ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-2.0/src/integrators/Integrator.cpp
Revision: 1772
Committed: Tue Nov 23 22:48:31 2004 UTC (19 years, 7 months ago) by chrisfen
File size: 19614 byte(s)
Log Message:
Improvements to restraints

File Contents

# User Rev Content
1 gezelter 1490 #include <iostream>
2     #include <stdlib.h>
3     #include <math.h>
4     #ifdef IS_MPI
5 tim 1492 #include "brains/mpiSimulation.hpp"
6 gezelter 1490 #include <unistd.h>
7     #endif //is_mpi
8    
9     #ifdef PROFILE
10 tim 1492 #include "profiling/mdProfile.hpp"
11 gezelter 1490 #endif // profile
12    
13 tim 1492 #include "integrators/Integrator.hpp"
14     #include "utils/simError.h"
15 gezelter 1490
16    
17     template<typename T> Integrator<T>::Integrator(SimInfo* theInfo,
18     ForceFields* the_ff){
19     info = theInfo;
20     myFF = the_ff;
21     isFirst = 1;
22    
23     molecules = info->molecules;
24     nMols = info->n_mol;
25    
26     // give a little love back to the SimInfo object
27    
28     if (info->the_integrator != NULL){
29     delete info->the_integrator;
30     }
31    
32     nAtoms = info->n_atoms;
33     integrableObjects = info->integrableObjects;
34    
35    
36     // check for constraints
37    
38     constrainedA = NULL;
39     constrainedB = NULL;
40     constrainedDsqr = NULL;
41     moving = NULL;
42     moved = NULL;
43     oldPos = NULL;
44    
45     nConstrained = 0;
46    
47     checkConstraints();
48    
49     }
50    
51     template<typename T> Integrator<T>::~Integrator(){
52    
53     if (nConstrained){
54     delete[] constrainedA;
55     delete[] constrainedB;
56     delete[] constrainedDsqr;
57     delete[] moving;
58     delete[] moved;
59     delete[] oldPos;
60     }
61    
62     }
63    
64    
65     template<typename T> void Integrator<T>::checkConstraints(void){
66     isConstrained = 0;
67    
68     Constraint* temp_con;
69     Constraint* dummy_plug;
70     temp_con = new Constraint[info->n_SRI];
71     nConstrained = 0;
72     int constrained = 0;
73    
74     SRI** theArray;
75     for (int i = 0; i < nMols; i++){
76    
77     theArray = (SRI * *) molecules[i].getMyBonds();
78     for (int j = 0; j < molecules[i].getNBonds(); j++){
79     constrained = theArray[j]->is_constrained();
80    
81     if (constrained){
82     dummy_plug = theArray[j]->get_constraint();
83     temp_con[nConstrained].set_a(dummy_plug->get_a());
84     temp_con[nConstrained].set_b(dummy_plug->get_b());
85     temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
86    
87     nConstrained++;
88     constrained = 0;
89     }
90     }
91    
92     theArray = (SRI * *) molecules[i].getMyBends();
93     for (int j = 0; j < molecules[i].getNBends(); j++){
94     constrained = theArray[j]->is_constrained();
95    
96     if (constrained){
97     dummy_plug = theArray[j]->get_constraint();
98     temp_con[nConstrained].set_a(dummy_plug->get_a());
99     temp_con[nConstrained].set_b(dummy_plug->get_b());
100     temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
101    
102     nConstrained++;
103     constrained = 0;
104     }
105     }
106    
107     theArray = (SRI * *) molecules[i].getMyTorsions();
108     for (int j = 0; j < molecules[i].getNTorsions(); j++){
109     constrained = theArray[j]->is_constrained();
110    
111     if (constrained){
112     dummy_plug = theArray[j]->get_constraint();
113     temp_con[nConstrained].set_a(dummy_plug->get_a());
114     temp_con[nConstrained].set_b(dummy_plug->get_b());
115     temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
116    
117     nConstrained++;
118     constrained = 0;
119     }
120     }
121     }
122    
123    
124     if (nConstrained > 0){
125     isConstrained = 1;
126    
127     if (constrainedA != NULL)
128     delete[] constrainedA;
129     if (constrainedB != NULL)
130     delete[] constrainedB;
131     if (constrainedDsqr != NULL)
132     delete[] constrainedDsqr;
133    
134     constrainedA = new int[nConstrained];
135     constrainedB = new int[nConstrained];
136     constrainedDsqr = new double[nConstrained];
137    
138     for (int i = 0; i < nConstrained; i++){
139     constrainedA[i] = temp_con[i].get_a();
140     constrainedB[i] = temp_con[i].get_b();
141     constrainedDsqr[i] = temp_con[i].get_dsqr();
142     }
143    
144    
145     // save oldAtoms to check for lode balancing later on.
146    
147     oldAtoms = nAtoms;
148    
149     moving = new int[nAtoms];
150     moved = new int[nAtoms];
151    
152     oldPos = new double[nAtoms * 3];
153     }
154    
155     delete[] temp_con;
156     }
157    
158    
159     template<typename T> void Integrator<T>::integrate(void){
160    
161     double runTime = info->run_time;
162     double sampleTime = info->sampleTime;
163     double statusTime = info->statusTime;
164     double thermalTime = info->thermalTime;
165     double resetTime = info->resetTime;
166    
167     double difference;
168     double currSample;
169     double currThermal;
170     double currStatus;
171     double currReset;
172    
173     int calcPot, calcStress;
174 chrisfen 1772 int i;
175     int localIndex;
176 gezelter 1490
177 chrisfen 1772 #ifdef IS_MPI
178     int which_node;
179     #endif // is_mpi
180    
181     vector<StuntDouble*> particles;
182     string inAngle;
183    
184 gezelter 1490 tStats = new Thermo(info);
185     statOut = new StatWriter(info);
186     dumpOut = new DumpWriter(info);
187    
188 chrisfen 1772 if (info->useSolidThermInt && !info->useLiquidThermInt) {
189     restOut = new RestraintWriter(info);
190     initRestraints = new RestraintReader(info);
191     }
192    
193 gezelter 1490 atoms = info->atoms;
194    
195     dt = info->dt;
196     dt2 = 0.5 * dt;
197    
198     readyCheck();
199    
200     // remove center of mass drift velocity (in case we passed in a configuration
201     // that was drifting
202     tStats->removeCOMdrift();
203    
204     // initialize the retraints if necessary
205     if (info->useSolidThermInt && !info->useLiquidThermInt) {
206 chrisfen 1772 initRestraints->zeroZangle();
207     inAngle = info->zAngleName + "_in";
208     initRestraints->readZangle(inAngle.c_str());
209     initRestraints->readIdealCrystal();
210 gezelter 1490 }
211    
212     // initialize the forces before the first step
213     calcForce(1, 1);
214    
215     //execute constraint algorithm to make sure at the very beginning the system is constrained
216     if(nConstrained){
217     preMove();
218     constrainA();
219     calcForce(1, 1);
220     constrainB();
221     }
222    
223     if (info->setTemp){
224     thermalize();
225     }
226    
227     calcPot = 0;
228     calcStress = 0;
229     currSample = sampleTime + info->getTime();
230     currThermal = thermalTime+ info->getTime();
231     currStatus = statusTime + info->getTime();
232     currReset = resetTime + info->getTime();
233    
234     dumpOut->writeDump(info->getTime());
235     statOut->writeStat(info->getTime());
236 chrisfen 1772 restOut->writeZangle(info->getTime());
237 gezelter 1490
238     #ifdef IS_MPI
239     strcpy(checkPointMsg, "The integrator is ready to go.");
240     MPIcheckPoint();
241     #endif // is_mpi
242    
243     while (info->getTime() < runTime && !stopIntegrator()){
244     difference = info->getTime() + dt - currStatus;
245     if (difference > 0 || fabs(difference) < 1e-4 ){
246     calcPot = 1;
247     calcStress = 1;
248     }
249    
250     #ifdef PROFILE
251     startProfile( pro1 );
252     #endif
253    
254     integrateStep(calcPot, calcStress);
255    
256     #ifdef PROFILE
257     endProfile( pro1 );
258    
259     startProfile( pro2 );
260     #endif // profile
261    
262     info->incrTime(dt);
263    
264     if (info->setTemp){
265     if (info->getTime() >= currThermal){
266     thermalize();
267     currThermal += thermalTime;
268     }
269     }
270    
271     if (info->getTime() >= currSample){
272     dumpOut->writeDump(info->getTime());
273 chrisfen 1772 // write a zAng file to coincide with each dump or eor file
274     if (info->useSolidThermInt && !info->useLiquidThermInt)
275     restOut->writeZangle(info->getTime());
276 gezelter 1490 currSample += sampleTime;
277     }
278    
279     if (info->getTime() >= currStatus){
280     statOut->writeStat(info->getTime());
281     calcPot = 0;
282     calcStress = 0;
283     currStatus += statusTime;
284     }
285    
286     if (info->resetIntegrator){
287     if (info->getTime() >= currReset){
288     this->resetIntegrator();
289     currReset += resetTime;
290     }
291     }
292    
293     #ifdef PROFILE
294     endProfile( pro2 );
295     #endif //profile
296    
297     #ifdef IS_MPI
298     strcpy(checkPointMsg, "successfully took a time step.");
299     MPIcheckPoint();
300     #endif // is_mpi
301     }
302    
303     dumpOut->writeFinal(info->getTime());
304    
305 chrisfen 1772 // write the file containing the omega values of the final configuration
306     if (info->useSolidThermInt && !info->useLiquidThermInt){
307     restOut->writeZangle(info->getTime());
308     restOut->writeZangle(info->getTime(), inAngle.c_str());
309     }
310 gezelter 1490
311     delete dumpOut;
312     delete statOut;
313     }
314    
315     template<typename T> void Integrator<T>::integrateStep(int calcPot,
316     int calcStress){
317     // Position full step, and velocity half step
318    
319     #ifdef PROFILE
320     startProfile(pro3);
321     #endif //profile
322    
323     //save old state (position, velocity etc)
324     preMove();
325     #ifdef PROFILE
326     endProfile(pro3);
327    
328     startProfile(pro4);
329     #endif // profile
330    
331     moveA();
332    
333     #ifdef PROFILE
334     endProfile(pro4);
335    
336     startProfile(pro5);
337     #endif//profile
338    
339    
340     #ifdef IS_MPI
341     strcpy(checkPointMsg, "Succesful moveA\n");
342     MPIcheckPoint();
343     #endif // is_mpi
344    
345     // calc forces
346     calcForce(calcPot, calcStress);
347    
348     #ifdef IS_MPI
349     strcpy(checkPointMsg, "Succesful doForces\n");
350     MPIcheckPoint();
351     #endif // is_mpi
352    
353     #ifdef PROFILE
354     endProfile( pro5 );
355    
356     startProfile( pro6 );
357     #endif //profile
358    
359     // finish the velocity half step
360    
361     moveB();
362    
363     #ifdef PROFILE
364     endProfile(pro6);
365     #endif // profile
366    
367     #ifdef IS_MPI
368     strcpy(checkPointMsg, "Succesful moveB\n");
369     MPIcheckPoint();
370     #endif // is_mpi
371     }
372    
373    
374     template<typename T> void Integrator<T>::moveA(void){
375     size_t i, j;
376     DirectionalAtom* dAtom;
377     double Tb[3], ji[3];
378     double vel[3], pos[3], frc[3];
379     double mass;
380     double omega;
381    
382     for (i = 0; i < integrableObjects.size() ; i++){
383     integrableObjects[i]->getVel(vel);
384     integrableObjects[i]->getPos(pos);
385     integrableObjects[i]->getFrc(frc);
386 chrisfen 1730 // std::cerr << "f = " << frc[0] << "\t" << frc[1] << "\t" << frc[2] << "\n";
387 gezelter 1490
388     mass = integrableObjects[i]->getMass();
389    
390     for (j = 0; j < 3; j++){
391     // velocity half step
392     vel[j] += (dt2 * frc[j] / mass) * eConvert;
393     // position whole step
394     pos[j] += dt * vel[j];
395     }
396    
397     integrableObjects[i]->setVel(vel);
398     integrableObjects[i]->setPos(pos);
399    
400 gezelter 1708
401 gezelter 1490 if (integrableObjects[i]->isDirectional()){
402    
403     // get and convert the torque to body frame
404    
405     integrableObjects[i]->getTrq(Tb);
406 gezelter 1708
407 chrisfen 1730 // std::cerr << "t = " << Tb[0] << "\t" << Tb[1] << "\t" << Tb[2] << "\n";
408 gezelter 1490 integrableObjects[i]->lab2Body(Tb);
409    
410     // get the angular momentum, and propagate a half step
411    
412     integrableObjects[i]->getJ(ji);
413    
414     for (j = 0; j < 3; j++)
415     ji[j] += (dt2 * Tb[j]) * eConvert;
416    
417     this->rotationPropagation( integrableObjects[i], ji );
418    
419     integrableObjects[i]->setJ(ji);
420     }
421     }
422    
423     if(nConstrained)
424     constrainA();
425     }
426    
427    
428     template<typename T> void Integrator<T>::moveB(void){
429     int i, j;
430     double Tb[3], ji[3];
431     double vel[3], frc[3];
432     double mass;
433    
434     for (i = 0; i < integrableObjects.size(); i++){
435     integrableObjects[i]->getVel(vel);
436     integrableObjects[i]->getFrc(frc);
437    
438     mass = integrableObjects[i]->getMass();
439    
440     // velocity half step
441     for (j = 0; j < 3; j++)
442     vel[j] += (dt2 * frc[j] / mass) * eConvert;
443    
444     integrableObjects[i]->setVel(vel);
445    
446     if (integrableObjects[i]->isDirectional()){
447    
448     // get and convert the torque to body frame
449    
450     integrableObjects[i]->getTrq(Tb);
451     integrableObjects[i]->lab2Body(Tb);
452    
453     // get the angular momentum, and propagate a half step
454    
455     integrableObjects[i]->getJ(ji);
456    
457     for (j = 0; j < 3; j++)
458     ji[j] += (dt2 * Tb[j]) * eConvert;
459    
460    
461     integrableObjects[i]->setJ(ji);
462     }
463     }
464    
465     if(nConstrained)
466     constrainB();
467     }
468    
469    
470     template<typename T> void Integrator<T>::preMove(void){
471     int i, j;
472     double pos[3];
473    
474     if (nConstrained){
475     for (i = 0; i < nAtoms; i++){
476     atoms[i]->getPos(pos);
477    
478     for (j = 0; j < 3; j++){
479     oldPos[3 * i + j] = pos[j];
480     }
481     }
482     }
483     }
484    
485     template<typename T> void Integrator<T>::constrainA(){
486     int i, j;
487     int done;
488     double posA[3], posB[3];
489     double velA[3], velB[3];
490     double pab[3];
491     double rab[3];
492     int a, b, ax, ay, az, bx, by, bz;
493     double rma, rmb;
494     double dx, dy, dz;
495     double rpab;
496     double rabsq, pabsq, rpabsq;
497     double diffsq;
498     double gab;
499     int iteration;
500    
501     for (i = 0; i < nAtoms; i++){
502     moving[i] = 0;
503     moved[i] = 1;
504     }
505    
506     iteration = 0;
507     done = 0;
508     while (!done && (iteration < maxIteration)){
509     done = 1;
510     for (i = 0; i < nConstrained; i++){
511     a = constrainedA[i];
512     b = constrainedB[i];
513    
514     ax = (a * 3) + 0;
515     ay = (a * 3) + 1;
516     az = (a * 3) + 2;
517    
518     bx = (b * 3) + 0;
519     by = (b * 3) + 1;
520     bz = (b * 3) + 2;
521    
522     if (moved[a] || moved[b]){
523     atoms[a]->getPos(posA);
524     atoms[b]->getPos(posB);
525    
526     for (j = 0; j < 3; j++)
527     pab[j] = posA[j] - posB[j];
528    
529     //periodic boundary condition
530    
531     info->wrapVector(pab);
532    
533     pabsq = pab[0] * pab[0] + pab[1] * pab[1] + pab[2] * pab[2];
534    
535     rabsq = constrainedDsqr[i];
536     diffsq = rabsq - pabsq;
537    
538     // the original rattle code from alan tidesley
539     if (fabs(diffsq) > (tol * rabsq * 2)){
540     rab[0] = oldPos[ax] - oldPos[bx];
541     rab[1] = oldPos[ay] - oldPos[by];
542     rab[2] = oldPos[az] - oldPos[bz];
543    
544     info->wrapVector(rab);
545    
546     rpab = rab[0] * pab[0] + rab[1] * pab[1] + rab[2] * pab[2];
547    
548     rpabsq = rpab * rpab;
549    
550    
551     if (rpabsq < (rabsq * -diffsq)){
552     #ifdef IS_MPI
553     a = atoms[a]->getGlobalIndex();
554     b = atoms[b]->getGlobalIndex();
555     #endif //is_mpi
556     sprintf(painCave.errMsg,
557     "Constraint failure in constrainA at atom %d and %d.\n", a,
558     b);
559     painCave.isFatal = 1;
560     simError();
561     }
562    
563     rma = 1.0 / atoms[a]->getMass();
564     rmb = 1.0 / atoms[b]->getMass();
565    
566     gab = diffsq / (2.0 * (rma + rmb) * rpab);
567    
568     dx = rab[0] * gab;
569     dy = rab[1] * gab;
570     dz = rab[2] * gab;
571    
572     posA[0] += rma * dx;
573     posA[1] += rma * dy;
574     posA[2] += rma * dz;
575    
576     atoms[a]->setPos(posA);
577    
578     posB[0] -= rmb * dx;
579     posB[1] -= rmb * dy;
580     posB[2] -= rmb * dz;
581    
582     atoms[b]->setPos(posB);
583    
584     dx = dx / dt;
585     dy = dy / dt;
586     dz = dz / dt;
587    
588     atoms[a]->getVel(velA);
589    
590     velA[0] += rma * dx;
591     velA[1] += rma * dy;
592     velA[2] += rma * dz;
593    
594     atoms[a]->setVel(velA);
595    
596     atoms[b]->getVel(velB);
597    
598     velB[0] -= rmb * dx;
599     velB[1] -= rmb * dy;
600     velB[2] -= rmb * dz;
601    
602     atoms[b]->setVel(velB);
603    
604     moving[a] = 1;
605     moving[b] = 1;
606     done = 0;
607     }
608     }
609     }
610    
611     for (i = 0; i < nAtoms; i++){
612     moved[i] = moving[i];
613     moving[i] = 0;
614     }
615    
616     iteration++;
617     }
618    
619     if (!done){
620     sprintf(painCave.errMsg,
621     "Constraint failure in constrainA, too many iterations: %d\n",
622     iteration);
623     painCave.isFatal = 1;
624     simError();
625     }
626    
627     }
628    
629     template<typename T> void Integrator<T>::constrainB(void){
630     int i, j;
631     int done;
632     double posA[3], posB[3];
633     double velA[3], velB[3];
634     double vxab, vyab, vzab;
635     double rab[3];
636     int a, b, ax, ay, az, bx, by, bz;
637     double rma, rmb;
638     double dx, dy, dz;
639     double rvab;
640     double gab;
641     int iteration;
642    
643     for (i = 0; i < nAtoms; i++){
644     moving[i] = 0;
645     moved[i] = 1;
646     }
647    
648     done = 0;
649     iteration = 0;
650     while (!done && (iteration < maxIteration)){
651     done = 1;
652    
653     for (i = 0; i < nConstrained; i++){
654     a = constrainedA[i];
655     b = constrainedB[i];
656    
657     ax = (a * 3) + 0;
658     ay = (a * 3) + 1;
659     az = (a * 3) + 2;
660    
661     bx = (b * 3) + 0;
662     by = (b * 3) + 1;
663     bz = (b * 3) + 2;
664    
665     if (moved[a] || moved[b]){
666     atoms[a]->getVel(velA);
667     atoms[b]->getVel(velB);
668    
669     vxab = velA[0] - velB[0];
670     vyab = velA[1] - velB[1];
671     vzab = velA[2] - velB[2];
672    
673     atoms[a]->getPos(posA);
674     atoms[b]->getPos(posB);
675    
676     for (j = 0; j < 3; j++)
677     rab[j] = posA[j] - posB[j];
678    
679     info->wrapVector(rab);
680    
681     rma = 1.0 / atoms[a]->getMass();
682     rmb = 1.0 / atoms[b]->getMass();
683    
684     rvab = rab[0] * vxab + rab[1] * vyab + rab[2] * vzab;
685    
686     gab = -rvab / ((rma + rmb) * constrainedDsqr[i]);
687    
688     if (fabs(gab) > tol){
689     dx = rab[0] * gab;
690     dy = rab[1] * gab;
691     dz = rab[2] * gab;
692    
693     velA[0] += rma * dx;
694     velA[1] += rma * dy;
695     velA[2] += rma * dz;
696    
697     atoms[a]->setVel(velA);
698    
699     velB[0] -= rmb * dx;
700     velB[1] -= rmb * dy;
701     velB[2] -= rmb * dz;
702    
703     atoms[b]->setVel(velB);
704    
705     moving[a] = 1;
706     moving[b] = 1;
707     done = 0;
708     }
709     }
710     }
711    
712     for (i = 0; i < nAtoms; i++){
713     moved[i] = moving[i];
714     moving[i] = 0;
715     }
716    
717     iteration++;
718     }
719    
720     if (!done){
721     sprintf(painCave.errMsg,
722     "Constraint failure in constrainB, too many iterations: %d\n",
723     iteration);
724     painCave.isFatal = 1;
725     simError();
726     }
727     }
728    
729     template<typename T> void Integrator<T>::rotationPropagation
730     ( StuntDouble* sd, double ji[3] ){
731    
732     double angle;
733     double A[3][3], I[3][3];
734     int i, j, k;
735    
736     // use the angular velocities to propagate the rotation matrix a
737     // full time step
738    
739     sd->getA(A);
740     sd->getI(I);
741    
742     if (sd->isLinear()) {
743 gezelter 1708
744 gezelter 1490 i = sd->linearAxis();
745     j = (i+1)%3;
746     k = (i+2)%3;
747 gezelter 1708
748 gezelter 1490 angle = dt2 * ji[j] / I[j][j];
749     this->rotate( k, i, angle, ji, A );
750    
751     angle = dt * ji[k] / I[k][k];
752     this->rotate( i, j, angle, ji, A);
753    
754     angle = dt2 * ji[j] / I[j][j];
755     this->rotate( k, i, angle, ji, A );
756    
757     } else {
758     // rotate about the x-axis
759     angle = dt2 * ji[0] / I[0][0];
760     this->rotate( 1, 2, angle, ji, A );
761    
762     // rotate about the y-axis
763     angle = dt2 * ji[1] / I[1][1];
764     this->rotate( 2, 0, angle, ji, A );
765    
766     // rotate about the z-axis
767     angle = dt * ji[2] / I[2][2];
768     sd->addZangle(angle);
769     this->rotate( 0, 1, angle, ji, A);
770    
771     // rotate about the y-axis
772     angle = dt2 * ji[1] / I[1][1];
773     this->rotate( 2, 0, angle, ji, A );
774    
775     // rotate about the x-axis
776     angle = dt2 * ji[0] / I[0][0];
777     this->rotate( 1, 2, angle, ji, A );
778    
779     }
780     sd->setA( A );
781     }
782    
783     template<typename T> void Integrator<T>::rotate(int axes1, int axes2,
784     double angle, double ji[3],
785     double A[3][3]){
786     int i, j, k;
787     double sinAngle;
788     double cosAngle;
789     double angleSqr;
790     double angleSqrOver4;
791     double top, bottom;
792     double rot[3][3];
793     double tempA[3][3];
794     double tempJ[3];
795    
796     // initialize the tempA
797    
798     for (i = 0; i < 3; i++){
799     for (j = 0; j < 3; j++){
800     tempA[j][i] = A[i][j];
801     }
802     }
803    
804     // initialize the tempJ
805    
806     for (i = 0; i < 3; i++)
807     tempJ[i] = ji[i];
808    
809     // initalize rot as a unit matrix
810    
811     rot[0][0] = 1.0;
812     rot[0][1] = 0.0;
813     rot[0][2] = 0.0;
814    
815     rot[1][0] = 0.0;
816     rot[1][1] = 1.0;
817     rot[1][2] = 0.0;
818    
819     rot[2][0] = 0.0;
820     rot[2][1] = 0.0;
821     rot[2][2] = 1.0;
822    
823     // use a small angle aproximation for sin and cosine
824    
825     angleSqr = angle * angle;
826     angleSqrOver4 = angleSqr / 4.0;
827     top = 1.0 - angleSqrOver4;
828     bottom = 1.0 + angleSqrOver4;
829    
830     cosAngle = top / bottom;
831     sinAngle = angle / bottom;
832    
833     rot[axes1][axes1] = cosAngle;
834     rot[axes2][axes2] = cosAngle;
835    
836     rot[axes1][axes2] = sinAngle;
837     rot[axes2][axes1] = -sinAngle;
838    
839     // rotate the momentum acoording to: ji[] = rot[][] * ji[]
840    
841     for (i = 0; i < 3; i++){
842     ji[i] = 0.0;
843     for (k = 0; k < 3; k++){
844     ji[i] += rot[i][k] * tempJ[k];
845     }
846     }
847    
848     // rotate the Rotation matrix acording to:
849     // A[][] = A[][] * transpose(rot[][])
850    
851    
852     // NOte for as yet unknown reason, we are performing the
853     // calculation as:
854     // transpose(A[][]) = transpose(A[][]) * transpose(rot[][])
855    
856     for (i = 0; i < 3; i++){
857     for (j = 0; j < 3; j++){
858     A[j][i] = 0.0;
859     for (k = 0; k < 3; k++){
860     A[j][i] += tempA[i][k] * rot[j][k];
861     }
862     }
863     }
864     }
865    
866     template<typename T> void Integrator<T>::calcForce(int calcPot, int calcStress){
867     myFF->doForces(calcPot, calcStress);
868     }
869    
870     template<typename T> void Integrator<T>::thermalize(){
871     tStats->velocitize();
872     }
873    
874     template<typename T> double Integrator<T>::getConservedQuantity(void){
875     return tStats->getTotalE();
876     }
877     template<typename T> string Integrator<T>::getAdditionalParameters(void){
878     //By default, return a null string
879     //The reason we use string instead of char* is that if we use char*, we will
880     //return a pointer point to local variable which might cause problem
881     return string();
882     }