->getAtomB()->getGlobalIndex();
507 c = bend->getAtomC()->getGlobalIndex();
508
509 std::set<int> rigidSetA = getRigidSet(a, atomGroups);
510 std::set<int> rigidSetB = getRigidSet(b, atomGroups);
511 std::set<int> rigidSetC = getRigidSet(c, atomGroups);
512
513 exclude_.removePairs(rigidSetA, rigidSetB);
514 exclude_.removePairs(rigidSetA, rigidSetC);
515 exclude_.removePairs(rigidSetB, rigidSetC);
516
517 //exclude_.removePair(a, b);
518 //exclude_.removePair(a, c);
519 //exclude_.removePair(b, c);
520 }
521
522 for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
523 a = torsion->getAtomA()->getGlobalIndex();
524 b = torsion->getAtomB()->getGlobalIndex();
525 c = torsion->getAtomC()->getGlobalIndex();
526 d = torsion->getAtomD()->getGlobalIndex();
527
528 std::set<int> rigidSetA = getRigidSet(a, atomGroups);
529 std::set<int> rigidSetB = getRigidSet(b, atomGroups);
530 std::set<int> rigidSetC = getRigidSet(c, atomGroups);
531 std::set<int> rigidSetD = getRigidSet(d, atomGroups);
532
533 exclude_.removePairs(rigidSetA, rigidSetB);
534 exclude_.removePairs(rigidSetA, rigidSetC);
535 exclude_.removePairs(rigidSetA, rigidSetD);
536 exclude_.removePairs(rigidSetB, rigidSetC);
537 exclude_.removePairs(rigidSetB, rigidSetD);
538 exclude_.removePairs(rigidSetC, rigidSetD);
539
540 /*
541 exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
542 exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
543 exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
544 exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
545 exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
546 exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
547
548
549 exclude_.removePair(a, b);
550 exclude_.removePair(a, c);
551 exclude_.removePair(a, d);
552 exclude_.removePair(b, c);
553 exclude_.removePair(b, d);
554 exclude_.removePair(c, d);
555 */
556 }
557
558 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
559 std::vector<Atom*> atoms = rb->getAtoms();
560 for (int i = 0; i < atoms.size() -1 ; ++i) {
561 for (int j = i + 1; j < atoms.size(); ++j) {
562 a = atoms[i]->getGlobalIndex();
563 b = atoms[j]->getGlobalIndex();
564 exclude_.removePair(a, b);
565 }
566 }
567 }
568
569 }
570
571
572 void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
573 int curStampId;
574
575 //index from 0
576 curStampId = moleculeStamps_.size();
577
578 moleculeStamps_.push_back(molStamp);
579 molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
580 }
581
582 void SimInfo::update() {
583
584 setupSimType();
585
586 #ifdef IS_MPI
587 setupFortranParallel();
588 #endif
589
590 setupFortranSim();
591
592 //setup fortran force field
593 /** @deprecate */
594 int isError = 0;
595
596 setupElectrostaticSummationMethod( isError );
597 setupSwitchingFunction();
598
599 if(isError){
600 sprintf( painCave.errMsg,
601 "ForceField error: There was an error initializing the forceField in fortran.\n" );
602 painCave.isFatal = 1;
603 simError();
604 }
605
606
607 setupCutoff();
608
609 calcNdf();
610 calcNdfRaw();
611 calcNdfTrans();
612
613 fortranInitialized_ = true;
614 }
615
616 std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
617 SimInfo::MoleculeIterator mi;
618 Molecule* mol;
619 Molecule::AtomIterator ai;
620 Atom* atom;
621 std::set<AtomType*> atomTypes;
622
623 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
624
625 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
626 atomTypes.insert(atom->getAtomType());
627 }
628
629 }
630
631 return atomTypes;
632 }
633
634 void SimInfo::setupSimType() {
635 std::set<AtomType*>::iterator i;
636 std::set<AtomType*> atomTypes;
637 atomTypes = getUniqueAtomTypes();
638
639 int useLennardJones = 0;
640 int useElectrostatic = 0;
641 int useEAM = 0;
642 int useSC = 0;
643 int useCharge = 0;
644 int useDirectional = 0;
645 int useDipole = 0;
646 int useGayBerne = 0;
647 int useSticky = 0;
648 int useStickyPower = 0;
649 int useShape = 0;
650 int useFLARB = 0; //it is not in AtomType yet
651 int useDirectionalAtom = 0;
652 int useElectrostatics = 0;
653 //usePBC and useRF are from simParams
654 int usePBC = simParams_->getUsePeriodicBoundaryConditions();
655 int useRF;
656 int useSF;
657 std::string myMethod;
658
659 // set the useRF logical
660 useRF = 0;
661 useSF = 0;
662
663
664 if (simParams_->haveElectrostaticSummationMethod()) {
665 std::string myMethod = simParams_->getElectrostaticSummationMethod();
666 toUpper(myMethod);
667 if (myMethod == "REACTION_FIELD") {
668 useRF=1;
669 } else {
670 if (myMethod == "SHIFTED_FORCE") {
671 useSF = 1;
672 }
673 }
674 }
675
676 //loop over all of the atom types
677 for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
678 useLennardJones |= (*i)->isLennardJones();
679 useElectrostatic |= (*i)->isElectrostatic();
680 useEAM |= (*i)->isEAM();
681 useSC |= (*i)->isSC();
682 useCharge |= (*i)->isCharge();
683 useDirectional |= (*i)->isDirectional();
684 useDipole |= (*i)->isDipole();
685 useGayBerne |= (*i)->isGayBerne();
686 useSticky |= (*i)->isSticky();
687 useStickyPower |= (*i)->isStickyPower();
688 useShape |= (*i)->isShape();
689 }
690
691 if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
692 useDirectionalAtom = 1;
693 }
694
695 if (useCharge || useDipole) {
696 useElectrostatics = 1;
697 }
698
699 #ifdef IS_MPI
700 int temp;
701
702 temp = usePBC;
703 MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
704
705 temp = useDirectionalAtom;
706 MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
707
708 temp = useLennardJones;
709 MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
710
711 temp = useElectrostatics;
712 MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
713
714 temp = useCharge;
715 MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
716
717 temp = useDipole;
718 MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
719
720 temp = useSticky;
721 MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
722
723 temp = useStickyPower;
724 MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
725
726 temp = useGayBerne;
727 MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
728
729 temp = useEAM;
730 MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
731
732 temp = useSC;
733 MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
734
735 temp = useShape;
736 MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
737
738 temp = useFLARB;
739 MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
740
741 temp = useRF;
742 MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
743
744 temp = useSF;
745 MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
746
747 #endif
748
749 fInfo_.SIM_uses_PBC = usePBC;
750 fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
751 fInfo_.SIM_uses_LennardJones = useLennardJones;
752 fInfo_.SIM_uses_Electrostatics = useElectrostatics;
753 fInfo_.SIM_uses_Charges = useCharge;
754 fInfo_.SIM_uses_Dipoles = useDipole;
755 fInfo_.SIM_uses_Sticky = useSticky;
756 fInfo_.SIM_uses_StickyPower = useStickyPower;
757 fInfo_.SIM_uses_GayBerne = useGayBerne;
758 fInfo_.SIM_uses_EAM = useEAM;
759 fInfo_.SIM_uses_SC = useSC;
760 fInfo_.SIM_uses_Shapes = useShape;
761 fInfo_.SIM_uses_FLARB = useFLARB;
762 fInfo_.SIM_uses_RF = useRF;
763 fInfo_.SIM_uses_SF = useSF;
764
765 if( myMethod == "REACTION_FIELD") {
766
767 if (simParams_->haveDielectric()) {
768 fInfo_.dielect = simParams_->getDielectric();
769 } else {
770 sprintf(painCave.errMsg,
771 "SimSetup Error: No Dielectric constant was set.\n"
772 "\tYou are trying to use Reaction Field without"
773 "\tsetting a dielectric constant!\n");
774 painCave.isFatal = 1;
775 simError();
776 }
777 }
778
779 }
780
781 void SimInfo::setupFortranSim() {
782 int isError;
783 int nExclude;
784 std::vector<int> fortranGlobalGroupMembership;
785
786 nExclude = exclude_.getSize();
787 isError = 0;
788
789 //globalGroupMembership_ is filled by SimCreator
790 for (int i = 0; i < nGlobalAtoms_; i++) {
791 fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
792 }
793
794 //calculate mass ratio of cutoff group
795 std::vector<double> mfact;
796 SimInfo::MoleculeIterator mi;
797 Molecule* mol;
798 Molecule::CutoffGroupIterator ci;
799 CutoffGroup* cg;
800 Molecule::AtomIterator ai;
801 Atom* atom;
802 double totalMass;
803
804 //to avoid memory reallocation, reserve enough space for mfact
805 mfact.reserve(getNCutoffGroups());
806
807 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
808 for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
809
810 totalMass = cg->getMass();
811 for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
812 // Check for massless groups - set mfact to 1 if true
813 if (totalMass != 0)
814 mfact.push_back(atom->getMass()/totalMass);
815 else
816 mfact.push_back( 1.0 );
817 }
818
819 }
820 }
821
822 //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
823 std::vector<int> identArray;
824
825 //to avoid memory reallocation, reserve enough space identArray
826 identArray.reserve(getNAtoms());
827
828 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
829 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
830 identArray.push_back(atom->getIdent());
831 }
832 }
833
834 //fill molMembershipArray
835 //molMembershipArray is filled by SimCreator
836 std::vector<int> molMembershipArray(nGlobalAtoms_);
837 for (int i = 0; i < nGlobalAtoms_; i++) {
838 molMembershipArray[i] = globalMolMembership_[i] + 1;
839 }
840
841 //setup fortran simulation
842 int nGlobalExcludes = 0;
843 int* globalExcludes = NULL;
844 int* excludeList = exclude_.getExcludeList();
845 setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
846 &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
847 &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
848
849 if( isError ){
850
851 sprintf( painCave.errMsg,
852 "There was an error setting the simulation information in fortran.\n" );
853 painCave.isFatal = 1;
854 painCave.severity = OOPSE_ERROR;
855 simError();
856 }
857
858 #ifdef IS_MPI
859 sprintf( checkPointMsg,
860 "succesfully sent the simulation information to fortran.\n");
861 MPIcheckPoint();
862 #endif // is_mpi
863 }
864
865
866 #ifdef IS_MPI
867 void SimInfo::setupFortranParallel() {
868
869 //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
870 std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
871 std::vector<int> localToGlobalCutoffGroupIndex;
872 SimInfo::MoleculeIterator mi;
873 Molecule::AtomIterator ai;
874 Molecule::CutoffGroupIterator ci;
875 Molecule* mol;
876 Atom* atom;
877 CutoffGroup* cg;
878 mpiSimData parallelData;
879 int isError;
880
881 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
882
883 //local index(index in DataStorge) of atom is important
884 for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
885 localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
886 }
887
888 //local index of cutoff group is trivial, it only depends on the order of travesing
889 for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
890 localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
891 }
892
893 }
894
895 //fill up mpiSimData struct
896 parallelData.nMolGlobal = getNGlobalMolecules();
897 parallelData.nMolLocal = getNMolecules();
898 parallelData.nAtomsGlobal = getNGlobalAtoms();
899 parallelData.nAtomsLocal = getNAtoms();
900 parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
901 parallelData.nGroupsLocal = getNCutoffGroups();
902 parallelData.myNode = worldRank;
903 MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
904
905 //pass mpiSimData struct and index arrays to fortran
906 setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
907 &localToGlobalAtomIndex[0], &(parallelData.nGroupsLocal),
908 &localToGlobalCutoffGroupIndex[0], &isError);
909
910 if (isError) {
911 sprintf(painCave.errMsg,
912 "mpiRefresh errror: fortran didn't like something we gave it.\n");
913 painCave.isFatal = 1;
914 simError();
915 }
916
917 sprintf(checkPointMsg, " mpiRefresh successful.\n");
918 MPIcheckPoint();
919
920
921 }
922
923 #endif
924
925 void SimInfo::setupCutoff() {
926
927 // Check the cutoff policy
928 int cp = TRADITIONAL_CUTOFF_POLICY;
929 if (simParams_->haveCutoffPolicy()) {
930 std::string myPolicy = simParams_->getCutoffPolicy();
931 toUpper(myPolicy);
932 if (myPolicy == "MIX") {
933 cp = MIX_CUTOFF_POLICY;
934 } else {
935 if (myPolicy == "MAX") {
936 cp = MAX_CUTOFF_POLICY;
937 } else {
938 if (myPolicy == "TRADITIONAL") {
939 cp = TRADITIONAL_CUTOFF_POLICY;
940 } else {
941 // throw error
942 sprintf( painCave.errMsg,
943 "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
944 painCave.isFatal = 1;
945 simError();
946 }
947 }
948 }
949 }
950 notifyFortranCutoffPolicy(&cp);
951
952 // Check the Skin Thickness for neighborlists
953 double skin;
954 if (simParams_->haveSkinThickness()) {
955 skin = simParams_->getSkinThickness();
956 notifyFortranSkinThickness(&skin);
957 }
958
959 // Check if the cutoff was set explicitly:
960 if (simParams_->haveCutoffRadius()) {
961 rcut_ = simParams_->getCutoffRadius();
962 if (simParams_->haveSwitchingRadius()) {
963 rsw_ = simParams_->getSwitchingRadius();
964 } else {
965 rsw_ = rcut_;
966 }
967 notifyFortranCutoffs(&rcut_, &rsw_);
968
969 } else {
970
971 // For electrostatic atoms, we'll assume a large safe value:
972 if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
973 sprintf(painCave.errMsg,
974 "SimCreator Warning: No value was set for the cutoffRadius.\n"
975 "\tOOPSE will use a default value of 15.0 angstroms"
976 "\tfor the cutoffRadius.\n");
977 painCave.isFatal = 0;
978 simError();
979 rcut_ = 15.0;
980
981 if (simParams_->haveElectrostaticSummationMethod()) {
982 std::string myMethod = simParams_->getElectrostaticSummationMethod();
983 toUpper(myMethod);
984 if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
985 if (simParams_->haveSwitchingRadius()){
986 sprintf(painCave.errMsg,
987 "SimInfo Warning: A value was set for the switchingRadius\n"
988 "\teven though the electrostaticSummationMethod was\n"
989 "\tset to %s\n", myMethod.c_str());
990 painCave.isFatal = 1;
991 simError();
992 }
993 }
994 }
995
996 if (simParams_->haveSwitchingRadius()){
997 rsw_ = simParams_->getSwitchingRadius();
998 } else {
999 sprintf(painCave.errMsg,
1000 "SimCreator Warning: No value was set for switchingRadius.\n"
1001 "\tOOPSE will use a default value of\n"
1002 "\t0.85 * cutoffRadius for the switchingRadius\n");
1003 painCave.isFatal = 0;
1004 simError();
1005 rsw_ = 0.85 * rcut_;
1006 }
1007 notifyFortranCutoffs(&rcut_, &rsw_);
1008 } else {
1009 // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1010 // We'll punt and let fortran figure out the cutoffs later.
1011
1012 notifyFortranYouAreOnYourOwn();
1013
1014 }
1015 }
1016 }
1017
1018 void SimInfo::setupElectrostaticSummationMethod( int isError ) {
1019
1020 int errorOut;
1021 int esm = NONE;
1022 int sm = UNDAMPED;
1023 double alphaVal;
1024 double dielectric;
1025
1026 errorOut = isError;
1027 alphaVal = simParams_->getDampingAlpha();
1028 dielectric = simParams_->getDielectric();
1029
1030 if (simParams_->haveElectrostaticSummationMethod()) {
1031 std::string myMethod = simParams_->getElectrostaticSummationMethod();
1032 toUpper(myMethod);
1033 if (myMethod == "NONE") {
1034 esm = NONE;
1035 } else {
1036 if (myMethod == "SWITCHING_FUNCTION") {
1037 esm = SWITCHING_FUNCTION;
1038 } else {
1039 if (myMethod == "SHIFTED_POTENTIAL") {
1040 esm = SHIFTED_POTENTIAL;
1041 } else {
1042 if (myMethod == "SHIFTED_FORCE") {
1043 esm = SHIFTED_FORCE;
1044 } else {
1045 if (myMethod == "REACTION_FIELD") {
1046 esm = REACTION_FIELD;
1047 } else {
1048 // throw error
1049 sprintf( painCave.errMsg,
1050 "SimInfo error: Unknown electrostaticSummationMethod.\n"
1051 "\t(Input file specified %s .)\n"
1052 "\telectrostaticSummationMethod must be one of: \"none\",\n"
1053 "\t\"shifted_potential\", \"shifted_force\", or \n"
1054 "\t\"reaction_field\".\n", myMethod.c_str() );
1055 painCave.isFatal = 1;
1056 simError();
1057 }
1058 }
1059 }
1060 }
1061 }
1062 }
1063
1064 if (simParams_->haveElectrostaticScreeningMethod()) {
1065 std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1066 toUpper(myScreen);
1067 if (myScreen == "UNDAMPED") {
1068 sm = UNDAMPED;
1069 } else {
1070 if (myScreen == "DAMPED") {
1071 sm = DAMPED;
1072 if (!simParams_->haveDampingAlpha()) {
1073 //throw error
1074 sprintf( painCave.errMsg,
1075 "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1076 "\tA default value of %f (1/ang) will be used.\n", alphaVal);
1077 painCave.isFatal = 0;
1078 simError();
1079 }
1080 } else {
1081 // throw error
1082 sprintf( painCave.errMsg,
1083 "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1084 "\t(Input file specified %s .)\n"
1085 "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1086 "or \"damped\".\n", myScreen.c_str() );
1087 painCave.isFatal = 1;
1088 simError();
1089 }
1090 }
1091 }
1092
1093 // let's pass some summation method variables to fortran
1094 setElectrostaticSummationMethod( &esm );
1095 notifyFortranElectrostaticMethod( &esm );
1096 setScreeningMethod( &sm );
1097 setDampingAlpha( &alphaVal );
1098 setReactionFieldDielectric( &dielectric );
1099 initFortranFF( &errorOut );
1100 }
1101
1102 void SimInfo::setupSwitchingFunction() {
1103 int ft = CUBIC;
1104
1105 if (simParams_->haveSwitchingFunctionType()) {
1106 std::string funcType = simParams_->getSwitchingFunctionType();
1107 toUpper(funcType);
1108 if (funcType == "CUBIC") {
1109 ft = CUBIC;
1110 } else {
1111 if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1112 ft = FIFTH_ORDER_POLY;
1113 } else {
1114 // throw error
1115 sprintf( painCave.errMsg,
1116 "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1117 painCave.isFatal = 1;
1118 simError();
1119 }
1120 }
1121 }
1122
1123 // send switching function notification to switcheroo
1124 setFunctionType(&ft);
1125
1126 }
1127
1128 void SimInfo::addProperty(GenericData* genData) {
1129 properties_.addProperty(genData);
1130 }
1131
1132 void SimInfo::removeProperty(const std::string& propName) {
1133 properties_.removeProperty(propName);
1134 }
1135
1136 void SimInfo::clearProperties() {
1137 properties_.clearProperties();
1138 }
1139
1140 std::vector<std::string> SimInfo::getPropertyNames() {
1141 return properties_.getPropertyNames();
1142 }
1143
1144 std::vector<GenericData*> SimInfo::getProperties() {
1145 return properties_.getProperties();
1146 }
1147
1148 GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1149 return properties_.getPropertyByName(propName);
1150 }
1151
1152 void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1153 if (sman_ == sman) {
1154 return;
1155 }
1156 delete sman_;
1157 sman_ = sman;
1158
1159 Molecule* mol;
1160 RigidBody* rb;
1161 Atom* atom;
1162 SimInfo::MoleculeIterator mi;
1163 Molecule::RigidBodyIterator rbIter;
1164 Molecule::AtomIterator atomIter;;
1165
1166 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1167
1168 for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1169 atom->setSnapshotManager(sman_);
1170 }
1171
1172 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1173 rb->setSnapshotManager(sman_);
1174 }
1175 }
1176
1177 }
1178
1179 Vector3d SimInfo::getComVel(){
1180 SimInfo::MoleculeIterator i;
1181 Molecule* mol;
1182
1183 Vector3d comVel(0.0);
1184 double totalMass = 0.0;
1185
1186
1187 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1188 double mass = mol->getMass();
1189 totalMass += mass;
1190 comVel += mass * mol->getComVel();
1191 }
1192
1193 #ifdef IS_MPI
1194 double tmpMass = totalMass;
1195 Vector3d tmpComVel(comVel);
1196 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1197 MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1198 #endif
1199
1200 comVel /= totalMass;
1201
1202 return comVel;
1203 }
1204
1205 Vector3d SimInfo::getCom(){
1206 SimInfo::MoleculeIterator i;
1207 Molecule* mol;
1208
1209 Vector3d com(0.0);
1210 double totalMass = 0.0;
1211
1212 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1213 double mass = mol->getMass();
1214 totalMass += mass;
1215 com += mass * mol->getCom();
1216 }
1217
1218 #ifdef IS_MPI
1219 double tmpMass = totalMass;
1220 Vector3d tmpCom(com);
1221 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1222 MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1223 #endif
1224
1225 com /= totalMass;
1226
1227 return com;
1228
1229 }
1230
1231 std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1232
1233 return o;
1234 }
1235
1236
1237 /*
1238 Returns center of mass and center of mass velocity in one function call.
1239 */
1240
1241 void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1242 SimInfo::MoleculeIterator i;
1243 Molecule* mol;
1244
1245
1246 double totalMass = 0.0;
1247
1248
1249 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1250 double mass = mol->getMass();
1251 totalMass += mass;
1252 com += mass * mol->getCom();
1253 comVel += mass * mol->getComVel();
1254 }
1255
1256 #ifdef IS_MPI
1257 double tmpMass = totalMass;
1258 Vector3d tmpCom(com);
1259 Vector3d tmpComVel(comVel);
1260 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1261 MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1262 MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1263 #endif
1264
1265 com /= totalMass;
1266 comVel /= totalMass;
1267 }
1268
1269 /*
1270 Return intertia tensor for entire system and angular momentum Vector.
1271
1272
1273 [ Ixx -Ixy -Ixz ]
1274 J =| -Iyx Iyy -Iyz |
1275 [ -Izx -Iyz Izz ]
1276 */
1277
1278 void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1279
1280
1281 double xx = 0.0;
1282 double yy = 0.0;
1283 double zz = 0.0;
1284 double xy = 0.0;
1285 double xz = 0.0;
1286 double yz = 0.0;
1287 Vector3d com(0.0);
1288 Vector3d comVel(0.0);
1289
1290 getComAll(com, comVel);
1291
1292 SimInfo::MoleculeIterator i;
1293 Molecule* mol;
1294
1295 Vector3d thisq(0.0);
1296 Vector3d thisv(0.0);
1297
1298 double thisMass = 0.0;
1299
1300
1301
1302
1303 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1304
1305 thisq = mol->getCom()-com;
1306 thisv = mol->getComVel()-comVel;
1307 thisMass = mol->getMass();
1308 // Compute moment of intertia coefficients.
1309 xx += thisq[0]*thisq[0]*thisMass;
1310 yy += thisq[1]*thisq[1]*thisMass;
1311 zz += thisq[2]*thisq[2]*thisMass;
1312
1313 // compute products of intertia
1314 xy += thisq[0]*thisq[1]*thisMass;
1315 xz += thisq[0]*thisq[2]*thisMass;
1316 yz += thisq[1]*thisq[2]*thisMass;
1317
1318 angularMomentum += cross( thisq, thisv ) * thisMass;
1319
1320 }
1321
1322
1323 inertiaTensor(0,0) = yy + zz;
1324 inertiaTensor(0,1) = -xy;
1325 inertiaTensor(0,2) = -xz;
1326 inertiaTensor(1,0) = -xy;
1327 inertiaTensor(1,1) = xx + zz;
1328 inertiaTensor(1,2) = -yz;
1329 inertiaTensor(2,0) = -xz;
1330 inertiaTensor(2,1) = -yz;
1331 inertiaTensor(2,2) = xx + yy;
1332
1333 #ifdef IS_MPI
1334 Mat3x3d tmpI(inertiaTensor);
1335 Vector3d tmpAngMom;
1336 MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1337 MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1338 #endif
1339
1340 return;
1341 }
1342
1343 //Returns the angular momentum of the system
1344 Vector3d SimInfo::getAngularMomentum(){
1345
1346 Vector3d com(0.0);
1347 Vector3d comVel(0.0);
1348 Vector3d angularMomentum(0.0);
1349
1350 getComAll(com,comVel);
1351
1352 SimInfo::MoleculeIterator i;
1353 Molecule* mol;
1354
1355 Vector3d thisr(0.0);
1356 Vector3d thisp(0.0);
1357
1358 double thisMass;
1359
1360 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1361 thisMass = mol->getMass();
1362 thisr = mol->getCom()-com;
1363 thisp = (mol->getComVel()-comVel)*thisMass;
1364
1365 angularMomentum += cross( thisr, thisp );
1366
1367 }
1368
1369 #ifdef IS_MPI
1370 Vector3d tmpAngMom;
1371 MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1372 #endif
1373
1374 return angularMomentum;
1375 }
1376
1377
1378 }//end namespace oopse
1379