ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-2.0/src/integrators/Integrator.cpp
Revision: 1730
Committed: Thu Nov 11 21:47:05 2004 UTC (19 years, 8 months ago) by chrisfen
File size: 18907 byte(s)
Log Message:
Commented out some write statements

File Contents

# User Rev Content
1 gezelter 1490 #include <iostream>
2     #include <stdlib.h>
3     #include <math.h>
4     #ifdef IS_MPI
5 tim 1492 #include "brains/mpiSimulation.hpp"
6 gezelter 1490 #include <unistd.h>
7     #endif //is_mpi
8    
9     #ifdef PROFILE
10 tim 1492 #include "profiling/mdProfile.hpp"
11 gezelter 1490 #endif // profile
12    
13 tim 1492 #include "integrators/Integrator.hpp"
14     #include "utils/simError.h"
15 gezelter 1490
16    
17     template<typename T> Integrator<T>::Integrator(SimInfo* theInfo,
18     ForceFields* the_ff){
19     info = theInfo;
20     myFF = the_ff;
21     isFirst = 1;
22    
23     molecules = info->molecules;
24     nMols = info->n_mol;
25    
26     // give a little love back to the SimInfo object
27    
28     if (info->the_integrator != NULL){
29     delete info->the_integrator;
30     }
31    
32     nAtoms = info->n_atoms;
33     integrableObjects = info->integrableObjects;
34    
35    
36     // check for constraints
37    
38     constrainedA = NULL;
39     constrainedB = NULL;
40     constrainedDsqr = NULL;
41     moving = NULL;
42     moved = NULL;
43     oldPos = NULL;
44    
45     nConstrained = 0;
46    
47     checkConstraints();
48    
49     }
50    
51     template<typename T> Integrator<T>::~Integrator(){
52    
53     if (nConstrained){
54     delete[] constrainedA;
55     delete[] constrainedB;
56     delete[] constrainedDsqr;
57     delete[] moving;
58     delete[] moved;
59     delete[] oldPos;
60     }
61    
62     }
63    
64    
65     template<typename T> void Integrator<T>::checkConstraints(void){
66     isConstrained = 0;
67    
68     Constraint* temp_con;
69     Constraint* dummy_plug;
70     temp_con = new Constraint[info->n_SRI];
71     nConstrained = 0;
72     int constrained = 0;
73    
74     SRI** theArray;
75     for (int i = 0; i < nMols; i++){
76    
77     theArray = (SRI * *) molecules[i].getMyBonds();
78     for (int j = 0; j < molecules[i].getNBonds(); j++){
79     constrained = theArray[j]->is_constrained();
80    
81     if (constrained){
82     dummy_plug = theArray[j]->get_constraint();
83     temp_con[nConstrained].set_a(dummy_plug->get_a());
84     temp_con[nConstrained].set_b(dummy_plug->get_b());
85     temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
86    
87     nConstrained++;
88     constrained = 0;
89     }
90     }
91    
92     theArray = (SRI * *) molecules[i].getMyBends();
93     for (int j = 0; j < molecules[i].getNBends(); j++){
94     constrained = theArray[j]->is_constrained();
95    
96     if (constrained){
97     dummy_plug = theArray[j]->get_constraint();
98     temp_con[nConstrained].set_a(dummy_plug->get_a());
99     temp_con[nConstrained].set_b(dummy_plug->get_b());
100     temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
101    
102     nConstrained++;
103     constrained = 0;
104     }
105     }
106    
107     theArray = (SRI * *) molecules[i].getMyTorsions();
108     for (int j = 0; j < molecules[i].getNTorsions(); j++){
109     constrained = theArray[j]->is_constrained();
110    
111     if (constrained){
112     dummy_plug = theArray[j]->get_constraint();
113     temp_con[nConstrained].set_a(dummy_plug->get_a());
114     temp_con[nConstrained].set_b(dummy_plug->get_b());
115     temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
116    
117     nConstrained++;
118     constrained = 0;
119     }
120     }
121     }
122    
123    
124     if (nConstrained > 0){
125     isConstrained = 1;
126    
127     if (constrainedA != NULL)
128     delete[] constrainedA;
129     if (constrainedB != NULL)
130     delete[] constrainedB;
131     if (constrainedDsqr != NULL)
132     delete[] constrainedDsqr;
133    
134     constrainedA = new int[nConstrained];
135     constrainedB = new int[nConstrained];
136     constrainedDsqr = new double[nConstrained];
137    
138     for (int i = 0; i < nConstrained; i++){
139     constrainedA[i] = temp_con[i].get_a();
140     constrainedB[i] = temp_con[i].get_b();
141     constrainedDsqr[i] = temp_con[i].get_dsqr();
142     }
143    
144    
145     // save oldAtoms to check for lode balancing later on.
146    
147     oldAtoms = nAtoms;
148    
149     moving = new int[nAtoms];
150     moved = new int[nAtoms];
151    
152     oldPos = new double[nAtoms * 3];
153     }
154    
155     delete[] temp_con;
156     }
157    
158    
159     template<typename T> void Integrator<T>::integrate(void){
160    
161     double runTime = info->run_time;
162     double sampleTime = info->sampleTime;
163     double statusTime = info->statusTime;
164     double thermalTime = info->thermalTime;
165     double resetTime = info->resetTime;
166    
167     double difference;
168     double currSample;
169     double currThermal;
170     double currStatus;
171     double currReset;
172    
173     int calcPot, calcStress;
174    
175     tStats = new Thermo(info);
176     statOut = new StatWriter(info);
177     dumpOut = new DumpWriter(info);
178    
179     atoms = info->atoms;
180    
181     dt = info->dt;
182     dt2 = 0.5 * dt;
183    
184     readyCheck();
185    
186     // remove center of mass drift velocity (in case we passed in a configuration
187     // that was drifting
188     tStats->removeCOMdrift();
189    
190     // initialize the retraints if necessary
191     if (info->useSolidThermInt && !info->useLiquidThermInt) {
192     myFF->initRestraints();
193     }
194    
195     // initialize the forces before the first step
196    
197     calcForce(1, 1);
198    
199     //execute constraint algorithm to make sure at the very beginning the system is constrained
200     if(nConstrained){
201     preMove();
202     constrainA();
203     calcForce(1, 1);
204     constrainB();
205     }
206    
207     if (info->setTemp){
208     thermalize();
209     }
210    
211     calcPot = 0;
212     calcStress = 0;
213     currSample = sampleTime + info->getTime();
214     currThermal = thermalTime+ info->getTime();
215     currStatus = statusTime + info->getTime();
216     currReset = resetTime + info->getTime();
217    
218     dumpOut->writeDump(info->getTime());
219     statOut->writeStat(info->getTime());
220    
221    
222     #ifdef IS_MPI
223     strcpy(checkPointMsg, "The integrator is ready to go.");
224     MPIcheckPoint();
225     #endif // is_mpi
226    
227     while (info->getTime() < runTime && !stopIntegrator()){
228     difference = info->getTime() + dt - currStatus;
229     if (difference > 0 || fabs(difference) < 1e-4 ){
230     calcPot = 1;
231     calcStress = 1;
232     }
233    
234     #ifdef PROFILE
235     startProfile( pro1 );
236     #endif
237    
238     integrateStep(calcPot, calcStress);
239    
240     #ifdef PROFILE
241     endProfile( pro1 );
242    
243     startProfile( pro2 );
244     #endif // profile
245    
246     info->incrTime(dt);
247    
248     if (info->setTemp){
249     if (info->getTime() >= currThermal){
250     thermalize();
251     currThermal += thermalTime;
252     }
253     }
254    
255     if (info->getTime() >= currSample){
256     dumpOut->writeDump(info->getTime());
257     currSample += sampleTime;
258     }
259    
260     if (info->getTime() >= currStatus){
261     statOut->writeStat(info->getTime());
262     calcPot = 0;
263     calcStress = 0;
264     currStatus += statusTime;
265     }
266    
267     if (info->resetIntegrator){
268     if (info->getTime() >= currReset){
269     this->resetIntegrator();
270     currReset += resetTime;
271     }
272     }
273    
274     #ifdef PROFILE
275     endProfile( pro2 );
276     #endif //profile
277    
278     #ifdef IS_MPI
279     strcpy(checkPointMsg, "successfully took a time step.");
280     MPIcheckPoint();
281     #endif // is_mpi
282     }
283    
284     dumpOut->writeFinal(info->getTime());
285    
286     // dump out a file containing the omega values for the final configuration
287     if (info->useSolidThermInt && !info->useLiquidThermInt)
288     myFF->dumpzAngle();
289    
290    
291     delete dumpOut;
292     delete statOut;
293     }
294    
295     template<typename T> void Integrator<T>::integrateStep(int calcPot,
296     int calcStress){
297     // Position full step, and velocity half step
298    
299     #ifdef PROFILE
300     startProfile(pro3);
301     #endif //profile
302    
303     //save old state (position, velocity etc)
304     preMove();
305     #ifdef PROFILE
306     endProfile(pro3);
307    
308     startProfile(pro4);
309     #endif // profile
310    
311     moveA();
312    
313     #ifdef PROFILE
314     endProfile(pro4);
315    
316     startProfile(pro5);
317     #endif//profile
318    
319    
320     #ifdef IS_MPI
321     strcpy(checkPointMsg, "Succesful moveA\n");
322     MPIcheckPoint();
323     #endif // is_mpi
324    
325     // calc forces
326     calcForce(calcPot, calcStress);
327    
328     #ifdef IS_MPI
329     strcpy(checkPointMsg, "Succesful doForces\n");
330     MPIcheckPoint();
331     #endif // is_mpi
332    
333     #ifdef PROFILE
334     endProfile( pro5 );
335    
336     startProfile( pro6 );
337     #endif //profile
338    
339     // finish the velocity half step
340    
341     moveB();
342    
343     #ifdef PROFILE
344     endProfile(pro6);
345     #endif // profile
346    
347     #ifdef IS_MPI
348     strcpy(checkPointMsg, "Succesful moveB\n");
349     MPIcheckPoint();
350     #endif // is_mpi
351     }
352    
353    
354     template<typename T> void Integrator<T>::moveA(void){
355     size_t i, j;
356     DirectionalAtom* dAtom;
357     double Tb[3], ji[3];
358     double vel[3], pos[3], frc[3];
359     double mass;
360     double omega;
361    
362     for (i = 0; i < integrableObjects.size() ; i++){
363     integrableObjects[i]->getVel(vel);
364     integrableObjects[i]->getPos(pos);
365     integrableObjects[i]->getFrc(frc);
366 chrisfen 1730 // std::cerr << "f = " << frc[0] << "\t" << frc[1] << "\t" << frc[2] << "\n";
367 gezelter 1490
368     mass = integrableObjects[i]->getMass();
369    
370     for (j = 0; j < 3; j++){
371     // velocity half step
372     vel[j] += (dt2 * frc[j] / mass) * eConvert;
373     // position whole step
374     pos[j] += dt * vel[j];
375     }
376    
377     integrableObjects[i]->setVel(vel);
378     integrableObjects[i]->setPos(pos);
379    
380 gezelter 1708
381 gezelter 1490 if (integrableObjects[i]->isDirectional()){
382    
383     // get and convert the torque to body frame
384    
385     integrableObjects[i]->getTrq(Tb);
386 gezelter 1708
387 chrisfen 1730 // std::cerr << "t = " << Tb[0] << "\t" << Tb[1] << "\t" << Tb[2] << "\n";
388 gezelter 1490 integrableObjects[i]->lab2Body(Tb);
389    
390     // get the angular momentum, and propagate a half step
391    
392     integrableObjects[i]->getJ(ji);
393    
394     for (j = 0; j < 3; j++)
395     ji[j] += (dt2 * Tb[j]) * eConvert;
396    
397     this->rotationPropagation( integrableObjects[i], ji );
398    
399     integrableObjects[i]->setJ(ji);
400     }
401     }
402    
403     if(nConstrained)
404     constrainA();
405     }
406    
407    
408     template<typename T> void Integrator<T>::moveB(void){
409     int i, j;
410     double Tb[3], ji[3];
411     double vel[3], frc[3];
412     double mass;
413    
414     for (i = 0; i < integrableObjects.size(); i++){
415     integrableObjects[i]->getVel(vel);
416     integrableObjects[i]->getFrc(frc);
417    
418     mass = integrableObjects[i]->getMass();
419    
420     // velocity half step
421     for (j = 0; j < 3; j++)
422     vel[j] += (dt2 * frc[j] / mass) * eConvert;
423    
424     integrableObjects[i]->setVel(vel);
425    
426     if (integrableObjects[i]->isDirectional()){
427    
428     // get and convert the torque to body frame
429    
430     integrableObjects[i]->getTrq(Tb);
431     integrableObjects[i]->lab2Body(Tb);
432    
433     // get the angular momentum, and propagate a half step
434    
435     integrableObjects[i]->getJ(ji);
436    
437     for (j = 0; j < 3; j++)
438     ji[j] += (dt2 * Tb[j]) * eConvert;
439    
440    
441     integrableObjects[i]->setJ(ji);
442     }
443     }
444    
445     if(nConstrained)
446     constrainB();
447     }
448    
449    
450     template<typename T> void Integrator<T>::preMove(void){
451     int i, j;
452     double pos[3];
453    
454     if (nConstrained){
455     for (i = 0; i < nAtoms; i++){
456     atoms[i]->getPos(pos);
457    
458     for (j = 0; j < 3; j++){
459     oldPos[3 * i + j] = pos[j];
460     }
461     }
462     }
463     }
464    
465     template<typename T> void Integrator<T>::constrainA(){
466     int i, j;
467     int done;
468     double posA[3], posB[3];
469     double velA[3], velB[3];
470     double pab[3];
471     double rab[3];
472     int a, b, ax, ay, az, bx, by, bz;
473     double rma, rmb;
474     double dx, dy, dz;
475     double rpab;
476     double rabsq, pabsq, rpabsq;
477     double diffsq;
478     double gab;
479     int iteration;
480    
481     for (i = 0; i < nAtoms; i++){
482     moving[i] = 0;
483     moved[i] = 1;
484     }
485    
486     iteration = 0;
487     done = 0;
488     while (!done && (iteration < maxIteration)){
489     done = 1;
490     for (i = 0; i < nConstrained; i++){
491     a = constrainedA[i];
492     b = constrainedB[i];
493    
494     ax = (a * 3) + 0;
495     ay = (a * 3) + 1;
496     az = (a * 3) + 2;
497    
498     bx = (b * 3) + 0;
499     by = (b * 3) + 1;
500     bz = (b * 3) + 2;
501    
502     if (moved[a] || moved[b]){
503     atoms[a]->getPos(posA);
504     atoms[b]->getPos(posB);
505    
506     for (j = 0; j < 3; j++)
507     pab[j] = posA[j] - posB[j];
508    
509     //periodic boundary condition
510    
511     info->wrapVector(pab);
512    
513     pabsq = pab[0] * pab[0] + pab[1] * pab[1] + pab[2] * pab[2];
514    
515     rabsq = constrainedDsqr[i];
516     diffsq = rabsq - pabsq;
517    
518     // the original rattle code from alan tidesley
519     if (fabs(diffsq) > (tol * rabsq * 2)){
520     rab[0] = oldPos[ax] - oldPos[bx];
521     rab[1] = oldPos[ay] - oldPos[by];
522     rab[2] = oldPos[az] - oldPos[bz];
523    
524     info->wrapVector(rab);
525    
526     rpab = rab[0] * pab[0] + rab[1] * pab[1] + rab[2] * pab[2];
527    
528     rpabsq = rpab * rpab;
529    
530    
531     if (rpabsq < (rabsq * -diffsq)){
532     #ifdef IS_MPI
533     a = atoms[a]->getGlobalIndex();
534     b = atoms[b]->getGlobalIndex();
535     #endif //is_mpi
536     sprintf(painCave.errMsg,
537     "Constraint failure in constrainA at atom %d and %d.\n", a,
538     b);
539     painCave.isFatal = 1;
540     simError();
541     }
542    
543     rma = 1.0 / atoms[a]->getMass();
544     rmb = 1.0 / atoms[b]->getMass();
545    
546     gab = diffsq / (2.0 * (rma + rmb) * rpab);
547    
548     dx = rab[0] * gab;
549     dy = rab[1] * gab;
550     dz = rab[2] * gab;
551    
552     posA[0] += rma * dx;
553     posA[1] += rma * dy;
554     posA[2] += rma * dz;
555    
556     atoms[a]->setPos(posA);
557    
558     posB[0] -= rmb * dx;
559     posB[1] -= rmb * dy;
560     posB[2] -= rmb * dz;
561    
562     atoms[b]->setPos(posB);
563    
564     dx = dx / dt;
565     dy = dy / dt;
566     dz = dz / dt;
567    
568     atoms[a]->getVel(velA);
569    
570     velA[0] += rma * dx;
571     velA[1] += rma * dy;
572     velA[2] += rma * dz;
573    
574     atoms[a]->setVel(velA);
575    
576     atoms[b]->getVel(velB);
577    
578     velB[0] -= rmb * dx;
579     velB[1] -= rmb * dy;
580     velB[2] -= rmb * dz;
581    
582     atoms[b]->setVel(velB);
583    
584     moving[a] = 1;
585     moving[b] = 1;
586     done = 0;
587     }
588     }
589     }
590    
591     for (i = 0; i < nAtoms; i++){
592     moved[i] = moving[i];
593     moving[i] = 0;
594     }
595    
596     iteration++;
597     }
598    
599     if (!done){
600     sprintf(painCave.errMsg,
601     "Constraint failure in constrainA, too many iterations: %d\n",
602     iteration);
603     painCave.isFatal = 1;
604     simError();
605     }
606    
607     }
608    
609     template<typename T> void Integrator<T>::constrainB(void){
610     int i, j;
611     int done;
612     double posA[3], posB[3];
613     double velA[3], velB[3];
614     double vxab, vyab, vzab;
615     double rab[3];
616     int a, b, ax, ay, az, bx, by, bz;
617     double rma, rmb;
618     double dx, dy, dz;
619     double rvab;
620     double gab;
621     int iteration;
622    
623     for (i = 0; i < nAtoms; i++){
624     moving[i] = 0;
625     moved[i] = 1;
626     }
627    
628     done = 0;
629     iteration = 0;
630     while (!done && (iteration < maxIteration)){
631     done = 1;
632    
633     for (i = 0; i < nConstrained; i++){
634     a = constrainedA[i];
635     b = constrainedB[i];
636    
637     ax = (a * 3) + 0;
638     ay = (a * 3) + 1;
639     az = (a * 3) + 2;
640    
641     bx = (b * 3) + 0;
642     by = (b * 3) + 1;
643     bz = (b * 3) + 2;
644    
645     if (moved[a] || moved[b]){
646     atoms[a]->getVel(velA);
647     atoms[b]->getVel(velB);
648    
649     vxab = velA[0] - velB[0];
650     vyab = velA[1] - velB[1];
651     vzab = velA[2] - velB[2];
652    
653     atoms[a]->getPos(posA);
654     atoms[b]->getPos(posB);
655    
656     for (j = 0; j < 3; j++)
657     rab[j] = posA[j] - posB[j];
658    
659     info->wrapVector(rab);
660    
661     rma = 1.0 / atoms[a]->getMass();
662     rmb = 1.0 / atoms[b]->getMass();
663    
664     rvab = rab[0] * vxab + rab[1] * vyab + rab[2] * vzab;
665    
666     gab = -rvab / ((rma + rmb) * constrainedDsqr[i]);
667    
668     if (fabs(gab) > tol){
669     dx = rab[0] * gab;
670     dy = rab[1] * gab;
671     dz = rab[2] * gab;
672    
673     velA[0] += rma * dx;
674     velA[1] += rma * dy;
675     velA[2] += rma * dz;
676    
677     atoms[a]->setVel(velA);
678    
679     velB[0] -= rmb * dx;
680     velB[1] -= rmb * dy;
681     velB[2] -= rmb * dz;
682    
683     atoms[b]->setVel(velB);
684    
685     moving[a] = 1;
686     moving[b] = 1;
687     done = 0;
688     }
689     }
690     }
691    
692     for (i = 0; i < nAtoms; i++){
693     moved[i] = moving[i];
694     moving[i] = 0;
695     }
696    
697     iteration++;
698     }
699    
700     if (!done){
701     sprintf(painCave.errMsg,
702     "Constraint failure in constrainB, too many iterations: %d\n",
703     iteration);
704     painCave.isFatal = 1;
705     simError();
706     }
707     }
708    
709     template<typename T> void Integrator<T>::rotationPropagation
710     ( StuntDouble* sd, double ji[3] ){
711    
712     double angle;
713     double A[3][3], I[3][3];
714     int i, j, k;
715    
716     // use the angular velocities to propagate the rotation matrix a
717     // full time step
718    
719     sd->getA(A);
720     sd->getI(I);
721    
722     if (sd->isLinear()) {
723 gezelter 1708
724 gezelter 1490 i = sd->linearAxis();
725     j = (i+1)%3;
726     k = (i+2)%3;
727 gezelter 1708
728 gezelter 1490 angle = dt2 * ji[j] / I[j][j];
729     this->rotate( k, i, angle, ji, A );
730    
731     angle = dt * ji[k] / I[k][k];
732     this->rotate( i, j, angle, ji, A);
733    
734     angle = dt2 * ji[j] / I[j][j];
735     this->rotate( k, i, angle, ji, A );
736    
737     } else {
738     // rotate about the x-axis
739     angle = dt2 * ji[0] / I[0][0];
740     this->rotate( 1, 2, angle, ji, A );
741    
742     // rotate about the y-axis
743     angle = dt2 * ji[1] / I[1][1];
744     this->rotate( 2, 0, angle, ji, A );
745    
746     // rotate about the z-axis
747     angle = dt * ji[2] / I[2][2];
748     sd->addZangle(angle);
749     this->rotate( 0, 1, angle, ji, A);
750    
751     // rotate about the y-axis
752     angle = dt2 * ji[1] / I[1][1];
753     this->rotate( 2, 0, angle, ji, A );
754    
755     // rotate about the x-axis
756     angle = dt2 * ji[0] / I[0][0];
757     this->rotate( 1, 2, angle, ji, A );
758    
759     }
760     sd->setA( A );
761     }
762    
763     template<typename T> void Integrator<T>::rotate(int axes1, int axes2,
764     double angle, double ji[3],
765     double A[3][3]){
766     int i, j, k;
767     double sinAngle;
768     double cosAngle;
769     double angleSqr;
770     double angleSqrOver4;
771     double top, bottom;
772     double rot[3][3];
773     double tempA[3][3];
774     double tempJ[3];
775    
776     // initialize the tempA
777    
778     for (i = 0; i < 3; i++){
779     for (j = 0; j < 3; j++){
780     tempA[j][i] = A[i][j];
781     }
782     }
783    
784     // initialize the tempJ
785    
786     for (i = 0; i < 3; i++)
787     tempJ[i] = ji[i];
788    
789     // initalize rot as a unit matrix
790    
791     rot[0][0] = 1.0;
792     rot[0][1] = 0.0;
793     rot[0][2] = 0.0;
794    
795     rot[1][0] = 0.0;
796     rot[1][1] = 1.0;
797     rot[1][2] = 0.0;
798    
799     rot[2][0] = 0.0;
800     rot[2][1] = 0.0;
801     rot[2][2] = 1.0;
802    
803     // use a small angle aproximation for sin and cosine
804    
805     angleSqr = angle * angle;
806     angleSqrOver4 = angleSqr / 4.0;
807     top = 1.0 - angleSqrOver4;
808     bottom = 1.0 + angleSqrOver4;
809    
810     cosAngle = top / bottom;
811     sinAngle = angle / bottom;
812    
813     rot[axes1][axes1] = cosAngle;
814     rot[axes2][axes2] = cosAngle;
815    
816     rot[axes1][axes2] = sinAngle;
817     rot[axes2][axes1] = -sinAngle;
818    
819     // rotate the momentum acoording to: ji[] = rot[][] * ji[]
820    
821     for (i = 0; i < 3; i++){
822     ji[i] = 0.0;
823     for (k = 0; k < 3; k++){
824     ji[i] += rot[i][k] * tempJ[k];
825     }
826     }
827    
828     // rotate the Rotation matrix acording to:
829     // A[][] = A[][] * transpose(rot[][])
830    
831    
832     // NOte for as yet unknown reason, we are performing the
833     // calculation as:
834     // transpose(A[][]) = transpose(A[][]) * transpose(rot[][])
835    
836     for (i = 0; i < 3; i++){
837     for (j = 0; j < 3; j++){
838     A[j][i] = 0.0;
839     for (k = 0; k < 3; k++){
840     A[j][i] += tempA[i][k] * rot[j][k];
841     }
842     }
843     }
844     }
845    
846     template<typename T> void Integrator<T>::calcForce(int calcPot, int calcStress){
847     myFF->doForces(calcPot, calcStress);
848     }
849    
850     template<typename T> void Integrator<T>::thermalize(){
851     tStats->velocitize();
852     }
853    
854     template<typename T> double Integrator<T>::getConservedQuantity(void){
855     return tStats->getTotalE();
856     }
857     template<typename T> string Integrator<T>::getAdditionalParameters(void){
858     //By default, return a null string
859     //The reason we use string instead of char* is that if we use char*, we will
860     //return a pointer point to local variable which might cause problem
861     return string();
862     }