ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-2.0/src/brains/Thermo.cpp
(Generate patch)

Comparing trunk/OOPSE-2.0/src/brains/Thermo.cpp (file contents):
Revision 1490 by gezelter, Fri Sep 24 04:16:43 2004 UTC vs.
Revision 2532 by tim, Fri Dec 30 21:25:56 2005 UTC

# Line 1 | Line 1
1 + /*
2 + * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 + *
4 + * The University of Notre Dame grants you ("Licensee") a
5 + * non-exclusive, royalty free, license to use, modify and
6 + * redistribute this software in source and binary code form, provided
7 + * that the following conditions are met:
8 + *
9 + * 1. Acknowledgement of the program authors must be made in any
10 + *    publication of scientific results based in part on use of the
11 + *    program.  An acceptable form of acknowledgement is citation of
12 + *    the article in which the program was described (Matthew
13 + *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 + *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 + *    Parallel Simulation Engine for Molecular Dynamics,"
16 + *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 + *
18 + * 2. Redistributions of source code must retain the above copyright
19 + *    notice, this list of conditions and the following disclaimer.
20 + *
21 + * 3. Redistributions in binary form must reproduce the above copyright
22 + *    notice, this list of conditions and the following disclaimer in the
23 + *    documentation and/or other materials provided with the
24 + *    distribution.
25 + *
26 + * This software is provided "AS IS," without a warranty of any
27 + * kind. All express or implied conditions, representations and
28 + * warranties, including any implied warranty of merchantability,
29 + * fitness for a particular purpose or non-infringement, are hereby
30 + * excluded.  The University of Notre Dame and its licensors shall not
31 + * be liable for any damages suffered by licensee as a result of
32 + * using, modifying or distributing the software or its
33 + * derivatives. In no event will the University of Notre Dame or its
34 + * licensors be liable for any lost revenue, profit or data, or for
35 + * direct, indirect, special, consequential, incidental or punitive
36 + * damages, however caused and regardless of the theory of liability,
37 + * arising out of the use of or inability to use software, even if the
38 + * University of Notre Dame has been advised of the possibility of
39 + * such damages.
40 + */
41 +
42   #include <math.h>
43   #include <iostream>
3 using namespace std;
44  
45   #ifdef IS_MPI
46   #include <mpi.h>
47   #endif //is_mpi
48  
49 < #include "Thermo.hpp"
50 < #include "SRI.hpp"
51 < #include "Integrator.hpp"
52 < #include "simError.h"
13 < #include "MatVec3.h"
49 > #include "brains/Thermo.hpp"
50 > #include "primitives/Molecule.hpp"
51 > #include "utils/simError.h"
52 > #include "utils/OOPSEConstant.hpp"
53  
54 < #ifdef IS_MPI
16 < #define __C
17 < #include "mpiSimulation.hpp"
18 < #endif // is_mpi
54 > namespace oopse {
55  
56 < inline double roundMe( double x ){
57 <          return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
58 < }
56 >  double Thermo::getKinetic() {
57 >    SimInfo::MoleculeIterator miter;
58 >    std::vector<StuntDouble*>::iterator iiter;
59 >    Molecule* mol;
60 >    StuntDouble* integrableObject;    
61 >    Vector3d vel;
62 >    Vector3d angMom;
63 >    Mat3x3d I;
64 >    int i;
65 >    int j;
66 >    int k;
67 >    double kinetic = 0.0;
68 >    double kinetic_global = 0.0;
69 >    
70 >    for (mol = info_->beginMolecule(miter); mol != NULL; mol = info_->nextMolecule(miter)) {
71 >      for (integrableObject = mol->beginIntegrableObject(iiter); integrableObject != NULL;
72 >           integrableObject = mol->nextIntegrableObject(iiter)) {
73  
74 < Thermo::Thermo( SimInfo* the_info ) {
75 <  info = the_info;
26 <  int baseSeed = the_info->getSeed();
27 <  
28 <  gaussStream = new gaussianSPRNG( baseSeed );
29 < }
74 >        double mass = integrableObject->getMass();
75 >        Vector3d vel = integrableObject->getVel();
76  
77 < Thermo::~Thermo(){
32 <  delete gaussStream;
33 < }
77 >        kinetic += mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]);
78  
79 < double Thermo::getKinetic(){
79 >        if (integrableObject->isDirectional()) {
80 >          angMom = integrableObject->getJ();
81 >          I = integrableObject->getI();
82  
83 <  const double e_convert = 4.184E-4; // convert kcal/mol -> (amu A^2)/fs^2
84 <  double kinetic;
85 <  double amass;
86 <  double aVel[3], aJ[3], I[3][3];
87 <  int i, j, k, kl;
88 <
89 <  double kinetic_global;
90 <  vector<StuntDouble *> integrableObjects = info->integrableObjects;
91 <  
92 <  kinetic = 0.0;
93 <  kinetic_global = 0.0;
48 <
49 <  for (kl=0; kl<integrableObjects.size(); kl++) {
50 <    integrableObjects[kl]->getVel(aVel);
51 <    amass = integrableObjects[kl]->getMass();
52 <
53 <   for(j=0; j<3; j++)
54 <      kinetic += amass*aVel[j]*aVel[j];
55 <
56 <   if (integrableObjects[kl]->isDirectional()){
57 <
58 <      integrableObjects[kl]->getJ( aJ );
59 <      integrableObjects[kl]->getI( I );
60 <
61 <      if (integrableObjects[kl]->isLinear()) {
62 <        i = integrableObjects[kl]->linearAxis();
63 <        j = (i+1)%3;
64 <        k = (i+2)%3;
65 <        kinetic += aJ[j]*aJ[j]/I[j][j] + aJ[k]*aJ[k]/I[k][k];
66 <      } else {
67 <        for (j=0; j<3; j++)
68 <          kinetic += aJ[j]*aJ[j] / I[j][j];
83 >          if (integrableObject->isLinear()) {
84 >            i = integrableObject->linearAxis();
85 >            j = (i + 1) % 3;
86 >            k = (i + 2) % 3;
87 >            kinetic += angMom[j] * angMom[j] / I(j, j) + angMom[k] * angMom[k] / I(k, k);
88 >          } else {                        
89 >            kinetic += angMom[0]*angMom[0]/I(0, 0) + angMom[1]*angMom[1]/I(1, 1)
90 >              + angMom[2]*angMom[2]/I(2, 2);
91 >          }
92 >        }
93 >            
94        }
95 <   }
96 <  }
95 >    }
96 >    
97   #ifdef IS_MPI
73  MPI_Allreduce(&kinetic,&kinetic_global,1,MPI_DOUBLE,
74                MPI_SUM, MPI_COMM_WORLD);
75  kinetic = kinetic_global;
76 #endif //is_mpi
77  
78  kinetic = kinetic * 0.5 / e_convert;
98  
99 <  return kinetic;
100 < }
99 >    MPI_Allreduce(&kinetic, &kinetic_global, 1, MPI_DOUBLE, MPI_SUM,
100 >                  MPI_COMM_WORLD);
101 >    kinetic = kinetic_global;
102  
103 < double Thermo::getPotential(){
84 <  
85 <  double potential_local;
86 <  double potential;
87 <  int el, nSRI;
88 <  Molecule* molecules;
103 > #endif //is_mpi
104  
105 <  molecules = info->molecules;
91 <  nSRI = info->n_SRI;
105 >    kinetic = kinetic * 0.5 / OOPSEConstant::energyConvert;
106  
107 <  potential_local = 0.0;
94 <  potential = 0.0;
95 <  potential_local += info->lrPot;
96 <
97 <  for( el=0; el<info->n_mol; el++ ){    
98 <    potential_local += molecules[el].getPotential();
107 >    return kinetic;
108    }
109  
110 <  // Get total potential for entire system from MPI.
111 < #ifdef IS_MPI
112 <  MPI_Allreduce(&potential_local,&potential,1,MPI_DOUBLE,
113 <                MPI_SUM, MPI_COMM_WORLD);
105 < #else
106 <  potential = potential_local;
107 < #endif // is_mpi
110 >  double Thermo::getPotential() {
111 >    double potential = 0.0;
112 >    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
113 >    double shortRangePot_local =  curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] ;
114  
115 <  return potential;
110 < }
115 >    // Get total potential for entire system from MPI.
116  
117 < double Thermo::getTotalE(){
117 > #ifdef IS_MPI
118  
119 <  double total;
119 >    MPI_Allreduce(&shortRangePot_local, &potential, 1, MPI_DOUBLE, MPI_SUM,
120 >                  MPI_COMM_WORLD);
121 >    potential += curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL];
122  
123 <  total = this->getKinetic() + this->getPotential();
117 <  return total;
118 < }
123 > #else
124  
125 < double Thermo::getTemperature(){
125 >    potential = shortRangePot_local + curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL];
126  
127 <  const double kb = 1.9872156E-3; // boltzman's constant in kcal/(mol K)
123 <  double temperature;
127 > #endif // is_mpi
128  
129 <  temperature = ( 2.0 * this->getKinetic() ) / ((double)info->ndf * kb );
130 <  return temperature;
127 < }
129 >    return potential;
130 >  }
131  
132 < double Thermo::getVolume() {
132 >  double Thermo::getTotalE() {
133 >    double total;
134  
135 <  return info->boxVol;
136 < }
135 >    total = this->getKinetic() + this->getPotential();
136 >    return total;
137 >  }
138  
139 < double Thermo::getPressure() {
139 >  double Thermo::getTemperature() {
140 >    
141 >    double temperature = ( 2.0 * this->getKinetic() ) / (info_->getNdf()* OOPSEConstant::kb );
142 >    return temperature;
143 >  }
144  
145 <  // Relies on the calculation of the full molecular pressure tensor
146 <  
147 <  const double p_convert = 1.63882576e8;
148 <  double press[3][3];
140 <  double pressure;
145 >  double Thermo::getVolume() {
146 >    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
147 >    return curSnapshot->getVolume();
148 >  }
149  
150 <  this->getPressureTensor(press);
150 >  double Thermo::getPressure() {
151  
152 <  pressure = p_convert * (press[0][0] + press[1][1] + press[2][2]) / 3.0;
152 >    // Relies on the calculation of the full molecular pressure tensor
153  
146  return pressure;
147 }
154  
155 < double Thermo::getPressureX() {
155 >    Mat3x3d tensor;
156 >    double pressure;
157  
158 <  // Relies on the calculation of the full molecular pressure tensor
152 <  
153 <  const double p_convert = 1.63882576e8;
154 <  double press[3][3];
155 <  double pressureX;
158 >    tensor = getPressureTensor();
159  
160 <  this->getPressureTensor(press);
160 >    pressure = OOPSEConstant::pressureConvert * (tensor(0, 0) + tensor(1, 1) + tensor(2, 2)) / 3.0;
161  
162 <  pressureX = p_convert * press[0][0];
162 >    return pressure;
163 >  }
164  
165 <  return pressureX;
162 < }
165 >  double Thermo::getPressure(int direction) {
166  
167 < double Thermo::getPressureY() {
167 >    // Relies on the calculation of the full molecular pressure tensor
168  
169 <  // Relies on the calculation of the full molecular pressure tensor
170 <  
171 <  const double p_convert = 1.63882576e8;
169 <  double press[3][3];
170 <  double pressureY;
169 >          
170 >    Mat3x3d tensor;
171 >    double pressure;
172  
173 <  this->getPressureTensor(press);
173 >    tensor = getPressureTensor();
174  
175 <  pressureY = p_convert * press[1][1];
175 >    pressure = OOPSEConstant::pressureConvert * tensor(direction, direction);
176  
177 <  return pressureY;
178 < }
177 >    return pressure;
178 >  }
179  
179 double Thermo::getPressureZ() {
180  
181  // Relies on the calculation of the full molecular pressure tensor
182  
183  const double p_convert = 1.63882576e8;
184  double press[3][3];
185  double pressureZ;
181  
182 <  this->getPressureTensor(press);
182 >  Mat3x3d Thermo::getPressureTensor() {
183 >    // returns pressure tensor in units amu*fs^-2*Ang^-1
184 >    // routine derived via viral theorem description in:
185 >    // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322
186 >    Mat3x3d pressureTensor;
187 >    Mat3x3d p_local(0.0);
188 >    Mat3x3d p_global(0.0);
189  
190 <  pressureZ = p_convert * press[2][2];
190 >    SimInfo::MoleculeIterator i;
191 >    std::vector<StuntDouble*>::iterator j;
192 >    Molecule* mol;
193 >    StuntDouble* integrableObject;    
194 >    for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) {
195 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
196 >           integrableObject = mol->nextIntegrableObject(j)) {
197  
198 <  return pressureZ;
199 < }
200 <
201 <
202 < void Thermo::getPressureTensor(double press[3][3]){
196 <  // returns pressure tensor in units amu*fs^-2*Ang^-1
197 <  // routine derived via viral theorem description in:
198 <  // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322
199 <
200 <  const double e_convert = 4.184e-4;
201 <
202 <  double molmass, volume;
203 <  double vcom[3];
204 <  double p_local[9], p_global[9];
205 <  int i, j, k;
206 <
207 <  for (i=0; i < 9; i++) {    
208 <    p_local[i] = 0.0;
209 <    p_global[i] = 0.0;
210 <  }
211 <
212 <  // use velocities of integrableObjects and their masses:  
213 <
214 <  for (i=0; i < info->integrableObjects.size(); i++) {
215 <
216 <    molmass = info->integrableObjects[i]->getMass();
198 >        double mass = integrableObject->getMass();
199 >        Vector3d vcom = integrableObject->getVel();
200 >        p_local += mass * outProduct(vcom, vcom);        
201 >      }
202 >    }
203      
218    info->integrableObjects[i]->getVel(vcom);
219    
220    p_local[0] += molmass * (vcom[0] * vcom[0]);
221    p_local[1] += molmass * (vcom[0] * vcom[1]);
222    p_local[2] += molmass * (vcom[0] * vcom[2]);
223    p_local[3] += molmass * (vcom[1] * vcom[0]);
224    p_local[4] += molmass * (vcom[1] * vcom[1]);
225    p_local[5] += molmass * (vcom[1] * vcom[2]);
226    p_local[6] += molmass * (vcom[2] * vcom[0]);
227    p_local[7] += molmass * (vcom[2] * vcom[1]);
228    p_local[8] += molmass * (vcom[2] * vcom[2]);
229
230  }
231
232  // Get total for entire system from MPI.
233  
204   #ifdef IS_MPI
205 <  MPI_Allreduce(p_local,p_global,9,MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
205 >    MPI_Allreduce(p_local.getArrayPointer(), p_global.getArrayPointer(), 9, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
206   #else
207 <  for (i=0; i<9; i++) {
238 <    p_global[i] = p_local[i];
239 <  }
207 >    p_global = p_local;
208   #endif // is_mpi
209  
210 <  volume = this->getVolume();
210 >    double volume = this->getVolume();
211 >    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
212 >    Mat3x3d tau = curSnapshot->statData.getTau();
213  
214 +    pressureTensor =  (p_global + OOPSEConstant::energyConvert* tau)/volume;
215  
216 <
246 <  for(i = 0; i < 3; i++) {
247 <    for (j = 0; j < 3; j++) {
248 <      k = 3*i + j;
249 <      press[i][j] = (p_global[k] + info->tau[k]*e_convert) / volume;
250 <    }
216 >    return pressureTensor;
217    }
252 }
218  
219 < void Thermo::velocitize() {
220 <  
221 <  double aVel[3], aJ[3], I[3][3];
257 <  int i, j, l, m, n, vr, vd; // velocity randomizer loop counters
258 <  double vdrift[3];
259 <  double vbar;
260 <  const double kb = 8.31451e-7; // kb in amu, angstroms, fs, etc.
261 <  double av2;
262 <  double kebar;
263 <  double temperature;
264 <  int nobj;
265 <
266 <  if (!info->have_target_temp) {
267 <    sprintf( painCave.errMsg,
268 <             "You can't resample the velocities without a targetTemp!\n"
269 <             );
270 <    painCave.isFatal = 1;
271 <    painCave.severity = OOPSE_ERROR;
272 <    simError();
273 <    return;
274 <  }
275 <
276 <  nobj = info->integrableObjects.size();
277 <  
278 <  temperature   = info->target_temp;
279 <  
280 <  kebar = kb * temperature * (double)info->ndfRaw /
281 <    ( 2.0 * (double)info->ndf );
282 <  
283 <  for(vr = 0; vr < nobj; vr++){
219 >  void Thermo::saveStat(){
220 >    Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
221 >    Stats& stat = currSnapshot->statData;
222      
223 <    // uses equipartition theory to solve for vbar in angstrom/fs
223 >    stat[Stats::KINETIC_ENERGY] = getKinetic();
224 >    stat[Stats::POTENTIAL_ENERGY] = getPotential();
225 >    stat[Stats::TOTAL_ENERGY] = stat[Stats::KINETIC_ENERGY]  + stat[Stats::POTENTIAL_ENERGY] ;
226 >    stat[Stats::TEMPERATURE] = getTemperature();
227 >    stat[Stats::PRESSURE] = getPressure();
228 >    stat[Stats::VOLUME] = getVolume();      
229  
230 <    av2 = 2.0 * kebar / info->integrableObjects[vr]->getMass();
231 <    vbar = sqrt( av2 );
230 >    Mat3x3d tensor =getPressureTensor();
231 >    stat[Stats::PRESSURE_TENSOR_X] = tensor(0, 0);      
232 >    stat[Stats::PRESSURE_TENSOR_Y] = tensor(1, 1);      
233 >    stat[Stats::PRESSURE_TENSOR_Z] = tensor(2, 2);      
234  
290    // picks random velocities from a gaussian distribution
291    // centered on vbar
235  
236 <    for (j=0; j<3; j++)
237 <      aVel[j] = vbar * gaussStream->getGaussian();
236 >    /**@todo need refactorying*/
237 >    //Conserved Quantity is set by integrator and time is set by setTime
238      
296    info->integrableObjects[vr]->setVel( aVel );
297    
298    if(info->integrableObjects[vr]->isDirectional()){
299
300      info->integrableObjects[vr]->getI( I );
301
302      if (info->integrableObjects[vr]->isLinear()) {
303
304        l= info->integrableObjects[vr]->linearAxis();
305        m = (l+1)%3;
306        n = (l+2)%3;
307
308        aJ[l] = 0.0;
309        vbar = sqrt( 2.0 * kebar * I[m][m] );
310        aJ[m] = vbar * gaussStream->getGaussian();
311        vbar = sqrt( 2.0 * kebar * I[n][n] );
312        aJ[n] = vbar * gaussStream->getGaussian();
313        
314      } else {
315        for (j = 0 ; j < 3; j++) {
316          vbar = sqrt( 2.0 * kebar * I[j][j] );
317          aJ[j] = vbar * gaussStream->getGaussian();
318        }      
319      } // else isLinear
320
321      info->integrableObjects[vr]->setJ( aJ );
322      
323    }//isDirectional
324
239    }
240  
241 <  // Get the Center of Mass drift velocity.
328 <
329 <  getCOMVel(vdrift);
330 <  
331 <  //  Corrects for the center of mass drift.
332 <  // sums all the momentum and divides by total mass.
333 <
334 <  for(vd = 0; vd < nobj; vd++){
335 <    
336 <    info->integrableObjects[vd]->getVel(aVel);
337 <    
338 <    for (j=0; j < 3; j++)
339 <      aVel[j] -= vdrift[j];
340 <        
341 <    info->integrableObjects[vd]->setVel( aVel );
342 <  }
343 <
344 < }
345 <
346 < void Thermo::getCOMVel(double vdrift[3]){
347 <
348 <  double mtot, mtot_local;
349 <  double aVel[3], amass;
350 <  double vdrift_local[3];
351 <  int vd, j;
352 <  int nobj;
353 <
354 <  nobj   = info->integrableObjects.size();
355 <
356 <  mtot_local = 0.0;
357 <  vdrift_local[0] = 0.0;
358 <  vdrift_local[1] = 0.0;
359 <  vdrift_local[2] = 0.0;
360 <  
361 <  for(vd = 0; vd < nobj; vd++){
362 <    
363 <    amass = info->integrableObjects[vd]->getMass();
364 <    info->integrableObjects[vd]->getVel( aVel );
365 <
366 <    for(j = 0; j < 3; j++)
367 <      vdrift_local[j] += aVel[j] * amass;
368 <    
369 <    mtot_local += amass;
370 <  }
371 <
372 < #ifdef IS_MPI
373 <  MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
374 <  MPI_Allreduce(vdrift_local,vdrift,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
375 < #else
376 <  mtot = mtot_local;
377 <  for(vd = 0; vd < 3; vd++) {
378 <    vdrift[vd] = vdrift_local[vd];
379 <  }
380 < #endif
381 <    
382 <  for (vd = 0; vd < 3; vd++) {
383 <    vdrift[vd] = vdrift[vd] / mtot;
384 <  }
385 <  
386 < }
387 <
388 < void Thermo::getCOM(double COM[3]){
389 <
390 <  double mtot, mtot_local;
391 <  double aPos[3], amass;
392 <  double COM_local[3];
393 <  int i, j;
394 <  int nobj;
395 <
396 <  mtot_local = 0.0;
397 <  COM_local[0] = 0.0;
398 <  COM_local[1] = 0.0;
399 <  COM_local[2] = 0.0;
400 <
401 <  nobj = info->integrableObjects.size();
402 <  for(i = 0; i < nobj; i++){
403 <    
404 <    amass = info->integrableObjects[i]->getMass();
405 <    info->integrableObjects[i]->getPos( aPos );
406 <
407 <    for(j = 0; j < 3; j++)
408 <      COM_local[j] += aPos[j] * amass;
409 <    
410 <    mtot_local += amass;
411 <  }
412 <
413 < #ifdef IS_MPI
414 <  MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
415 <  MPI_Allreduce(COM_local,COM,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
416 < #else
417 <  mtot = mtot_local;
418 <  for(i = 0; i < 3; i++) {
419 <    COM[i] = COM_local[i];
420 <  }
421 < #endif
422 <    
423 <  for (i = 0; i < 3; i++) {
424 <    COM[i] = COM[i] / mtot;
425 <  }
426 < }
427 <
428 < void Thermo::removeCOMdrift() {
429 <  double vdrift[3], aVel[3];
430 <  int vd, j, nobj;
431 <
432 <  nobj = info->integrableObjects.size();
433 <
434 <  // Get the Center of Mass drift velocity.
435 <
436 <  getCOMVel(vdrift);
437 <  
438 <  //  Corrects for the center of mass drift.
439 <  // sums all the momentum and divides by total mass.
440 <
441 <  for(vd = 0; vd < nobj; vd++){
442 <    
443 <    info->integrableObjects[vd]->getVel(aVel);
444 <    
445 <    for (j=0; j < 3; j++)
446 <      aVel[j] -= vdrift[j];
447 <        
448 <    info->integrableObjects[vd]->setVel( aVel );
449 <  }
450 < }
241 > } //end namespace oopse

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines