ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-2.0/src/integrators/Integrator.cpp
(Generate patch)

Comparing trunk/OOPSE-2.0/src/integrators/Integrator.cpp (file contents):
Revision 1708 by gezelter, Thu Nov 4 16:20:55 2004 UTC vs.
Revision 1960 by tim, Wed Jan 26 15:26:47 2005 UTC

# Line 1 | Line 1
1 < #include <iostream>
2 < #include <stdlib.h>
3 < #include <math.h>
4 < #ifdef IS_MPI
5 < #include "brains/mpiSimulation.hpp"
6 < #include <unistd.h>
7 < #endif //is_mpi
8 <
9 < #ifdef PROFILE
10 < #include "profiling/mdProfile.hpp"
11 < #endif // profile
12 <
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Acknowledgement of the program authors must be made in any
10 > *    publication of scientific results based in part on use of the
11 > *    program.  An acceptable form of acknowledgement is citation of
12 > *    the article in which the program was described (Matthew
13 > *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 > *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 > *    Parallel Simulation Engine for Molecular Dynamics,"
16 > *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 > *
18 > * 2. Redistributions of source code must retain the above copyright
19 > *    notice, this list of conditions and the following disclaimer.
20 > *
21 > * 3. Redistributions in binary form must reproduce the above copyright
22 > *    notice, this list of conditions and the following disclaimer in the
23 > *    documentation and/or other materials provided with the
24 > *    distribution.
25 > *
26 > * This software is provided "AS IS," without a warranty of any
27 > * kind. All express or implied conditions, representations and
28 > * warranties, including any implied warranty of merchantability,
29 > * fitness for a particular purpose or non-infringement, are hereby
30 > * excluded.  The University of Notre Dame and its licensors shall not
31 > * be liable for any damages suffered by licensee as a result of
32 > * using, modifying or distributing the software or its
33 > * derivatives. In no event will the University of Notre Dame or its
34 > * licensors be liable for any lost revenue, profit or data, or for
35 > * direct, indirect, special, consequential, incidental or punitive
36 > * damages, however caused and regardless of the theory of liability,
37 > * arising out of the use of or inability to use software, even if the
38 > * University of Notre Dame has been advised of the possibility of
39 > * such damages.
40 > */
41 >
42 > #include "brains/Snapshot.hpp"
43   #include "integrators/Integrator.hpp"
44   #include "utils/simError.h"
45 + namespace oopse {
46 + Integrator::Integrator(SimInfo* info)
47 +    : info_(info), forceMan_(NULL) , needPotential(false), needStress(false), velocitizer_(NULL),
48 +      needVelocityScaling(false), dumpWriter(NULL), eorWriter(NULL), statWriter(NULL), thermo(info),
49 +      currentSnapshot_(info->getSnapshotManager()->getCurrentSnapshot()) {
50  
51 +    Globals* simParams = info->getSimParams();
52  
53 < template<typename T> Integrator<T>::Integrator(SimInfo* theInfo,
54 <                                               ForceFields* the_ff){
55 <  info = theInfo;
56 <  myFF = the_ff;
57 <  isFirst = 1;
58 <
59 <  molecules = info->molecules;
24 <  nMols = info->n_mol;
25 <
26 <  // give a little love back to the SimInfo object
27 <
28 <  if (info->the_integrator != NULL){
29 <    delete info->the_integrator;
30 <  }
31 <
32 <  nAtoms = info->n_atoms;
33 <  integrableObjects = info->integrableObjects;
34 <
35 <
36 <  // check for constraints
37 <
38 <  constrainedA = NULL;
39 <  constrainedB = NULL;
40 <  constrainedDsqr = NULL;
41 <  moving = NULL;
42 <  moved = NULL;
43 <  oldPos = NULL;
44 <
45 <  nConstrained = 0;
46 <
47 <  checkConstraints();
48 <
49 < }
50 <
51 < template<typename T> Integrator<T>::~Integrator(){
52 <
53 <  if (nConstrained){
54 <    delete[] constrainedA;
55 <    delete[] constrainedB;
56 <    delete[] constrainedDsqr;
57 <    delete[] moving;
58 <    delete[] moved;
59 <    delete[] oldPos;
60 <  }
61 <
62 < }
63 <
64 <
65 < template<typename T> void Integrator<T>::checkConstraints(void){
66 <  isConstrained = 0;
67 <
68 <  Constraint* temp_con;
69 <  Constraint* dummy_plug;
70 <  temp_con = new Constraint[info->n_SRI];
71 <  nConstrained = 0;
72 <  int constrained = 0;
73 <
74 <  SRI** theArray;
75 <  for (int i = 0; i < nMols; i++){
76 <
77 <          theArray = (SRI * *) molecules[i].getMyBonds();
78 <    for (int j = 0; j < molecules[i].getNBonds(); j++){
79 <      constrained = theArray[j]->is_constrained();
80 <
81 <      if (constrained){
82 <        dummy_plug = theArray[j]->get_constraint();
83 <        temp_con[nConstrained].set_a(dummy_plug->get_a());
84 <        temp_con[nConstrained].set_b(dummy_plug->get_b());
85 <        temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
86 <
87 <        nConstrained++;
88 <        constrained = 0;
89 <      }
53 >    if (simParams->haveDt()) {
54 >        dt = simParams->getDt();
55 >    } else {
56 >            sprintf(painCave.errMsg,
57 >                    "Integrator Error: dt is not set\n");
58 >            painCave.isFatal = 1;
59 >            simError();
60      }
61 +    
62 +    if (simParams->haveRunTime()) {
63 +        runTime = simParams->getRunTime();
64 +    } else {
65  
92    theArray = (SRI * *) molecules[i].getMyBends();
93    for (int j = 0; j < molecules[i].getNBends(); j++){
94      constrained = theArray[j]->is_constrained();
95
96      if (constrained){
97        dummy_plug = theArray[j]->get_constraint();
98        temp_con[nConstrained].set_a(dummy_plug->get_a());
99        temp_con[nConstrained].set_b(dummy_plug->get_b());
100        temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
101
102        nConstrained++;
103        constrained = 0;
104      }
66      }
67 <
68 <    theArray = (SRI * *) molecules[i].getMyTorsions();
69 <    for (int j = 0; j < molecules[i].getNTorsions(); j++){
70 <      constrained = theArray[j]->is_constrained();
71 <
72 <      if (constrained){
73 <        dummy_plug = theArray[j]->get_constraint();
113 <        temp_con[nConstrained].set_a(dummy_plug->get_a());
114 <        temp_con[nConstrained].set_b(dummy_plug->get_b());
115 <        temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
116 <
117 <        nConstrained++;
118 <        constrained = 0;
119 <      }
67 >    // set the status, sample, and thermal kick times
68 >    if (simParams->haveSampleTime()){
69 >        sampleTime = simParams->getSampleTime();
70 >        statusTime = sampleTime;
71 >    } else{
72 >        sampleTime = simParams->getRunTime();
73 >        statusTime = sampleTime;
74      }
121  }
75  
76 <
77 <  if (nConstrained > 0){
125 <    isConstrained = 1;
126 <
127 <    if (constrainedA != NULL)
128 <      delete[] constrainedA;
129 <    if (constrainedB != NULL)
130 <      delete[] constrainedB;
131 <    if (constrainedDsqr != NULL)
132 <      delete[] constrainedDsqr;
133 <
134 <    constrainedA = new int[nConstrained];
135 <    constrainedB = new int[nConstrained];
136 <    constrainedDsqr = new double[nConstrained];
137 <
138 <    for (int i = 0; i < nConstrained; i++){
139 <      constrainedA[i] = temp_con[i].get_a();
140 <      constrainedB[i] = temp_con[i].get_b();
141 <      constrainedDsqr[i] = temp_con[i].get_dsqr();
76 >    if (simParams->haveStatusTime()){
77 >        statusTime = simParams->getStatusTime();
78      }
79  
80 <
81 <    // save oldAtoms to check for lode balancing later on.
82 <
83 <    oldAtoms = nAtoms;
148 <
149 <    moving = new int[nAtoms];
150 <    moved = new int[nAtoms];
151 <
152 <    oldPos = new double[nAtoms * 3];
153 <  }
154 <
155 <  delete[] temp_con;
156 < }
157 <
158 <
159 < template<typename T> void Integrator<T>::integrate(void){
160 <
161 <  double runTime = info->run_time;
162 <  double sampleTime = info->sampleTime;
163 <  double statusTime = info->statusTime;
164 <  double thermalTime = info->thermalTime;
165 <  double resetTime = info->resetTime;
166 <
167 <  double difference;
168 <  double currSample;
169 <  double currThermal;
170 <  double currStatus;
171 <  double currReset;
172 <
173 <  int calcPot, calcStress;
174 <
175 <  tStats = new Thermo(info);
176 <  statOut = new StatWriter(info);
177 <  dumpOut = new DumpWriter(info);
178 <
179 <  atoms = info->atoms;
180 <
181 <  dt = info->dt;
182 <  dt2 = 0.5 * dt;
183 <
184 <  readyCheck();
185 <
186 <  // remove center of mass drift velocity (in case we passed in a configuration
187 <  // that was drifting
188 <  tStats->removeCOMdrift();
189 <
190 <  // initialize the retraints if necessary
191 <  if (info->useSolidThermInt && !info->useLiquidThermInt) {
192 <    myFF->initRestraints();
193 <  }
194 <
195 <  // initialize the forces before the first step
196 <
197 <  calcForce(1, 1);
198 <
199 <  //execute constraint algorithm to make sure at the very beginning the system is constrained  
200 <  if(nConstrained){
201 <    preMove();
202 <    constrainA();
203 <    calcForce(1, 1);
204 <    constrainB();
205 <  }
206 <
207 <  if (info->setTemp){
208 <    thermalize();
209 <  }
210 <
211 <  calcPot     = 0;
212 <  calcStress  = 0;
213 <  currSample  = sampleTime + info->getTime();
214 <  currThermal = thermalTime+ info->getTime();
215 <  currStatus  = statusTime + info->getTime();
216 <  currReset   = resetTime  + info->getTime();
217 <
218 <  dumpOut->writeDump(info->getTime());
219 <  statOut->writeStat(info->getTime());
220 <
221 <
222 < #ifdef IS_MPI
223 <  strcpy(checkPointMsg, "The integrator is ready to go.");
224 <  MPIcheckPoint();
225 < #endif // is_mpi
226 <
227 <  while (info->getTime() < runTime && !stopIntegrator()){
228 <    difference = info->getTime() + dt - currStatus;
229 <    if (difference > 0 || fabs(difference) < 1e-4 ){
230 <      calcPot = 1;
231 <      calcStress = 1;
80 >    if (simParams->haveThermalTime()){
81 >        thermalTime = simParams->getThermalTime();
82 >    } else {
83 >        thermalTime = simParams->getRunTime();
84      }
85  
86 < #ifdef PROFILE
87 <    startProfile( pro1 );
236 < #endif
237 <    
238 <    integrateStep(calcPot, calcStress);
239 <
240 < #ifdef PROFILE
241 <    endProfile( pro1 );
242 <
243 <    startProfile( pro2 );
244 < #endif // profile
245 <
246 <    info->incrTime(dt);
247 <
248 <    if (info->setTemp){
249 <      if (info->getTime() >= currThermal){
250 <        thermalize();
251 <        currThermal += thermalTime;
252 <      }
86 >    if (!simParams->getUseInitTime()) {
87 >        currentSnapshot_->setTime(0.0);
88      }
254
255    if (info->getTime() >= currSample){
256      dumpOut->writeDump(info->getTime());
257      currSample += sampleTime;
258    }
259
260    if (info->getTime() >= currStatus){
261      statOut->writeStat(info->getTime());
262      calcPot = 0;
263      calcStress = 0;
264      currStatus += statusTime;
265    }
266
267    if (info->resetIntegrator){
268      if (info->getTime() >= currReset){
269        this->resetIntegrator();
270        currReset += resetTime;
271      }
272    }
89      
90 < #ifdef PROFILE
91 <    endProfile( pro2 );
92 < #endif //profile
277 <
278 < #ifdef IS_MPI
279 <    strcpy(checkPointMsg, "successfully took a time step.");
280 <    MPIcheckPoint();
281 < #endif // is_mpi
282 <  }
283 <
284 <  dumpOut->writeFinal(info->getTime());
285 <
286 <  // dump out a file containing the omega values for the final configuration
287 <  if (info->useSolidThermInt && !info->useLiquidThermInt)
288 <    myFF->dumpzAngle();
289 <  
290 <
291 <  delete dumpOut;
292 <  delete statOut;
293 < }
294 <
295 < template<typename T> void Integrator<T>::integrateStep(int calcPot,
296 <                                                       int calcStress){
297 <  // Position full step, and velocity half step
298 <
299 < #ifdef PROFILE
300 <  startProfile(pro3);
301 < #endif //profile
302 <
303 <  //save old state (position, velocity etc)
304 <  preMove();
305 < #ifdef PROFILE
306 <  endProfile(pro3);
307 <
308 <  startProfile(pro4);
309 < #endif // profile
310 <
311 <  moveA();
312 <
313 < #ifdef PROFILE
314 <  endProfile(pro4);
315 <  
316 <  startProfile(pro5);
317 < #endif//profile
318 <
319 <
320 < #ifdef IS_MPI
321 <  strcpy(checkPointMsg, "Succesful moveA\n");
322 <  MPIcheckPoint();
323 < #endif // is_mpi
324 <
325 <  // calc forces
326 <  calcForce(calcPot, calcStress);
327 <
328 < #ifdef IS_MPI
329 <  strcpy(checkPointMsg, "Succesful doForces\n");
330 <  MPIcheckPoint();
331 < #endif // is_mpi
332 <
333 < #ifdef PROFILE
334 <  endProfile( pro5 );
335 <
336 <  startProfile( pro6 );
337 < #endif //profile
338 <
339 <  // finish the velocity  half step
340 <
341 <  moveB();
342 <
343 < #ifdef PROFILE
344 <  endProfile(pro6);
345 < #endif // profile
346 <
347 < #ifdef IS_MPI
348 <  strcpy(checkPointMsg, "Succesful moveB\n");
349 <  MPIcheckPoint();
350 < #endif // is_mpi
351 < }
352 <
353 <
354 < template<typename T> void Integrator<T>::moveA(void){
355 <  size_t i, j;
356 <  DirectionalAtom* dAtom;
357 <  double Tb[3], ji[3];
358 <  double vel[3], pos[3], frc[3];
359 <  double mass;
360 <  double omega;
361 <
362 <  for (i = 0; i < integrableObjects.size() ; i++){
363 <    integrableObjects[i]->getVel(vel);
364 <    integrableObjects[i]->getPos(pos);
365 <    integrableObjects[i]->getFrc(frc);
366 <    std::cerr << "f = " << frc[0] << "\t" << frc[1] << "\t" << frc[2] << "\n";
90 >    //create a default a ForceManager
91 >    //if the subclass want to using different ForceManager, use setForceManager
92 >    forceMan_ = new ForceManager(info);
93      
94 <    mass = integrableObjects[i]->getMass();
94 >    // check for the temperature set flag (velocity scaling)      
95 >    if (simParams->haveTempSet()) {
96 >        needVelocityScaling = simParams->getTempSet();
97  
98 <    for (j = 0; j < 3; j++){
99 <      // velocity half step
100 <      vel[j] += (dt2 * frc[j] / mass) * eConvert;
101 <      // position whole step
102 <      pos[j] += dt * vel[j];
103 <    }
376 <
377 <    integrableObjects[i]->setVel(vel);
378 <    integrableObjects[i]->setPos(pos);
379 <
380 <
381 <    if (integrableObjects[i]->isDirectional()){
382 <
383 <      // get and convert the torque to body frame
384 <
385 <      integrableObjects[i]->getTrq(Tb);
386 <
387 <      std::cerr << "t = " << Tb[0] << "\t" << Tb[1] << "\t" << Tb[2] << "\n";
388 <      integrableObjects[i]->lab2Body(Tb);
389 <
390 <      // get the angular momentum, and propagate a half step
391 <
392 <      integrableObjects[i]->getJ(ji);
393 <
394 <      for (j = 0; j < 3; j++)
395 <        ji[j] += (dt2 * Tb[j]) * eConvert;
396 <
397 <      this->rotationPropagation( integrableObjects[i], ji );
398 <
399 <      integrableObjects[i]->setJ(ji);
400 <    }
401 <  }
402 <
403 <  if(nConstrained)
404 <    constrainA();
405 < }
406 <
407 <
408 < template<typename T> void Integrator<T>::moveB(void){
409 <  int i, j;
410 <  double Tb[3], ji[3];
411 <  double vel[3], frc[3];
412 <  double mass;
413 <
414 <  for (i = 0; i < integrableObjects.size(); i++){
415 <    integrableObjects[i]->getVel(vel);
416 <    integrableObjects[i]->getFrc(frc);
417 <
418 <    mass = integrableObjects[i]->getMass();
419 <
420 <    // velocity half step
421 <    for (j = 0; j < 3; j++)
422 <      vel[j] += (dt2 * frc[j] / mass) * eConvert;
423 <
424 <    integrableObjects[i]->setVel(vel);
425 <
426 <    if (integrableObjects[i]->isDirectional()){
427 <
428 <      // get and convert the torque to body frame
429 <
430 <      integrableObjects[i]->getTrq(Tb);
431 <      integrableObjects[i]->lab2Body(Tb);
432 <
433 <      // get the angular momentum, and propagate a half step
434 <
435 <      integrableObjects[i]->getJ(ji);
436 <
437 <      for (j = 0; j < 3; j++)
438 <        ji[j] += (dt2 * Tb[j]) * eConvert;
439 <
440 <
441 <      integrableObjects[i]->setJ(ji);
442 <    }
443 <  }
444 <
445 <  if(nConstrained)
446 <    constrainB();
447 < }
448 <
449 <
450 < template<typename T> void Integrator<T>::preMove(void){
451 <  int i, j;
452 <  double pos[3];
453 <
454 <  if (nConstrained){
455 <    for (i = 0; i < nAtoms; i++){
456 <      atoms[i]->getPos(pos);
457 <
458 <      for (j = 0; j < 3; j++){
459 <        oldPos[3 * i + j] = pos[j];
460 <      }
461 <    }
462 <  }
463 < }
464 <
465 < template<typename T> void Integrator<T>::constrainA(){
466 <  int i, j;
467 <  int done;
468 <  double posA[3], posB[3];
469 <  double velA[3], velB[3];
470 <  double pab[3];
471 <  double rab[3];
472 <  int a, b, ax, ay, az, bx, by, bz;
473 <  double rma, rmb;
474 <  double dx, dy, dz;
475 <  double rpab;
476 <  double rabsq, pabsq, rpabsq;
477 <  double diffsq;
478 <  double gab;
479 <  int iteration;
480 <
481 <  for (i = 0; i < nAtoms; i++){
482 <    moving[i] = 0;
483 <    moved[i] = 1;
484 <  }
485 <
486 <  iteration = 0;
487 <  done = 0;
488 <  while (!done && (iteration < maxIteration)){
489 <    done = 1;
490 <    for (i = 0; i < nConstrained; i++){
491 <      a = constrainedA[i];
492 <      b = constrainedB[i];
493 <
494 <      ax = (a * 3) + 0;
495 <      ay = (a * 3) + 1;
496 <      az = (a * 3) + 2;
497 <
498 <      bx = (b * 3) + 0;
499 <      by = (b * 3) + 1;
500 <      bz = (b * 3) + 2;
501 <
502 <      if (moved[a] || moved[b]){
503 <        atoms[a]->getPos(posA);
504 <        atoms[b]->getPos(posB);
505 <
506 <        for (j = 0; j < 3; j++)
507 <          pab[j] = posA[j] - posB[j];
508 <
509 <        //periodic boundary condition
510 <
511 <        info->wrapVector(pab);
512 <
513 <        pabsq = pab[0] * pab[0] + pab[1] * pab[1] + pab[2] * pab[2];
514 <
515 <        rabsq = constrainedDsqr[i];
516 <        diffsq = rabsq - pabsq;
517 <
518 <        // the original rattle code from alan tidesley
519 <        if (fabs(diffsq) > (tol * rabsq * 2)){
520 <          rab[0] = oldPos[ax] - oldPos[bx];
521 <          rab[1] = oldPos[ay] - oldPos[by];
522 <          rab[2] = oldPos[az] - oldPos[bz];
523 <
524 <          info->wrapVector(rab);
525 <
526 <          rpab = rab[0] * pab[0] + rab[1] * pab[1] + rab[2] * pab[2];
527 <
528 <          rpabsq = rpab * rpab;
529 <
530 <
531 <          if (rpabsq < (rabsq * -diffsq)){
532 < #ifdef IS_MPI
533 <            a = atoms[a]->getGlobalIndex();
534 <            b = atoms[b]->getGlobalIndex();
535 < #endif //is_mpi
536 <            sprintf(painCave.errMsg,
537 <                    "Constraint failure in constrainA at atom %d and %d.\n", a,
538 <                    b);
98 >        if (simParams->haveTargetTemp()) {
99 >            targetScalingTemp = simParams->getTargetTemp();
100 >        }
101 >        else {
102 >            sprintf(painCave.errMsg,
103 >                    "Integrator Error: Target Temperature is not set\n");
104              painCave.isFatal = 1;
105              simError();
541          }
106  
543          rma = 1.0 / atoms[a]->getMass();
544          rmb = 1.0 / atoms[b]->getMass();
545
546          gab = diffsq / (2.0 * (rma + rmb) * rpab);
547
548          dx = rab[0] * gab;
549          dy = rab[1] * gab;
550          dz = rab[2] * gab;
551
552          posA[0] += rma * dx;
553          posA[1] += rma * dy;
554          posA[2] += rma * dz;
555
556          atoms[a]->setPos(posA);
557
558          posB[0] -= rmb * dx;
559          posB[1] -= rmb * dy;
560          posB[2] -= rmb * dz;
561
562          atoms[b]->setPos(posB);
563
564          dx = dx / dt;
565          dy = dy / dt;
566          dz = dz / dt;
567
568          atoms[a]->getVel(velA);
569
570          velA[0] += rma * dx;
571          velA[1] += rma * dy;
572          velA[2] += rma * dz;
573
574          atoms[a]->setVel(velA);
575
576          atoms[b]->getVel(velB);
577
578          velB[0] -= rmb * dx;
579          velB[1] -= rmb * dy;
580          velB[2] -= rmb * dz;
581
582          atoms[b]->setVel(velB);
583
584          moving[a] = 1;
585          moving[b] = 1;
586          done = 0;
107          }
588      }
108      }
590
591    for (i = 0; i < nAtoms; i++){
592      moved[i] = moving[i];
593      moving[i] = 0;
594    }
595
596    iteration++;
597  }
598
599  if (!done){
600    sprintf(painCave.errMsg,
601            "Constraint failure in constrainA, too many iterations: %d\n",
602            iteration);
603    painCave.isFatal = 1;
604    simError();
605  }
606
607 }
608
609 template<typename T> void Integrator<T>::constrainB(void){
610  int i, j;
611  int done;
612  double posA[3], posB[3];
613  double velA[3], velB[3];
614  double vxab, vyab, vzab;
615  double rab[3];
616  int a, b, ax, ay, az, bx, by, bz;
617  double rma, rmb;
618  double dx, dy, dz;
619  double rvab;
620  double gab;
621  int iteration;
622
623  for (i = 0; i < nAtoms; i++){
624    moving[i] = 0;
625    moved[i] = 1;
626  }
627
628  done = 0;
629  iteration = 0;
630  while (!done && (iteration < maxIteration)){
631    done = 1;
632
633    for (i = 0; i < nConstrained; i++){
634      a = constrainedA[i];
635      b = constrainedB[i];
636
637      ax = (a * 3) + 0;
638      ay = (a * 3) + 1;
639      az = (a * 3) + 2;
640
641      bx = (b * 3) + 0;
642      by = (b * 3) + 1;
643      bz = (b * 3) + 2;
644
645      if (moved[a] || moved[b]){
646        atoms[a]->getVel(velA);
647        atoms[b]->getVel(velB);
648
649        vxab = velA[0] - velB[0];
650        vyab = velA[1] - velB[1];
651        vzab = velA[2] - velB[2];
652
653        atoms[a]->getPos(posA);
654        atoms[b]->getPos(posB);
655
656        for (j = 0; j < 3; j++)
657          rab[j] = posA[j] - posB[j];
658
659        info->wrapVector(rab);
660
661        rma = 1.0 / atoms[a]->getMass();
662        rmb = 1.0 / atoms[b]->getMass();
663
664        rvab = rab[0] * vxab + rab[1] * vyab + rab[2] * vzab;
665
666        gab = -rvab / ((rma + rmb) * constrainedDsqr[i]);
667
668        if (fabs(gab) > tol){
669          dx = rab[0] * gab;
670          dy = rab[1] * gab;
671          dz = rab[2] * gab;
672
673          velA[0] += rma * dx;
674          velA[1] += rma * dy;
675          velA[2] += rma * dz;
676
677          atoms[a]->setVel(velA);
678
679          velB[0] -= rmb * dx;
680          velB[1] -= rmb * dy;
681          velB[2] -= rmb * dz;
682
683          atoms[b]->setVel(velB);
684
685          moving[a] = 1;
686          moving[b] = 1;
687          done = 0;
688        }
689      }
690    }
691
692    for (i = 0; i < nAtoms; i++){
693      moved[i] = moving[i];
694      moving[i] = 0;
695    }
696
697    iteration++;
698  }
699
700  if (!done){
701    sprintf(painCave.errMsg,
702            "Constraint failure in constrainB, too many iterations: %d\n",
703            iteration);
704    painCave.isFatal = 1;
705    simError();
706  }
707 }
708
709 template<typename T> void Integrator<T>::rotationPropagation
710 ( StuntDouble* sd, double ji[3] ){
711
712  double angle;
713  double A[3][3], I[3][3];
714  int i, j, k;
715
716  // use the angular velocities to propagate the rotation matrix a
717  // full time step
718
719  sd->getA(A);
720  sd->getI(I);
721
722  if (sd->isLinear()) {
723
724    i = sd->linearAxis();
725    j = (i+1)%3;
726    k = (i+2)%3;
727
728    angle = dt2 * ji[j] / I[j][j];
729    this->rotate( k, i, angle, ji, A );
730
731    angle = dt * ji[k] / I[k][k];
732    this->rotate( i, j, angle, ji, A);
733
734    angle = dt2 * ji[j] / I[j][j];
735    this->rotate( k, i, angle, ji, A );
736
737  } else {
738    // rotate about the x-axis
739    angle = dt2 * ji[0] / I[0][0];
740    this->rotate( 1, 2, angle, ji, A );
109      
110 <    // rotate about the y-axis
111 <    angle = dt2 * ji[1] / I[1][1];
112 <    this->rotate( 2, 0, angle, ji, A );
110 >    //create a default a velocitizer
111 >    //if the subclass want to using different velocitizer, use setVelocitizer
112 >    velocitizer_ = new Velocitizer(info);
113      
746    // rotate about the z-axis
747    angle = dt * ji[2] / I[2][2];
748    sd->addZangle(angle);
749    this->rotate( 0, 1, angle, ji, A);
750    
751    // rotate about the y-axis
752    angle = dt2 * ji[1] / I[1][1];
753    this->rotate( 2, 0, angle, ji, A );
754    
755    // rotate about the x-axis
756    angle = dt2 * ji[0] / I[0][0];
757    this->rotate( 1, 2, angle, ji, A );
758    
759  }
760  sd->setA( A  );
114   }
115  
116 < template<typename T> void Integrator<T>::rotate(int axes1, int axes2,
117 <                                                double angle, double ji[3],
118 <                                                double A[3][3]){
119 <  int i, j, k;
120 <  double sinAngle;
121 <  double cosAngle;
122 <  double angleSqr;
770 <  double angleSqrOver4;
771 <  double top, bottom;
772 <  double rot[3][3];
773 <  double tempA[3][3];
774 <  double tempJ[3];
775 <
776 <  // initialize the tempA
777 <
778 <  for (i = 0; i < 3; i++){
779 <    for (j = 0; j < 3; j++){
780 <      tempA[j][i] = A[i][j];
781 <    }
782 <  }
783 <
784 <  // initialize the tempJ
785 <
786 <  for (i = 0; i < 3; i++)
787 <    tempJ[i] = ji[i];
788 <
789 <  // initalize rot as a unit matrix
790 <
791 <  rot[0][0] = 1.0;
792 <  rot[0][1] = 0.0;
793 <  rot[0][2] = 0.0;
794 <
795 <  rot[1][0] = 0.0;
796 <  rot[1][1] = 1.0;
797 <  rot[1][2] = 0.0;
798 <
799 <  rot[2][0] = 0.0;
800 <  rot[2][1] = 0.0;
801 <  rot[2][2] = 1.0;
802 <
803 <  // use a small angle aproximation for sin and cosine
804 <
805 <  angleSqr = angle * angle;
806 <  angleSqrOver4 = angleSqr / 4.0;
807 <  top = 1.0 - angleSqrOver4;
808 <  bottom = 1.0 + angleSqrOver4;
809 <
810 <  cosAngle = top / bottom;
811 <  sinAngle = angle / bottom;
812 <
813 <  rot[axes1][axes1] = cosAngle;
814 <  rot[axes2][axes2] = cosAngle;
815 <
816 <  rot[axes1][axes2] = sinAngle;
817 <  rot[axes2][axes1] = -sinAngle;
818 <
819 <  // rotate the momentum acoording to: ji[] = rot[][] * ji[]
820 <
821 <  for (i = 0; i < 3; i++){
822 <    ji[i] = 0.0;
823 <    for (k = 0; k < 3; k++){
824 <      ji[i] += rot[i][k] * tempJ[k];
825 <    }
826 <  }
827 <
828 <  // rotate the Rotation matrix acording to:
829 <  //            A[][] = A[][] * transpose(rot[][])
830 <
831 <
832 <  // NOte for as yet unknown reason, we are performing the
833 <  // calculation as:
834 <  //                transpose(A[][]) = transpose(A[][]) * transpose(rot[][])
835 <
836 <  for (i = 0; i < 3; i++){
837 <    for (j = 0; j < 3; j++){
838 <      A[j][i] = 0.0;
839 <      for (k = 0; k < 3; k++){
840 <        A[j][i] += tempA[i][k] * rot[j][k];
841 <      }
842 <    }
843 <  }
116 > Integrator::~Integrator(){
117 >    delete forceMan_;
118 >    delete velocitizer_;
119 >    
120 >    delete dumpWriter;
121 >    delete eorWriter;
122 >    delete statWriter;
123   }
124  
846 template<typename T> void Integrator<T>::calcForce(int calcPot, int calcStress){
847  myFF->doForces(calcPot, calcStress);
848 }
125  
850 template<typename T> void Integrator<T>::thermalize(){
851  tStats->velocitize();
126   }
127  
854 template<typename T> double Integrator<T>::getConservedQuantity(void){
855  return tStats->getTotalE();
856 }
857 template<typename T> string Integrator<T>::getAdditionalParameters(void){
858  //By default, return a null string
859  //The reason we use string instead of char* is that if we use char*, we will
860  //return a pointer point to local variable which might cause problem
861  return string();
862 }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines