ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-2.0/src/brains/SimInfo.hpp
(Generate patch)

Comparing trunk/OOPSE-2.0/src/brains/SimInfo.hpp (file contents):
Revision 1617 by chuckv, Wed Oct 20 20:46:20 2004 UTC vs.
Revision 2463 by gezelter, Mon Nov 21 22:59:21 2005 UTC

# Line 1 | Line 1
1 < #ifndef __SIMINFO_H__
2 < #define __SIMINFO_H__
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Acknowledgement of the program authors must be made in any
10 > *    publication of scientific results based in part on use of the
11 > *    program.  An acceptable form of acknowledgement is citation of
12 > *    the article in which the program was described (Matthew
13 > *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 > *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 > *    Parallel Simulation Engine for Molecular Dynamics,"
16 > *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 > *
18 > * 2. Redistributions of source code must retain the above copyright
19 > *    notice, this list of conditions and the following disclaimer.
20 > *
21 > * 3. Redistributions in binary form must reproduce the above copyright
22 > *    notice, this list of conditions and the following disclaimer in the
23 > *    documentation and/or other materials provided with the
24 > *    distribution.
25 > *
26 > * This software is provided "AS IS," without a warranty of any
27 > * kind. All express or implied conditions, representations and
28 > * warranties, including any implied warranty of merchantability,
29 > * fitness for a particular purpose or non-infringement, are hereby
30 > * excluded.  The University of Notre Dame and its licensors shall not
31 > * be liable for any damages suffered by licensee as a result of
32 > * using, modifying or distributing the software or its
33 > * derivatives. In no event will the University of Notre Dame or its
34 > * licensors be liable for any lost revenue, profit or data, or for
35 > * direct, indirect, special, consequential, incidental or punitive
36 > * damages, however caused and regardless of the theory of liability,
37 > * arising out of the use of or inability to use software, even if the
38 > * University of Notre Dame has been advised of the possibility of
39 > * such damages.
40 > */
41 >
42 > /**
43 > * @file SimInfo.hpp
44 > * @author    tlin
45 > * @date  11/02/2004
46 > * @version 1.0
47 > */
48  
49 < #include <map>
50 < #include <string>
49 > #ifndef BRAINS_SIMMODEL_HPP
50 > #define BRAINS_SIMMODEL_HPP
51 >
52 > #include <iostream>
53 > #include <set>
54 > #include <utility>
55   #include <vector>
56  
8 #include "primitives/Atom.hpp"
9 #include "primitives/RigidBody.hpp"
10 #include "primitives/Molecule.hpp"
57   #include "brains/Exclude.hpp"
58 < #include "brains/SkipList.hpp"
59 < #include "primitives/AbstractClasses.hpp"
60 < #include "types/MakeStamps.hpp"
61 < #include "brains/SimState.hpp"
62 < #include "restraints/Restraints.hpp"
58 > #include "io/Globals.hpp"
59 > #include "math/Vector3.hpp"
60 > #include "math/SquareMatrix3.hpp"
61 > #include "types/MoleculeStamp.hpp"
62 > #include "UseTheForce/ForceField.hpp"
63 > #include "utils/PropertyMap.hpp"
64 > #include "utils/LocalIndexManager.hpp"
65  
66 + //another nonsense macro declaration
67   #define __C
68   #include "brains/fSimulation.h"
20 #include "utils/GenericData.hpp"
69  
70 + namespace oopse{
71  
72 < //#include "Minimizer.hpp"
73 < //#include "minimizers/OOPSEMinimizer.hpp"
72 >  //forward decalration
73 >  class SnapshotManager;
74 >  class Molecule;
75 >  class SelectionManager;
76 >  /**
77 >   * @class SimInfo SimInfo.hpp "brains/SimInfo.hpp"
78 >   * @brief As one of the heavy weight class of OOPSE, SimInfo
79 >   * One of the major changes in SimInfo class is the data struct. It only maintains a list of molecules.
80 >   * And the Molecule class will maintain all of the concrete objects (atoms, bond, bend, torsions, rigid bodies,
81 >   * cutoff groups, constrains).
82 >   * Another major change is the index. No matter single version or parallel version,  atoms and
83 >   * rigid bodies have both global index and local index. Local index is not important to molecule as well as
84 >   * cutoff group.
85 >   */
86 >  class SimInfo {
87 >  public:
88 >    typedef std::map<int, Molecule*>::iterator  MoleculeIterator;
89  
90 +    /**
91 +     * Constructor of SimInfo
92 +     * @param molStampPairs MoleculeStamp Array. The first element of the pair is molecule stamp, the
93 +     * second element is the total number of molecules with the same molecule stamp in the system
94 +     * @param ff pointer of a concrete ForceField instance
95 +     * @param simParams
96 +     * @note
97 +     */
98 +    SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs, ForceField* ff, Globals* simParams);
99 +    virtual ~SimInfo();
100  
101 < double roundMe( double x );
102 < class OOPSEMinimizer;
103 < class SimInfo{
101 >    /**
102 >     * Adds a molecule
103 >     * @return return true if adding successfully, return false if the molecule is already in SimInfo
104 >     * @param mol molecule to be added
105 >     */
106 >    bool addMolecule(Molecule* mol);
107  
108 < public:
108 >    /**
109 >     * Removes a molecule from SimInfo
110 >     * @return true if removing successfully, return false if molecule is not in this SimInfo
111 >     */
112 >    bool removeMolecule(Molecule* mol);
113  
114 <  SimInfo();
115 <  ~SimInfo();
114 >    /** Returns the total number of molecules in the system. */
115 >    int getNGlobalMolecules() {
116 >      return nGlobalMols_;
117 >    }
118  
119 <  int n_atoms; // the number of atoms
120 <  Atom **atoms; // the array of atom objects
119 >    /** Returns the total number of atoms in the system. */
120 >    int getNGlobalAtoms() {
121 >      return nGlobalAtoms_;
122 >    }
123  
124 <  vector<RigidBody*> rigidBodies;  // A vector of rigid bodies
125 <  vector<StuntDouble*> integrableObjects;
126 <  
127 <  double tau[9]; // the stress tensor
124 >    /** Returns the total number of cutoff groups in the system. */
125 >    int getNGlobalCutoffGroups() {
126 >      return nGlobalCutoffGroups_;
127 >    }
128  
129 <  int n_bonds;    // number of bends
130 <  int n_bends;    // number of bends
131 <  int n_torsions; // number of torsions
132 <  int n_oriented; // number of of atoms with orientation
133 <  int ndf;        // number of actual degrees of freedom
134 <  int ndfRaw;     // number of settable degrees of freedom
135 <  int ndfTrans;   // number of translational degrees of freedom
51 <  int nZconstraints; // the number of zConstraints
129 >    /**
130 >     * Returns the total number of integrable objects (total number of rigid bodies plus the total number
131 >     * of atoms which do not belong to the rigid bodies) in the system
132 >     */
133 >    int getNGlobalIntegrableObjects() {
134 >      return nGlobalIntegrableObjects_;
135 >    }
136  
137 <  int setTemp;   // boolean to set the temperature at each sampleTime
138 <  int resetIntegrator; // boolean to reset the integrator
137 >    /**
138 >     * Returns the total number of integrable objects (total number of rigid bodies plus the total number
139 >     * of atoms which do not belong to the rigid bodies) in the system
140 >     */
141 >    int getNGlobalRigidBodies() {
142 >      return nGlobalRigidBodies_;
143 >    }
144  
145 <  int n_dipoles; // number of dipoles
145 >    int getNGlobalConstraints();
146 >    /**
147 >     * Returns the number of local molecules.
148 >     * @return the number of local molecules
149 >     */
150 >    int getNMolecules() {
151 >      return molecules_.size();
152 >    }
153  
154 <  int n_exclude;
155 <  Exclude* excludes;  // the exclude list for ignoring pairs in fortran
156 <  int nGlobalExcludes;
157 <  int* globalExcludes; // same as above, but these guys participate in
62 <                       // no long range forces.
154 >    /** Returns the number of local atoms */
155 >    unsigned int getNAtoms() {
156 >      return nAtoms_;
157 >    }
158  
159 <  int* identArray;     // array of unique identifiers for the atoms
160 <  int* molMembershipArray;  // map of atom numbers onto molecule numbers
159 >    /** Returns the number of local bonds */        
160 >    unsigned int getNBonds(){
161 >      return nBonds_;
162 >    }
163  
164 <  int n_constraints; // the number of constraints on the system
164 >    /** Returns the number of local bends */        
165 >    unsigned int getNBends() {
166 >      return nBends_;
167 >    }
168  
169 <  int n_SRI;   // the number of short range interactions
169 >    /** Returns the number of local torsions */        
170 >    unsigned int getNTorsions() {
171 >      return nTorsions_;
172 >    }
173  
174 <  double lrPot; // the potential energy from the long range calculations.
174 >    /** Returns the number of local rigid bodies */        
175 >    unsigned int getNRigidBodies() {
176 >      return nRigidBodies_;
177 >    }
178  
179 <  double Hmat[3][3];  // the periodic boundry conditions. The Hmat is the
180 <                      // column vectors of the x, y, and z box vectors.
181 <                      //   h1  h2  h3
182 <                      // [ Xx  Yx  Zx ]
77 <                      // [ Xy  Yy  Zy ]
78 <                      // [ Xz  Yz  Zz ]
79 <                      //  
80 <  double HmatInv[3][3];
179 >    /** Returns the number of local integrable objects */
180 >    unsigned int getNIntegrableObjects() {
181 >      return nIntegrableObjects_;
182 >    }
183  
184 <  double boxL[3]; // The Lengths of the 3 column vectors of Hmat
185 <  double boxVol;
186 <  int orthoRhombic;
187 <  
184 >    /** Returns the number of local cutoff groups */
185 >    unsigned int getNCutoffGroups() {
186 >      return nCutoffGroups_;
187 >    }
188  
189 <  double dielectric;      // the dielectric of the medium for reaction field
189 >    /** Returns the total number of constraints in this SimInfo */
190 >    unsigned int getNConstraints() {
191 >      return nConstraints_;
192 >    }
193 >        
194 >    /**
195 >     * Returns the first molecule in this SimInfo and intialize the iterator.
196 >     * @return the first molecule, return NULL if there is not molecule in this SimInfo
197 >     * @param i the iterator of molecule array (user shouldn't change it)
198 >     */
199 >    Molecule* beginMolecule(MoleculeIterator& i);
200  
201 <  
202 <  int usePBC; // whether we use periodic boundry conditions.
203 <  int useLJ;
204 <  int useSticky;
205 <  int useCharges;
206 <  int useDipoles;
95 <  int useReactionField;
96 <  int useGB;
97 <  int useEAM;
98 <  bool haveCutoffGroups;
99 <  bool useInitXSstate;
100 <  double orthoTolerance;
201 >    /**
202 >     * Returns the next avaliable Molecule based on the iterator.
203 >     * @return the next avaliable molecule, return NULL if reaching the end of the array
204 >     * @param i the iterator of molecule array
205 >     */
206 >    Molecule* nextMolecule(MoleculeIterator& i);
207  
208 <  double dt, run_time;           // the time step and total time
209 <  double sampleTime, statusTime; // the position and energy dump frequencies
210 <  double target_temp;            // the target temperature of the system
211 <  double thermalTime;            // the temp kick interval
106 <  double currentTime;            // Used primarily for correlation Functions
107 <  double resetTime;              // Use to reset the integrator periodically
108 <  short int have_target_temp;
208 >    /** Returns the number of degrees of freedom */
209 >    int getNdf() {
210 >      return ndf_;
211 >    }
212  
213 <  int n_mol;           // n_molecules;
214 <  Molecule* molecules; // the array of molecules
215 <  
216 <  int nComponents;           // the number of components in the system
114 <  int* componentsNmol;       // the number of molecules of each component
115 <  MoleculeStamp** compStamps;// the stamps matching the components
116 <  LinkedMolStamp* headStamp; // list of stamps used in the simulation
117 <  
118 <  
119 <  char ensemble[100]; // the enesemble of the simulation (NVT, NVE, etc. )
120 <  char mixingRule[100]; // the mixing rules for Lennard jones/van der walls
121 <  BaseIntegrator *the_integrator; // the integrator of the simulation
213 >    /** Returns the number of raw degrees of freedom */
214 >    int getNdfRaw() {
215 >      return ndfRaw_;
216 >    }
217  
218 <  OOPSEMinimizer* the_minimizer; // the energy minimizer
219 <  Restraints* restraint;
220 <  bool has_minimizer;
218 >    /** Returns the number of translational degrees of freedom */
219 >    int getNdfTrans() {
220 >      return ndfTrans_;
221 >    }
222  
223 <  string finalName;  // the name of the eor file to be written
224 <  string sampleName; // the name of the dump file to be written
225 <  string statusName; // the name of the stat file to be written
223 >    //getNZconstraint and setNZconstraint ruin the coherent of SimInfo class, need refactorying
224 >        
225 >    /** Returns the total number of z-constraint molecules in the system */
226 >    int getNZconstraint() {
227 >      return nZconstraint_;
228 >    }
229  
230 <  int seed;                    //seed for random number generator
230 >    /**
231 >     * Sets the number of z-constraint molecules in the system.
232 >     */
233 >    void setNZconstraint(int nZconstraint) {
234 >      nZconstraint_ = nZconstraint;
235 >    }
236 >        
237 >    /** Returns the snapshot manager. */
238 >    SnapshotManager* getSnapshotManager() {
239 >      return sman_;
240 >    }
241  
242 <  int useSolidThermInt;  // is solid-state thermodynamic integration being used
243 <  int useLiquidThermInt; // is liquid thermodynamic integration being used
244 <  double thermIntLambda; // lambda for TI
245 <  double thermIntK;      // power of lambda for TI
246 <  double vRaw;           // unperturbed potential for TI
247 <  double vHarm;          // harmonic potential for TI
248 <  int i;                 // just an int
242 >    /** Sets the snapshot manager. */
243 >    void setSnapshotManager(SnapshotManager* sman);
244 >        
245 >    /** Returns the force field */
246 >    ForceField* getForceField() {
247 >      return forceField_;
248 >    }
249  
250 <  vector<double> mfact;
251 <  vector<int> FglobalGroupMembership;
252 <  int ngroup;
144 <  int* globalGroupMembership;
250 >    Globals* getSimParams() {
251 >      return simParams_;
252 >    }
253  
254 <  // refreshes the sim if things get changed (load balanceing, volume
255 <  // adjustment, etc.)
254 >    /** Returns the velocity of center of mass of the whole system.*/
255 >    Vector3d getComVel();
256  
257 <  void refreshSim( void );
258 <  
257 >    /** Returns the center of the mass of the whole system.*/
258 >    Vector3d getCom();
259 >   /** Returns the center of the mass and Center of Mass velocity of the whole system.*/
260 >    void getComAll(Vector3d& com,Vector3d& comVel);
261  
262 <  // sets the internal function pointer to fortran.
262 >    /** Returns intertia tensor for the entire system and system Angular Momentum.*/
263 >    void getInertiaTensor(Mat3x3d &intertiaTensor,Vector3d &angularMomentum);
264 >    
265 >    /** Returns system angular momentum */
266 >    Vector3d getAngularMomentum();
267  
268 +    /** main driver function to interact with fortran during the initialization and molecule migration */
269 +    void update();
270  
271 <  int getNDF();
272 <  int getNDFraw();
273 <  int getNDFtranslational();
274 <  int getTotIntegrableObjects();
159 <  void setBox( double newBox[3] );
160 <  void setBoxM( double newBox[3][3] );
161 <  void getBoxM( double theBox[3][3] );
162 <  void scaleBox( double scale );
163 <  
164 <  void setDefaultRcut( double theRcut );
165 <  void setDefaultRcut( double theRcut, double theRsw );
166 <  void checkCutOffs( void );
271 >    /** Returns the local index manager */
272 >    LocalIndexManager* getLocalIndexManager() {
273 >      return &localIndexMan_;
274 >    }
275  
276 <  double getRcut( void )  { return rCut; }
277 <  double getRlist( void ) { return rList; }
278 <  double getRsw( void )   { return rSw; }
279 <  double getMaxCutoff( void ) { return maxCutoff; }
172 <  
173 <  void setTime( double theTime ) { currentTime = theTime; }
174 <  void incrTime( double the_dt ) { currentTime += the_dt; }
175 <  void decrTime( double the_dt ) { currentTime -= the_dt; }
176 <  double getTime( void ) { return currentTime; }
276 >    int getMoleculeStampId(int globalIndex) {
277 >      //assert(globalIndex < molStampIds_.size())
278 >      return molStampIds_[globalIndex];
279 >    }
280  
281 <  void wrapVector( double thePos[3] );
281 >    /** Returns the molecule stamp */
282 >    MoleculeStamp* getMoleculeStamp(int id) {
283 >      return moleculeStamps_[id];
284 >    }
285  
286 <  SimState* getConfiguration( void ) { return myConfiguration; }
287 <  
288 <  void addProperty(GenericData* prop);
289 <  GenericData* getProperty(const string& propName);
290 <  //vector<GenericData*>& getProperties()  {return properties;}    
286 >    /** Return the total number of the molecule stamps */
287 >    int getNMoleculeStamp() {
288 >      return moleculeStamps_.size();
289 >    }
290 >    /**
291 >     * Finds a molecule with a specified global index
292 >     * @return a pointer point to found molecule
293 >     * @param index
294 >     */
295 >    Molecule* getMoleculeByGlobalIndex(int index) {
296 >      MoleculeIterator i;
297 >      i = molecules_.find(index);
298  
299 <  int getSeed(void) {  return seed; }
300 <  void setSeed(int theSeed) {  seed = theSeed;}
299 >      return i != molecules_.end() ? i->second : NULL;
300 >    }
301  
302 < private:
302 >    double getRcut() {
303 >      return rcut_;
304 >    }
305  
306 <  SimState* myConfiguration;
306 >    double getRsw() {
307 >      return rsw_;
308 >    }
309  
310 <  int boxIsInit, haveRcut, haveRsw;
310 >    double getList() {
311 >      return rlist_;
312 >    }
313 >        
314 >    std::string getFinalConfigFileName() {
315 >      return finalConfigFileName_;
316 >    }
317 >        
318 >    void setFinalConfigFileName(const std::string& fileName) {
319 >      finalConfigFileName_ = fileName;
320 >    }
321  
322 <  double rList, rCut; // variables for the neighborlist
323 <  double rSw;         // the switching radius
322 >    std::string getDumpFileName() {
323 >      return dumpFileName_;
324 >    }
325 >        
326 >    void setDumpFileName(const std::string& fileName) {
327 >      dumpFileName_ = fileName;
328 >    }
329  
330 <  double maxCutoff;
330 >    std::string getStatFileName() {
331 >      return statFileName_;
332 >    }
333 >        
334 >    void setStatFileName(const std::string& fileName) {
335 >      statFileName_ = fileName;
336 >    }
337 >        
338 >    std::string getRestFileName() {
339 >      return restFileName_;
340 >    }
341 >        
342 >    void setRestFileName(const std::string& fileName) {
343 >      restFileName_ = fileName;
344 >    }
345  
346 <  double distXY;
347 <  double distYZ;
348 <  double distZX;
349 <  
350 <  void calcHmatInv( void );
351 <  void calcBoxL();
352 <  double calcMaxCutOff();
346 >    /**
347 >     * Sets GlobalGroupMembership
348 >     * @see #SimCreator::setGlobalIndex
349 >     */  
350 >    void setGlobalGroupMembership(const std::vector<int>& globalGroupMembership) {
351 >      assert(globalGroupMembership.size() == nGlobalAtoms_);
352 >      globalGroupMembership_ = globalGroupMembership;
353 >    }
354  
355 <  
356 <  //Addtional Properties of SimInfo
357 <  map<string, GenericData*> properties;
358 <  void getFortranGroupArrays(SimInfo* info,
359 <                             vector<int>& FglobalGroupMembership,
360 <                             vector<double>& mfact);
355 >    /**
356 >     * Sets GlobalMolMembership
357 >     * @see #SimCreator::setGlobalIndex
358 >     */        
359 >    void setGlobalMolMembership(const std::vector<int>& globalMolMembership) {
360 >      assert(globalMolMembership.size() == nGlobalAtoms_);
361 >      globalMolMembership_ = globalMolMembership;
362 >    }
363  
364  
365 < };
365 >    bool isFortranInitialized() {
366 >      return fortranInitialized_;
367 >    }
368 >        
369 >    //below functions are just forward functions
370 >    //To compose or to inherit is always a hot debate. In general, is-a relation need subclassing, in the
371 >    //the other hand, has-a relation need composing.
372 >    /**
373 >     * Adds property into property map
374 >     * @param genData GenericData to be added into PropertyMap
375 >     */
376 >    void addProperty(GenericData* genData);
377  
378 +    /**
379 +     * Removes property from PropertyMap by name
380 +     * @param propName the name of property to be removed
381 +     */
382 +    void removeProperty(const std::string& propName);
383  
384 +    /**
385 +     * clear all of the properties
386 +     */
387 +    void clearProperties();
388 +
389 +    /**
390 +     * Returns all names of properties
391 +     * @return all names of properties
392 +     */
393 +    std::vector<std::string> getPropertyNames();
394 +
395 +    /**
396 +     * Returns all of the properties in PropertyMap
397 +     * @return all of the properties in PropertyMap
398 +     */      
399 +    std::vector<GenericData*> getProperties();
400 +
401 +    /**
402 +     * Returns property
403 +     * @param propName name of property
404 +     * @return a pointer point to property with propName. If no property named propName
405 +     * exists, return NULL
406 +     */      
407 +    GenericData* getPropertyByName(const std::string& propName);
408 +
409 +    /**
410 +     * add all exclude pairs of a molecule into exclude list.
411 +     */
412 +    void addExcludePairs(Molecule* mol);
413 +
414 +    /**
415 +     * remove all exclude pairs which belong to a molecule from exclude list
416 +     */
417 +
418 +    void removeExcludePairs(Molecule* mol);
419 +
420 +
421 +    /** Returns the unique atom types of local processor in an array */
422 +    std::set<AtomType*> getUniqueAtomTypes();
423 +        
424 +    friend std::ostream& operator <<(std::ostream& o, SimInfo& info);
425 +
426 +    void getCutoff(double& rcut, double& rsw);
427 +        
428 +  private:
429 +
430 +    /** fill up the simtype struct*/
431 +    void setupSimType();
432 +
433 +    /**
434 +     * Setup Fortran Simulation
435 +     * @see #setupFortranParallel
436 +     */
437 +    void setupFortranSim();
438 +
439 +    /** Figure out the radius of cutoff, radius of switching function and pass them to fortran */
440 +    void setupCutoff();
441 +
442 +    /** Figure out which coulombic correction method to use and pass to fortran */
443 +    void setupElectrostaticSummationMethod( int isError );
444 +
445 +    /** Figure out which polynomial type to use for the switching function */
446 +    void setupSwitchingFunction();
447 +
448 +    /** Calculates the number of degress of freedom in the whole system */
449 +    void calcNdf();
450 +    void calcNdfRaw();
451 +    void calcNdfTrans();
452 +
453 +    /**
454 +     * Adds molecule stamp and the total number of the molecule with same molecule stamp in the whole
455 +     * system.
456 +     */
457 +    void addMoleculeStamp(MoleculeStamp* molStamp, int nmol);
458 +
459 +    MakeStamps* stamps_;
460 +    ForceField* forceField_;      
461 +    Globals* simParams_;
462 +
463 +    std::map<int, Molecule*>  molecules_; /**< Molecule array */
464 +        
465 +    //degress of freedom
466 +    int ndf_;           /**< number of degress of freedom (excludes constraints),  ndf_ is local */
467 +    int ndfRaw_;    /**< number of degress of freedom (includes constraints),  ndfRaw_ is local */
468 +    int ndfTrans_; /**< number of translation degress of freedom, ndfTrans_ is local */
469 +    int nZconstraint_; /** number of  z-constraint molecules, nZconstraint_ is global */
470 +        
471 +    //number of global objects
472 +    int nGlobalMols_;       /**< number of molecules in the system */
473 +    int nGlobalAtoms_;   /**< number of atoms in the system */
474 +    int nGlobalCutoffGroups_; /**< number of cutoff groups in this system */
475 +    int nGlobalIntegrableObjects_; /**< number of integrable objects in this system */
476 +    int nGlobalRigidBodies_; /**< number of rigid bodies in this system */
477 +    /**
478 +     * the size of globalGroupMembership_  is nGlobalAtoms. Its index is  global index of an atom, and the
479 +     * corresponding content is the global index of cutoff group this atom belong to.
480 +     * It is filled by SimCreator once and only once, since it never changed during the simulation.
481 +     */
482 +    std::vector<int> globalGroupMembership_;
483 +
484 +    /**
485 +     * the size of globalGroupMembership_  is nGlobalAtoms. Its index is  global index of an atom, and the
486 +     * corresponding content is the global index of molecule this atom belong to.
487 +     * It is filled by SimCreator once and only once, since it is never changed during the simulation.
488 +     */
489 +    std::vector<int> globalMolMembership_;        
490 +
491 +        
492 +    std::vector<int> molStampIds_;                                /**< stamp id array of all molecules in the system */
493 +    std::vector<MoleculeStamp*> moleculeStamps_;      /**< molecule stamps array */        
494 +        
495 +    //number of local objects
496 +    int nAtoms_;                        /**< number of atoms in local processor */
497 +    int nBonds_;                        /**< number of bonds in local processor */
498 +    int nBends_;                        /**< number of bends in local processor */
499 +    int nTorsions_;                    /**< number of torsions in local processor */
500 +    int nRigidBodies_;              /**< number of rigid bodies in local processor */
501 +    int nIntegrableObjects_;    /**< number of integrable objects in local processor */
502 +    int nCutoffGroups_;             /**< number of cutoff groups in local processor */
503 +    int nConstraints_;              /**< number of constraints in local processors */
504 +
505 +    simtype fInfo_; /**< A dual struct shared by c++/fortran which indicates the atom types in simulation*/
506 +    Exclude exclude_;      
507 +    PropertyMap properties_;                  /**< Generic Property */
508 +    SnapshotManager* sman_;               /**< SnapshotManager */
509 +
510 +    /**
511 +     * The reason to have a local index manager is that when molecule is migrating to other processors,
512 +     * the atoms and the rigid-bodies will release their local indices to LocalIndexManager. Combining the
513 +     * information of molecule migrating to current processor, Migrator class can query  the LocalIndexManager
514 +     * to make a efficient data moving plan.
515 +     */        
516 +    LocalIndexManager localIndexMan_;
517 +
518 +    //file names
519 +    std::string finalConfigFileName_;
520 +    std::string dumpFileName_;
521 +    std::string statFileName_;
522 +    std::string restFileName_;
523 +        
524 +    double rcut_;       /**< cutoff radius*/
525 +    double rsw_;        /**< radius of switching function*/
526 +    double rlist_;      /**< neighbor list radius */
527 +
528 +    bool fortranInitialized_; /**< flag indicate whether fortran side is initialized */
529 +
530 + #ifdef IS_MPI
531 +    //in Parallel version, we need MolToProc
532 +  public:
533 +                
534 +    /**
535 +     * Finds the processor where a molecule resides
536 +     * @return the id of the processor which contains the molecule
537 +     * @param globalIndex global Index of the molecule
538 +     */
539 +    int getMolToProc(int globalIndex) {
540 +      //assert(globalIndex < molToProcMap_.size());
541 +      return molToProcMap_[globalIndex];
542 +    }
543 +
544 +    /**
545 +     * Set MolToProcMap array
546 +     * @see #SimCreator::divideMolecules
547 +     */
548 +    void setMolToProcMap(const std::vector<int>& molToProcMap) {
549 +      molToProcMap_ = molToProcMap;
550 +    }
551 +        
552 +  private:
553 +
554 +    void setupFortranParallel();
555 +        
556 +    /**
557 +     * The size of molToProcMap_ is equal to total number of molecules in the system.
558 +     *  It maps a molecule to the processor on which it resides. it is filled by SimCreator once and only
559 +     * once.
560 +     */        
561 +    std::vector<int> molToProcMap_;
562 +
563   #endif
564 +
565 +  };
566 +
567 + } //namespace oopse
568 + #endif //BRAINS_SIMMODEL_HPP
569 +

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines