ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-2.0/src/brains/SimInfo.hpp
Revision: 2469
Committed: Fri Dec 2 15:38:03 2005 UTC (18 years, 7 months ago) by tim
File size: 18593 byte(s)
Log Message:
End of the Link --> List
Return of the Oject-Oriented
replace yacc/lex parser with antlr parser

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Acknowledgement of the program authors must be made in any
10 * publication of scientific results based in part on use of the
11 * program. An acceptable form of acknowledgement is citation of
12 * the article in which the program was described (Matthew
13 * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 * Parallel Simulation Engine for Molecular Dynamics,"
16 * J. Comput. Chem. 26, pp. 252-271 (2005))
17 *
18 * 2. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 *
21 * 3. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the
24 * distribution.
25 *
26 * This software is provided "AS IS," without a warranty of any
27 * kind. All express or implied conditions, representations and
28 * warranties, including any implied warranty of merchantability,
29 * fitness for a particular purpose or non-infringement, are hereby
30 * excluded. The University of Notre Dame and its licensors shall not
31 * be liable for any damages suffered by licensee as a result of
32 * using, modifying or distributing the software or its
33 * derivatives. In no event will the University of Notre Dame or its
34 * licensors be liable for any lost revenue, profit or data, or for
35 * direct, indirect, special, consequential, incidental or punitive
36 * damages, however caused and regardless of the theory of liability,
37 * arising out of the use of or inability to use software, even if the
38 * University of Notre Dame has been advised of the possibility of
39 * such damages.
40 */
41
42 /**
43 * @file SimInfo.hpp
44 * @author tlin
45 * @date 11/02/2004
46 * @version 1.0
47 */
48
49 #ifndef BRAINS_SIMMODEL_HPP
50 #define BRAINS_SIMMODEL_HPP
51
52 #include <iostream>
53 #include <set>
54 #include <utility>
55 #include <vector>
56
57 #include "brains/Exclude.hpp"
58 #include "io/Globals.hpp"
59 #include "math/Vector3.hpp"
60 #include "math/SquareMatrix3.hpp"
61 #include "types/MoleculeStamp.hpp"
62 #include "UseTheForce/ForceField.hpp"
63 #include "utils/PropertyMap.hpp"
64 #include "utils/LocalIndexManager.hpp"
65
66 //another nonsense macro declaration
67 #define __C
68 #include "brains/fSimulation.h"
69
70 namespace oopse{
71
72 //forward decalration
73 class SnapshotManager;
74 class Molecule;
75 class SelectionManager;
76 /**
77 * @class SimInfo SimInfo.hpp "brains/SimInfo.hpp"
78 * @brief As one of the heavy weight class of OOPSE, SimInfo
79 * One of the major changes in SimInfo class is the data struct. It only maintains a list of molecules.
80 * And the Molecule class will maintain all of the concrete objects (atoms, bond, bend, torsions, rigid bodies,
81 * cutoff groups, constrains).
82 * Another major change is the index. No matter single version or parallel version, atoms and
83 * rigid bodies have both global index and local index. Local index is not important to molecule as well as
84 * cutoff group.
85 */
86 class SimInfo {
87 public:
88 typedef std::map<int, Molecule*>::iterator MoleculeIterator;
89
90 /**
91 * Constructor of SimInfo
92 * @param molStampPairs MoleculeStamp Array. The first element of the pair is molecule stamp, the
93 * second element is the total number of molecules with the same molecule stamp in the system
94 * @param ff pointer of a concrete ForceField instance
95 * @param simParams
96 * @note
97 */
98 SimInfo(ForceField* ff, Globals* simParams);
99 virtual ~SimInfo();
100
101 /**
102 * Adds a molecule
103 * @return return true if adding successfully, return false if the molecule is already in SimInfo
104 * @param mol molecule to be added
105 */
106 bool addMolecule(Molecule* mol);
107
108 /**
109 * Removes a molecule from SimInfo
110 * @return true if removing successfully, return false if molecule is not in this SimInfo
111 */
112 bool removeMolecule(Molecule* mol);
113
114 /** Returns the total number of molecules in the system. */
115 int getNGlobalMolecules() {
116 return nGlobalMols_;
117 }
118
119 /** Returns the total number of atoms in the system. */
120 int getNGlobalAtoms() {
121 return nGlobalAtoms_;
122 }
123
124 /** Returns the total number of cutoff groups in the system. */
125 int getNGlobalCutoffGroups() {
126 return nGlobalCutoffGroups_;
127 }
128
129 /**
130 * Returns the total number of integrable objects (total number of rigid bodies plus the total number
131 * of atoms which do not belong to the rigid bodies) in the system
132 */
133 int getNGlobalIntegrableObjects() {
134 return nGlobalIntegrableObjects_;
135 }
136
137 /**
138 * Returns the total number of integrable objects (total number of rigid bodies plus the total number
139 * of atoms which do not belong to the rigid bodies) in the system
140 */
141 int getNGlobalRigidBodies() {
142 return nGlobalRigidBodies_;
143 }
144
145 int getNGlobalConstraints();
146 /**
147 * Returns the number of local molecules.
148 * @return the number of local molecules
149 */
150 int getNMolecules() {
151 return molecules_.size();
152 }
153
154 /** Returns the number of local atoms */
155 unsigned int getNAtoms() {
156 return nAtoms_;
157 }
158
159 /** Returns the number of local bonds */
160 unsigned int getNBonds(){
161 return nBonds_;
162 }
163
164 /** Returns the number of local bends */
165 unsigned int getNBends() {
166 return nBends_;
167 }
168
169 /** Returns the number of local torsions */
170 unsigned int getNTorsions() {
171 return nTorsions_;
172 }
173
174 /** Returns the number of local rigid bodies */
175 unsigned int getNRigidBodies() {
176 return nRigidBodies_;
177 }
178
179 /** Returns the number of local integrable objects */
180 unsigned int getNIntegrableObjects() {
181 return nIntegrableObjects_;
182 }
183
184 /** Returns the number of local cutoff groups */
185 unsigned int getNCutoffGroups() {
186 return nCutoffGroups_;
187 }
188
189 /** Returns the total number of constraints in this SimInfo */
190 unsigned int getNConstraints() {
191 return nConstraints_;
192 }
193
194 /**
195 * Returns the first molecule in this SimInfo and intialize the iterator.
196 * @return the first molecule, return NULL if there is not molecule in this SimInfo
197 * @param i the iterator of molecule array (user shouldn't change it)
198 */
199 Molecule* beginMolecule(MoleculeIterator& i);
200
201 /**
202 * Returns the next avaliable Molecule based on the iterator.
203 * @return the next avaliable molecule, return NULL if reaching the end of the array
204 * @param i the iterator of molecule array
205 */
206 Molecule* nextMolecule(MoleculeIterator& i);
207
208 /** Returns the number of degrees of freedom */
209 int getNdf() {
210 return ndf_;
211 }
212
213 /** Returns the number of raw degrees of freedom */
214 int getNdfRaw() {
215 return ndfRaw_;
216 }
217
218 /** Returns the number of translational degrees of freedom */
219 int getNdfTrans() {
220 return ndfTrans_;
221 }
222
223 //getNZconstraint and setNZconstraint ruin the coherent of SimInfo class, need refactorying
224
225 /** Returns the total number of z-constraint molecules in the system */
226 int getNZconstraint() {
227 return nZconstraint_;
228 }
229
230 /**
231 * Sets the number of z-constraint molecules in the system.
232 */
233 void setNZconstraint(int nZconstraint) {
234 nZconstraint_ = nZconstraint;
235 }
236
237 /** Returns the snapshot manager. */
238 SnapshotManager* getSnapshotManager() {
239 return sman_;
240 }
241
242 /** Sets the snapshot manager. */
243 void setSnapshotManager(SnapshotManager* sman);
244
245 /** Returns the force field */
246 ForceField* getForceField() {
247 return forceField_;
248 }
249
250 Globals* getSimParams() {
251 return simParams_;
252 }
253
254 /** Returns the velocity of center of mass of the whole system.*/
255 Vector3d getComVel();
256
257 /** Returns the center of the mass of the whole system.*/
258 Vector3d getCom();
259 /** Returns the center of the mass and Center of Mass velocity of the whole system.*/
260 void getComAll(Vector3d& com,Vector3d& comVel);
261
262 /** Returns intertia tensor for the entire system and system Angular Momentum.*/
263 void getInertiaTensor(Mat3x3d &intertiaTensor,Vector3d &angularMomentum);
264
265 /** Returns system angular momentum */
266 Vector3d getAngularMomentum();
267
268 /** main driver function to interact with fortran during the initialization and molecule migration */
269 void update();
270
271 /** Returns the local index manager */
272 LocalIndexManager* getLocalIndexManager() {
273 return &localIndexMan_;
274 }
275
276 int getMoleculeStampId(int globalIndex) {
277 //assert(globalIndex < molStampIds_.size())
278 return molStampIds_[globalIndex];
279 }
280
281 /** Returns the molecule stamp */
282 MoleculeStamp* getMoleculeStamp(int id) {
283 return moleculeStamps_[id];
284 }
285
286 /** Return the total number of the molecule stamps */
287 int getNMoleculeStamp() {
288 return moleculeStamps_.size();
289 }
290 /**
291 * Finds a molecule with a specified global index
292 * @return a pointer point to found molecule
293 * @param index
294 */
295 Molecule* getMoleculeByGlobalIndex(int index) {
296 MoleculeIterator i;
297 i = molecules_.find(index);
298
299 return i != molecules_.end() ? i->second : NULL;
300 }
301
302 double getRcut() {
303 return rcut_;
304 }
305
306 double getRsw() {
307 return rsw_;
308 }
309
310 double getList() {
311 return rlist_;
312 }
313
314 std::string getFinalConfigFileName() {
315 return finalConfigFileName_;
316 }
317
318 void setFinalConfigFileName(const std::string& fileName) {
319 finalConfigFileName_ = fileName;
320 }
321
322 std::string getDumpFileName() {
323 return dumpFileName_;
324 }
325
326 void setDumpFileName(const std::string& fileName) {
327 dumpFileName_ = fileName;
328 }
329
330 std::string getStatFileName() {
331 return statFileName_;
332 }
333
334 void setStatFileName(const std::string& fileName) {
335 statFileName_ = fileName;
336 }
337
338 std::string getRestFileName() {
339 return restFileName_;
340 }
341
342 void setRestFileName(const std::string& fileName) {
343 restFileName_ = fileName;
344 }
345
346 /**
347 * Sets GlobalGroupMembership
348 * @see #SimCreator::setGlobalIndex
349 */
350 void setGlobalGroupMembership(const std::vector<int>& globalGroupMembership) {
351 assert(globalGroupMembership.size() == nGlobalAtoms_);
352 globalGroupMembership_ = globalGroupMembership;
353 }
354
355 /**
356 * Sets GlobalMolMembership
357 * @see #SimCreator::setGlobalIndex
358 */
359 void setGlobalMolMembership(const std::vector<int>& globalMolMembership) {
360 assert(globalMolMembership.size() == nGlobalAtoms_);
361 globalMolMembership_ = globalMolMembership;
362 }
363
364
365 bool isFortranInitialized() {
366 return fortranInitialized_;
367 }
368
369 //below functions are just forward functions
370 //To compose or to inherit is always a hot debate. In general, is-a relation need subclassing, in the
371 //the other hand, has-a relation need composing.
372 /**
373 * Adds property into property map
374 * @param genData GenericData to be added into PropertyMap
375 */
376 void addProperty(GenericData* genData);
377
378 /**
379 * Removes property from PropertyMap by name
380 * @param propName the name of property to be removed
381 */
382 void removeProperty(const std::string& propName);
383
384 /**
385 * clear all of the properties
386 */
387 void clearProperties();
388
389 /**
390 * Returns all names of properties
391 * @return all names of properties
392 */
393 std::vector<std::string> getPropertyNames();
394
395 /**
396 * Returns all of the properties in PropertyMap
397 * @return all of the properties in PropertyMap
398 */
399 std::vector<GenericData*> getProperties();
400
401 /**
402 * Returns property
403 * @param propName name of property
404 * @return a pointer point to property with propName. If no property named propName
405 * exists, return NULL
406 */
407 GenericData* getPropertyByName(const std::string& propName);
408
409 /**
410 * add all exclude pairs of a molecule into exclude list.
411 */
412 void addExcludePairs(Molecule* mol);
413
414 /**
415 * remove all exclude pairs which belong to a molecule from exclude list
416 */
417
418 void removeExcludePairs(Molecule* mol);
419
420
421 /** Returns the unique atom types of local processor in an array */
422 std::set<AtomType*> getUniqueAtomTypes();
423
424 friend std::ostream& operator <<(std::ostream& o, SimInfo& info);
425
426 void getCutoff(double& rcut, double& rsw);
427
428 private:
429
430 /** fill up the simtype struct*/
431 void setupSimType();
432
433 /**
434 * Setup Fortran Simulation
435 * @see #setupFortranParallel
436 */
437 void setupFortranSim();
438
439 /** Figure out the radius of cutoff, radius of switching function and pass them to fortran */
440 void setupCutoff();
441
442 /** Figure out which coulombic correction method to use and pass to fortran */
443 void setupElectrostaticSummationMethod( int isError );
444
445 /** Figure out which polynomial type to use for the switching function */
446 void setupSwitchingFunction();
447
448 /** Calculates the number of degress of freedom in the whole system */
449 void calcNdf();
450 void calcNdfRaw();
451 void calcNdfTrans();
452
453 ForceField* forceField_;
454 Globals* simParams_;
455
456 std::map<int, Molecule*> molecules_; /**< Molecule array */
457
458 /**
459 * Adds molecule stamp and the total number of the molecule with same molecule stamp in the whole
460 * system.
461 */
462 void addMoleculeStamp(MoleculeStamp* molStamp, int nmol);
463
464 //degress of freedom
465 int ndf_; /**< number of degress of freedom (excludes constraints), ndf_ is local */
466 int ndfRaw_; /**< number of degress of freedom (includes constraints), ndfRaw_ is local */
467 int ndfTrans_; /**< number of translation degress of freedom, ndfTrans_ is local */
468 int nZconstraint_; /** number of z-constraint molecules, nZconstraint_ is global */
469
470 //number of global objects
471 int nGlobalMols_; /**< number of molecules in the system */
472 int nGlobalAtoms_; /**< number of atoms in the system */
473 int nGlobalCutoffGroups_; /**< number of cutoff groups in this system */
474 int nGlobalIntegrableObjects_; /**< number of integrable objects in this system */
475 int nGlobalRigidBodies_; /**< number of rigid bodies in this system */
476 /**
477 * the size of globalGroupMembership_ is nGlobalAtoms. Its index is global index of an atom, and the
478 * corresponding content is the global index of cutoff group this atom belong to.
479 * It is filled by SimCreator once and only once, since it never changed during the simulation.
480 */
481 std::vector<int> globalGroupMembership_;
482
483 /**
484 * the size of globalGroupMembership_ is nGlobalAtoms. Its index is global index of an atom, and the
485 * corresponding content is the global index of molecule this atom belong to.
486 * It is filled by SimCreator once and only once, since it is never changed during the simulation.
487 */
488 std::vector<int> globalMolMembership_;
489
490
491 std::vector<int> molStampIds_; /**< stamp id array of all molecules in the system */
492 std::vector<MoleculeStamp*> moleculeStamps_; /**< molecule stamps array */
493
494 //number of local objects
495 int nAtoms_; /**< number of atoms in local processor */
496 int nBonds_; /**< number of bonds in local processor */
497 int nBends_; /**< number of bends in local processor */
498 int nTorsions_; /**< number of torsions in local processor */
499 int nRigidBodies_; /**< number of rigid bodies in local processor */
500 int nIntegrableObjects_; /**< number of integrable objects in local processor */
501 int nCutoffGroups_; /**< number of cutoff groups in local processor */
502 int nConstraints_; /**< number of constraints in local processors */
503
504 simtype fInfo_; /**< A dual struct shared by c++/fortran which indicates the atom types in simulation*/
505 Exclude exclude_;
506 PropertyMap properties_; /**< Generic Property */
507 SnapshotManager* sman_; /**< SnapshotManager */
508
509 /**
510 * The reason to have a local index manager is that when molecule is migrating to other processors,
511 * the atoms and the rigid-bodies will release their local indices to LocalIndexManager. Combining the
512 * information of molecule migrating to current processor, Migrator class can query the LocalIndexManager
513 * to make a efficient data moving plan.
514 */
515 LocalIndexManager localIndexMan_;
516
517 //file names
518 std::string finalConfigFileName_;
519 std::string dumpFileName_;
520 std::string statFileName_;
521 std::string restFileName_;
522
523 double rcut_; /**< cutoff radius*/
524 double rsw_; /**< radius of switching function*/
525 double rlist_; /**< neighbor list radius */
526
527 bool fortranInitialized_; /**< flag indicate whether fortran side is initialized */
528
529 #ifdef IS_MPI
530 //in Parallel version, we need MolToProc
531 public:
532
533 /**
534 * Finds the processor where a molecule resides
535 * @return the id of the processor which contains the molecule
536 * @param globalIndex global Index of the molecule
537 */
538 int getMolToProc(int globalIndex) {
539 //assert(globalIndex < molToProcMap_.size());
540 return molToProcMap_[globalIndex];
541 }
542
543 /**
544 * Set MolToProcMap array
545 * @see #SimCreator::divideMolecules
546 */
547 void setMolToProcMap(const std::vector<int>& molToProcMap) {
548 molToProcMap_ = molToProcMap;
549 }
550
551 private:
552
553 void setupFortranParallel();
554
555 /**
556 * The size of molToProcMap_ is equal to total number of molecules in the system.
557 * It maps a molecule to the processor on which it resides. it is filled by SimCreator once and only
558 * once.
559 */
560 std::vector<int> molToProcMap_;
561
562 #endif
563
564 };
565
566 } //namespace oopse
567 #endif //BRAINS_SIMMODEL_HPP
568