ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-2.0/src/integrators/Integrator.cpp
Revision: 1772
Committed: Tue Nov 23 22:48:31 2004 UTC (19 years, 7 months ago) by chrisfen
File size: 19614 byte(s)
Log Message:
Improvements to restraints

File Contents

# Content
1 #include <iostream>
2 #include <stdlib.h>
3 #include <math.h>
4 #ifdef IS_MPI
5 #include "brains/mpiSimulation.hpp"
6 #include <unistd.h>
7 #endif //is_mpi
8
9 #ifdef PROFILE
10 #include "profiling/mdProfile.hpp"
11 #endif // profile
12
13 #include "integrators/Integrator.hpp"
14 #include "utils/simError.h"
15
16
17 template<typename T> Integrator<T>::Integrator(SimInfo* theInfo,
18 ForceFields* the_ff){
19 info = theInfo;
20 myFF = the_ff;
21 isFirst = 1;
22
23 molecules = info->molecules;
24 nMols = info->n_mol;
25
26 // give a little love back to the SimInfo object
27
28 if (info->the_integrator != NULL){
29 delete info->the_integrator;
30 }
31
32 nAtoms = info->n_atoms;
33 integrableObjects = info->integrableObjects;
34
35
36 // check for constraints
37
38 constrainedA = NULL;
39 constrainedB = NULL;
40 constrainedDsqr = NULL;
41 moving = NULL;
42 moved = NULL;
43 oldPos = NULL;
44
45 nConstrained = 0;
46
47 checkConstraints();
48
49 }
50
51 template<typename T> Integrator<T>::~Integrator(){
52
53 if (nConstrained){
54 delete[] constrainedA;
55 delete[] constrainedB;
56 delete[] constrainedDsqr;
57 delete[] moving;
58 delete[] moved;
59 delete[] oldPos;
60 }
61
62 }
63
64
65 template<typename T> void Integrator<T>::checkConstraints(void){
66 isConstrained = 0;
67
68 Constraint* temp_con;
69 Constraint* dummy_plug;
70 temp_con = new Constraint[info->n_SRI];
71 nConstrained = 0;
72 int constrained = 0;
73
74 SRI** theArray;
75 for (int i = 0; i < nMols; i++){
76
77 theArray = (SRI * *) molecules[i].getMyBonds();
78 for (int j = 0; j < molecules[i].getNBonds(); j++){
79 constrained = theArray[j]->is_constrained();
80
81 if (constrained){
82 dummy_plug = theArray[j]->get_constraint();
83 temp_con[nConstrained].set_a(dummy_plug->get_a());
84 temp_con[nConstrained].set_b(dummy_plug->get_b());
85 temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
86
87 nConstrained++;
88 constrained = 0;
89 }
90 }
91
92 theArray = (SRI * *) molecules[i].getMyBends();
93 for (int j = 0; j < molecules[i].getNBends(); j++){
94 constrained = theArray[j]->is_constrained();
95
96 if (constrained){
97 dummy_plug = theArray[j]->get_constraint();
98 temp_con[nConstrained].set_a(dummy_plug->get_a());
99 temp_con[nConstrained].set_b(dummy_plug->get_b());
100 temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
101
102 nConstrained++;
103 constrained = 0;
104 }
105 }
106
107 theArray = (SRI * *) molecules[i].getMyTorsions();
108 for (int j = 0; j < molecules[i].getNTorsions(); j++){
109 constrained = theArray[j]->is_constrained();
110
111 if (constrained){
112 dummy_plug = theArray[j]->get_constraint();
113 temp_con[nConstrained].set_a(dummy_plug->get_a());
114 temp_con[nConstrained].set_b(dummy_plug->get_b());
115 temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
116
117 nConstrained++;
118 constrained = 0;
119 }
120 }
121 }
122
123
124 if (nConstrained > 0){
125 isConstrained = 1;
126
127 if (constrainedA != NULL)
128 delete[] constrainedA;
129 if (constrainedB != NULL)
130 delete[] constrainedB;
131 if (constrainedDsqr != NULL)
132 delete[] constrainedDsqr;
133
134 constrainedA = new int[nConstrained];
135 constrainedB = new int[nConstrained];
136 constrainedDsqr = new double[nConstrained];
137
138 for (int i = 0; i < nConstrained; i++){
139 constrainedA[i] = temp_con[i].get_a();
140 constrainedB[i] = temp_con[i].get_b();
141 constrainedDsqr[i] = temp_con[i].get_dsqr();
142 }
143
144
145 // save oldAtoms to check for lode balancing later on.
146
147 oldAtoms = nAtoms;
148
149 moving = new int[nAtoms];
150 moved = new int[nAtoms];
151
152 oldPos = new double[nAtoms * 3];
153 }
154
155 delete[] temp_con;
156 }
157
158
159 template<typename T> void Integrator<T>::integrate(void){
160
161 double runTime = info->run_time;
162 double sampleTime = info->sampleTime;
163 double statusTime = info->statusTime;
164 double thermalTime = info->thermalTime;
165 double resetTime = info->resetTime;
166
167 double difference;
168 double currSample;
169 double currThermal;
170 double currStatus;
171 double currReset;
172
173 int calcPot, calcStress;
174 int i;
175 int localIndex;
176
177 #ifdef IS_MPI
178 int which_node;
179 #endif // is_mpi
180
181 vector<StuntDouble*> particles;
182 string inAngle;
183
184 tStats = new Thermo(info);
185 statOut = new StatWriter(info);
186 dumpOut = new DumpWriter(info);
187
188 if (info->useSolidThermInt && !info->useLiquidThermInt) {
189 restOut = new RestraintWriter(info);
190 initRestraints = new RestraintReader(info);
191 }
192
193 atoms = info->atoms;
194
195 dt = info->dt;
196 dt2 = 0.5 * dt;
197
198 readyCheck();
199
200 // remove center of mass drift velocity (in case we passed in a configuration
201 // that was drifting
202 tStats->removeCOMdrift();
203
204 // initialize the retraints if necessary
205 if (info->useSolidThermInt && !info->useLiquidThermInt) {
206 initRestraints->zeroZangle();
207 inAngle = info->zAngleName + "_in";
208 initRestraints->readZangle(inAngle.c_str());
209 initRestraints->readIdealCrystal();
210 }
211
212 // initialize the forces before the first step
213 calcForce(1, 1);
214
215 //execute constraint algorithm to make sure at the very beginning the system is constrained
216 if(nConstrained){
217 preMove();
218 constrainA();
219 calcForce(1, 1);
220 constrainB();
221 }
222
223 if (info->setTemp){
224 thermalize();
225 }
226
227 calcPot = 0;
228 calcStress = 0;
229 currSample = sampleTime + info->getTime();
230 currThermal = thermalTime+ info->getTime();
231 currStatus = statusTime + info->getTime();
232 currReset = resetTime + info->getTime();
233
234 dumpOut->writeDump(info->getTime());
235 statOut->writeStat(info->getTime());
236 restOut->writeZangle(info->getTime());
237
238 #ifdef IS_MPI
239 strcpy(checkPointMsg, "The integrator is ready to go.");
240 MPIcheckPoint();
241 #endif // is_mpi
242
243 while (info->getTime() < runTime && !stopIntegrator()){
244 difference = info->getTime() + dt - currStatus;
245 if (difference > 0 || fabs(difference) < 1e-4 ){
246 calcPot = 1;
247 calcStress = 1;
248 }
249
250 #ifdef PROFILE
251 startProfile( pro1 );
252 #endif
253
254 integrateStep(calcPot, calcStress);
255
256 #ifdef PROFILE
257 endProfile( pro1 );
258
259 startProfile( pro2 );
260 #endif // profile
261
262 info->incrTime(dt);
263
264 if (info->setTemp){
265 if (info->getTime() >= currThermal){
266 thermalize();
267 currThermal += thermalTime;
268 }
269 }
270
271 if (info->getTime() >= currSample){
272 dumpOut->writeDump(info->getTime());
273 // write a zAng file to coincide with each dump or eor file
274 if (info->useSolidThermInt && !info->useLiquidThermInt)
275 restOut->writeZangle(info->getTime());
276 currSample += sampleTime;
277 }
278
279 if (info->getTime() >= currStatus){
280 statOut->writeStat(info->getTime());
281 calcPot = 0;
282 calcStress = 0;
283 currStatus += statusTime;
284 }
285
286 if (info->resetIntegrator){
287 if (info->getTime() >= currReset){
288 this->resetIntegrator();
289 currReset += resetTime;
290 }
291 }
292
293 #ifdef PROFILE
294 endProfile( pro2 );
295 #endif //profile
296
297 #ifdef IS_MPI
298 strcpy(checkPointMsg, "successfully took a time step.");
299 MPIcheckPoint();
300 #endif // is_mpi
301 }
302
303 dumpOut->writeFinal(info->getTime());
304
305 // write the file containing the omega values of the final configuration
306 if (info->useSolidThermInt && !info->useLiquidThermInt){
307 restOut->writeZangle(info->getTime());
308 restOut->writeZangle(info->getTime(), inAngle.c_str());
309 }
310
311 delete dumpOut;
312 delete statOut;
313 }
314
315 template<typename T> void Integrator<T>::integrateStep(int calcPot,
316 int calcStress){
317 // Position full step, and velocity half step
318
319 #ifdef PROFILE
320 startProfile(pro3);
321 #endif //profile
322
323 //save old state (position, velocity etc)
324 preMove();
325 #ifdef PROFILE
326 endProfile(pro3);
327
328 startProfile(pro4);
329 #endif // profile
330
331 moveA();
332
333 #ifdef PROFILE
334 endProfile(pro4);
335
336 startProfile(pro5);
337 #endif//profile
338
339
340 #ifdef IS_MPI
341 strcpy(checkPointMsg, "Succesful moveA\n");
342 MPIcheckPoint();
343 #endif // is_mpi
344
345 // calc forces
346 calcForce(calcPot, calcStress);
347
348 #ifdef IS_MPI
349 strcpy(checkPointMsg, "Succesful doForces\n");
350 MPIcheckPoint();
351 #endif // is_mpi
352
353 #ifdef PROFILE
354 endProfile( pro5 );
355
356 startProfile( pro6 );
357 #endif //profile
358
359 // finish the velocity half step
360
361 moveB();
362
363 #ifdef PROFILE
364 endProfile(pro6);
365 #endif // profile
366
367 #ifdef IS_MPI
368 strcpy(checkPointMsg, "Succesful moveB\n");
369 MPIcheckPoint();
370 #endif // is_mpi
371 }
372
373
374 template<typename T> void Integrator<T>::moveA(void){
375 size_t i, j;
376 DirectionalAtom* dAtom;
377 double Tb[3], ji[3];
378 double vel[3], pos[3], frc[3];
379 double mass;
380 double omega;
381
382 for (i = 0; i < integrableObjects.size() ; i++){
383 integrableObjects[i]->getVel(vel);
384 integrableObjects[i]->getPos(pos);
385 integrableObjects[i]->getFrc(frc);
386 // std::cerr << "f = " << frc[0] << "\t" << frc[1] << "\t" << frc[2] << "\n";
387
388 mass = integrableObjects[i]->getMass();
389
390 for (j = 0; j < 3; j++){
391 // velocity half step
392 vel[j] += (dt2 * frc[j] / mass) * eConvert;
393 // position whole step
394 pos[j] += dt * vel[j];
395 }
396
397 integrableObjects[i]->setVel(vel);
398 integrableObjects[i]->setPos(pos);
399
400
401 if (integrableObjects[i]->isDirectional()){
402
403 // get and convert the torque to body frame
404
405 integrableObjects[i]->getTrq(Tb);
406
407 // std::cerr << "t = " << Tb[0] << "\t" << Tb[1] << "\t" << Tb[2] << "\n";
408 integrableObjects[i]->lab2Body(Tb);
409
410 // get the angular momentum, and propagate a half step
411
412 integrableObjects[i]->getJ(ji);
413
414 for (j = 0; j < 3; j++)
415 ji[j] += (dt2 * Tb[j]) * eConvert;
416
417 this->rotationPropagation( integrableObjects[i], ji );
418
419 integrableObjects[i]->setJ(ji);
420 }
421 }
422
423 if(nConstrained)
424 constrainA();
425 }
426
427
428 template<typename T> void Integrator<T>::moveB(void){
429 int i, j;
430 double Tb[3], ji[3];
431 double vel[3], frc[3];
432 double mass;
433
434 for (i = 0; i < integrableObjects.size(); i++){
435 integrableObjects[i]->getVel(vel);
436 integrableObjects[i]->getFrc(frc);
437
438 mass = integrableObjects[i]->getMass();
439
440 // velocity half step
441 for (j = 0; j < 3; j++)
442 vel[j] += (dt2 * frc[j] / mass) * eConvert;
443
444 integrableObjects[i]->setVel(vel);
445
446 if (integrableObjects[i]->isDirectional()){
447
448 // get and convert the torque to body frame
449
450 integrableObjects[i]->getTrq(Tb);
451 integrableObjects[i]->lab2Body(Tb);
452
453 // get the angular momentum, and propagate a half step
454
455 integrableObjects[i]->getJ(ji);
456
457 for (j = 0; j < 3; j++)
458 ji[j] += (dt2 * Tb[j]) * eConvert;
459
460
461 integrableObjects[i]->setJ(ji);
462 }
463 }
464
465 if(nConstrained)
466 constrainB();
467 }
468
469
470 template<typename T> void Integrator<T>::preMove(void){
471 int i, j;
472 double pos[3];
473
474 if (nConstrained){
475 for (i = 0; i < nAtoms; i++){
476 atoms[i]->getPos(pos);
477
478 for (j = 0; j < 3; j++){
479 oldPos[3 * i + j] = pos[j];
480 }
481 }
482 }
483 }
484
485 template<typename T> void Integrator<T>::constrainA(){
486 int i, j;
487 int done;
488 double posA[3], posB[3];
489 double velA[3], velB[3];
490 double pab[3];
491 double rab[3];
492 int a, b, ax, ay, az, bx, by, bz;
493 double rma, rmb;
494 double dx, dy, dz;
495 double rpab;
496 double rabsq, pabsq, rpabsq;
497 double diffsq;
498 double gab;
499 int iteration;
500
501 for (i = 0; i < nAtoms; i++){
502 moving[i] = 0;
503 moved[i] = 1;
504 }
505
506 iteration = 0;
507 done = 0;
508 while (!done && (iteration < maxIteration)){
509 done = 1;
510 for (i = 0; i < nConstrained; i++){
511 a = constrainedA[i];
512 b = constrainedB[i];
513
514 ax = (a * 3) + 0;
515 ay = (a * 3) + 1;
516 az = (a * 3) + 2;
517
518 bx = (b * 3) + 0;
519 by = (b * 3) + 1;
520 bz = (b * 3) + 2;
521
522 if (moved[a] || moved[b]){
523 atoms[a]->getPos(posA);
524 atoms[b]->getPos(posB);
525
526 for (j = 0; j < 3; j++)
527 pab[j] = posA[j] - posB[j];
528
529 //periodic boundary condition
530
531 info->wrapVector(pab);
532
533 pabsq = pab[0] * pab[0] + pab[1] * pab[1] + pab[2] * pab[2];
534
535 rabsq = constrainedDsqr[i];
536 diffsq = rabsq - pabsq;
537
538 // the original rattle code from alan tidesley
539 if (fabs(diffsq) > (tol * rabsq * 2)){
540 rab[0] = oldPos[ax] - oldPos[bx];
541 rab[1] = oldPos[ay] - oldPos[by];
542 rab[2] = oldPos[az] - oldPos[bz];
543
544 info->wrapVector(rab);
545
546 rpab = rab[0] * pab[0] + rab[1] * pab[1] + rab[2] * pab[2];
547
548 rpabsq = rpab * rpab;
549
550
551 if (rpabsq < (rabsq * -diffsq)){
552 #ifdef IS_MPI
553 a = atoms[a]->getGlobalIndex();
554 b = atoms[b]->getGlobalIndex();
555 #endif //is_mpi
556 sprintf(painCave.errMsg,
557 "Constraint failure in constrainA at atom %d and %d.\n", a,
558 b);
559 painCave.isFatal = 1;
560 simError();
561 }
562
563 rma = 1.0 / atoms[a]->getMass();
564 rmb = 1.0 / atoms[b]->getMass();
565
566 gab = diffsq / (2.0 * (rma + rmb) * rpab);
567
568 dx = rab[0] * gab;
569 dy = rab[1] * gab;
570 dz = rab[2] * gab;
571
572 posA[0] += rma * dx;
573 posA[1] += rma * dy;
574 posA[2] += rma * dz;
575
576 atoms[a]->setPos(posA);
577
578 posB[0] -= rmb * dx;
579 posB[1] -= rmb * dy;
580 posB[2] -= rmb * dz;
581
582 atoms[b]->setPos(posB);
583
584 dx = dx / dt;
585 dy = dy / dt;
586 dz = dz / dt;
587
588 atoms[a]->getVel(velA);
589
590 velA[0] += rma * dx;
591 velA[1] += rma * dy;
592 velA[2] += rma * dz;
593
594 atoms[a]->setVel(velA);
595
596 atoms[b]->getVel(velB);
597
598 velB[0] -= rmb * dx;
599 velB[1] -= rmb * dy;
600 velB[2] -= rmb * dz;
601
602 atoms[b]->setVel(velB);
603
604 moving[a] = 1;
605 moving[b] = 1;
606 done = 0;
607 }
608 }
609 }
610
611 for (i = 0; i < nAtoms; i++){
612 moved[i] = moving[i];
613 moving[i] = 0;
614 }
615
616 iteration++;
617 }
618
619 if (!done){
620 sprintf(painCave.errMsg,
621 "Constraint failure in constrainA, too many iterations: %d\n",
622 iteration);
623 painCave.isFatal = 1;
624 simError();
625 }
626
627 }
628
629 template<typename T> void Integrator<T>::constrainB(void){
630 int i, j;
631 int done;
632 double posA[3], posB[3];
633 double velA[3], velB[3];
634 double vxab, vyab, vzab;
635 double rab[3];
636 int a, b, ax, ay, az, bx, by, bz;
637 double rma, rmb;
638 double dx, dy, dz;
639 double rvab;
640 double gab;
641 int iteration;
642
643 for (i = 0; i < nAtoms; i++){
644 moving[i] = 0;
645 moved[i] = 1;
646 }
647
648 done = 0;
649 iteration = 0;
650 while (!done && (iteration < maxIteration)){
651 done = 1;
652
653 for (i = 0; i < nConstrained; i++){
654 a = constrainedA[i];
655 b = constrainedB[i];
656
657 ax = (a * 3) + 0;
658 ay = (a * 3) + 1;
659 az = (a * 3) + 2;
660
661 bx = (b * 3) + 0;
662 by = (b * 3) + 1;
663 bz = (b * 3) + 2;
664
665 if (moved[a] || moved[b]){
666 atoms[a]->getVel(velA);
667 atoms[b]->getVel(velB);
668
669 vxab = velA[0] - velB[0];
670 vyab = velA[1] - velB[1];
671 vzab = velA[2] - velB[2];
672
673 atoms[a]->getPos(posA);
674 atoms[b]->getPos(posB);
675
676 for (j = 0; j < 3; j++)
677 rab[j] = posA[j] - posB[j];
678
679 info->wrapVector(rab);
680
681 rma = 1.0 / atoms[a]->getMass();
682 rmb = 1.0 / atoms[b]->getMass();
683
684 rvab = rab[0] * vxab + rab[1] * vyab + rab[2] * vzab;
685
686 gab = -rvab / ((rma + rmb) * constrainedDsqr[i]);
687
688 if (fabs(gab) > tol){
689 dx = rab[0] * gab;
690 dy = rab[1] * gab;
691 dz = rab[2] * gab;
692
693 velA[0] += rma * dx;
694 velA[1] += rma * dy;
695 velA[2] += rma * dz;
696
697 atoms[a]->setVel(velA);
698
699 velB[0] -= rmb * dx;
700 velB[1] -= rmb * dy;
701 velB[2] -= rmb * dz;
702
703 atoms[b]->setVel(velB);
704
705 moving[a] = 1;
706 moving[b] = 1;
707 done = 0;
708 }
709 }
710 }
711
712 for (i = 0; i < nAtoms; i++){
713 moved[i] = moving[i];
714 moving[i] = 0;
715 }
716
717 iteration++;
718 }
719
720 if (!done){
721 sprintf(painCave.errMsg,
722 "Constraint failure in constrainB, too many iterations: %d\n",
723 iteration);
724 painCave.isFatal = 1;
725 simError();
726 }
727 }
728
729 template<typename T> void Integrator<T>::rotationPropagation
730 ( StuntDouble* sd, double ji[3] ){
731
732 double angle;
733 double A[3][3], I[3][3];
734 int i, j, k;
735
736 // use the angular velocities to propagate the rotation matrix a
737 // full time step
738
739 sd->getA(A);
740 sd->getI(I);
741
742 if (sd->isLinear()) {
743
744 i = sd->linearAxis();
745 j = (i+1)%3;
746 k = (i+2)%3;
747
748 angle = dt2 * ji[j] / I[j][j];
749 this->rotate( k, i, angle, ji, A );
750
751 angle = dt * ji[k] / I[k][k];
752 this->rotate( i, j, angle, ji, A);
753
754 angle = dt2 * ji[j] / I[j][j];
755 this->rotate( k, i, angle, ji, A );
756
757 } else {
758 // rotate about the x-axis
759 angle = dt2 * ji[0] / I[0][0];
760 this->rotate( 1, 2, angle, ji, A );
761
762 // rotate about the y-axis
763 angle = dt2 * ji[1] / I[1][1];
764 this->rotate( 2, 0, angle, ji, A );
765
766 // rotate about the z-axis
767 angle = dt * ji[2] / I[2][2];
768 sd->addZangle(angle);
769 this->rotate( 0, 1, angle, ji, A);
770
771 // rotate about the y-axis
772 angle = dt2 * ji[1] / I[1][1];
773 this->rotate( 2, 0, angle, ji, A );
774
775 // rotate about the x-axis
776 angle = dt2 * ji[0] / I[0][0];
777 this->rotate( 1, 2, angle, ji, A );
778
779 }
780 sd->setA( A );
781 }
782
783 template<typename T> void Integrator<T>::rotate(int axes1, int axes2,
784 double angle, double ji[3],
785 double A[3][3]){
786 int i, j, k;
787 double sinAngle;
788 double cosAngle;
789 double angleSqr;
790 double angleSqrOver4;
791 double top, bottom;
792 double rot[3][3];
793 double tempA[3][3];
794 double tempJ[3];
795
796 // initialize the tempA
797
798 for (i = 0; i < 3; i++){
799 for (j = 0; j < 3; j++){
800 tempA[j][i] = A[i][j];
801 }
802 }
803
804 // initialize the tempJ
805
806 for (i = 0; i < 3; i++)
807 tempJ[i] = ji[i];
808
809 // initalize rot as a unit matrix
810
811 rot[0][0] = 1.0;
812 rot[0][1] = 0.0;
813 rot[0][2] = 0.0;
814
815 rot[1][0] = 0.0;
816 rot[1][1] = 1.0;
817 rot[1][2] = 0.0;
818
819 rot[2][0] = 0.0;
820 rot[2][1] = 0.0;
821 rot[2][2] = 1.0;
822
823 // use a small angle aproximation for sin and cosine
824
825 angleSqr = angle * angle;
826 angleSqrOver4 = angleSqr / 4.0;
827 top = 1.0 - angleSqrOver4;
828 bottom = 1.0 + angleSqrOver4;
829
830 cosAngle = top / bottom;
831 sinAngle = angle / bottom;
832
833 rot[axes1][axes1] = cosAngle;
834 rot[axes2][axes2] = cosAngle;
835
836 rot[axes1][axes2] = sinAngle;
837 rot[axes2][axes1] = -sinAngle;
838
839 // rotate the momentum acoording to: ji[] = rot[][] * ji[]
840
841 for (i = 0; i < 3; i++){
842 ji[i] = 0.0;
843 for (k = 0; k < 3; k++){
844 ji[i] += rot[i][k] * tempJ[k];
845 }
846 }
847
848 // rotate the Rotation matrix acording to:
849 // A[][] = A[][] * transpose(rot[][])
850
851
852 // NOte for as yet unknown reason, we are performing the
853 // calculation as:
854 // transpose(A[][]) = transpose(A[][]) * transpose(rot[][])
855
856 for (i = 0; i < 3; i++){
857 for (j = 0; j < 3; j++){
858 A[j][i] = 0.0;
859 for (k = 0; k < 3; k++){
860 A[j][i] += tempA[i][k] * rot[j][k];
861 }
862 }
863 }
864 }
865
866 template<typename T> void Integrator<T>::calcForce(int calcPot, int calcStress){
867 myFF->doForces(calcPot, calcStress);
868 }
869
870 template<typename T> void Integrator<T>::thermalize(){
871 tStats->velocitize();
872 }
873
874 template<typename T> double Integrator<T>::getConservedQuantity(void){
875 return tStats->getTotalE();
876 }
877 template<typename T> string Integrator<T>::getAdditionalParameters(void){
878 //By default, return a null string
879 //The reason we use string instead of char* is that if we use char*, we will
880 //return a pointer point to local variable which might cause problem
881 return string();
882 }