ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-2.0/src/integrators/Integrator.cpp
(Generate patch)

Comparing trunk/OOPSE-2.0/src/integrators/Integrator.cpp (file contents):
Revision 1777 by chrisfen, Wed Nov 24 18:06:14 2004 UTC vs.
Revision 1930 by gezelter, Wed Jan 12 22:41:40 2005 UTC

# Line 1 | Line 1
1 < #include <iostream>
2 < #include <stdlib.h>
3 < #include <math.h>
4 < #ifdef IS_MPI
5 < #include "brains/mpiSimulation.hpp"
6 < #include <unistd.h>
7 < #endif //is_mpi
8 <
9 < #ifdef PROFILE
10 < #include "profiling/mdProfile.hpp"
11 < #endif // profile
12 <
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Acknowledgement of the program authors must be made in any
10 > *    publication of scientific results based in part on use of the
11 > *    program.  An acceptable form of acknowledgement is citation of
12 > *    the article in which the program was described (Matthew
13 > *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 > *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 > *    Parallel Simulation Engine for Molecular Dynamics,"
16 > *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 > *
18 > * 2. Redistributions of source code must retain the above copyright
19 > *    notice, this list of conditions and the following disclaimer.
20 > *
21 > * 3. Redistributions in binary form must reproduce the above copyright
22 > *    notice, this list of conditions and the following disclaimer in the
23 > *    documentation and/or other materials provided with the
24 > *    distribution.
25 > *
26 > * This software is provided "AS IS," without a warranty of any
27 > * kind. All express or implied conditions, representations and
28 > * warranties, including any implied warranty of merchantability,
29 > * fitness for a particular purpose or non-infringement, are hereby
30 > * excluded.  The University of Notre Dame and its licensors shall not
31 > * be liable for any damages suffered by licensee as a result of
32 > * using, modifying or distributing the software or its
33 > * derivatives. In no event will the University of Notre Dame or its
34 > * licensors be liable for any lost revenue, profit or data, or for
35 > * direct, indirect, special, consequential, incidental or punitive
36 > * damages, however caused and regardless of the theory of liability,
37 > * arising out of the use of or inability to use software, even if the
38 > * University of Notre Dame has been advised of the possibility of
39 > * such damages.
40 > */
41 >
42 > #include "brains/Snapshot.hpp"
43   #include "integrators/Integrator.hpp"
44   #include "utils/simError.h"
45 + namespace oopse {
46 + Integrator::Integrator(SimInfo* info)
47 +    : info_(info), forceMan_(NULL) , needPotential(false), needStress(false), velocitizer_(NULL),
48 +      needVelocityScaling(false), dumpWriter(NULL), statWriter(NULL), thermo(info),
49 +      currentSnapshot_(info->getSnapshotManager()->getCurrentSnapshot()) {
50  
51 +    Globals* simParams = info->getSimParams();
52  
53 < template<typename T> Integrator<T>::Integrator(SimInfo* theInfo,
54 <                                               ForceFields* the_ff){
55 <  info = theInfo;
56 <  myFF = the_ff;
57 <  isFirst = 1;
58 <
59 <  molecules = info->molecules;
24 <  nMols = info->n_mol;
25 <
26 <  // give a little love back to the SimInfo object
27 <
28 <  if (info->the_integrator != NULL){
29 <    delete info->the_integrator;
30 <  }
31 <
32 <  nAtoms = info->n_atoms;
33 <  integrableObjects = info->integrableObjects;
34 <
35 <
36 <  // check for constraints
37 <
38 <  constrainedA = NULL;
39 <  constrainedB = NULL;
40 <  constrainedDsqr = NULL;
41 <  moving = NULL;
42 <  moved = NULL;
43 <  oldPos = NULL;
44 <
45 <  nConstrained = 0;
46 <
47 <  checkConstraints();
48 <
49 < }
50 <
51 < template<typename T> Integrator<T>::~Integrator(){
52 <
53 <  if (nConstrained){
54 <    delete[] constrainedA;
55 <    delete[] constrainedB;
56 <    delete[] constrainedDsqr;
57 <    delete[] moving;
58 <    delete[] moved;
59 <    delete[] oldPos;
60 <  }
61 <
62 < }
63 <
64 <
65 < template<typename T> void Integrator<T>::checkConstraints(void){
66 <  isConstrained = 0;
67 <
68 <  Constraint* temp_con;
69 <  Constraint* dummy_plug;
70 <  temp_con = new Constraint[info->n_SRI];
71 <  nConstrained = 0;
72 <  int constrained = 0;
73 <
74 <  SRI** theArray;
75 <  for (int i = 0; i < nMols; i++){
76 <
77 <          theArray = (SRI * *) molecules[i].getMyBonds();
78 <    for (int j = 0; j < molecules[i].getNBonds(); j++){
79 <      constrained = theArray[j]->is_constrained();
80 <
81 <      if (constrained){
82 <        dummy_plug = theArray[j]->get_constraint();
83 <        temp_con[nConstrained].set_a(dummy_plug->get_a());
84 <        temp_con[nConstrained].set_b(dummy_plug->get_b());
85 <        temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
86 <
87 <        nConstrained++;
88 <        constrained = 0;
89 <      }
53 >    if (simParams->haveDt()) {
54 >        dt = simParams->getDt();
55 >    } else {
56 >            sprintf(painCave.errMsg,
57 >                    "Integrator Error: dt is not set\n");
58 >            painCave.isFatal = 1;
59 >            simError();
60      }
61 +    
62 +    if (simParams->haveRunTime()) {
63 +        runTime = simParams->getRunTime();
64 +    } else {
65  
92    theArray = (SRI * *) molecules[i].getMyBends();
93    for (int j = 0; j < molecules[i].getNBends(); j++){
94      constrained = theArray[j]->is_constrained();
95
96      if (constrained){
97        dummy_plug = theArray[j]->get_constraint();
98        temp_con[nConstrained].set_a(dummy_plug->get_a());
99        temp_con[nConstrained].set_b(dummy_plug->get_b());
100        temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
101
102        nConstrained++;
103        constrained = 0;
104      }
66      }
67 <
68 <    theArray = (SRI * *) molecules[i].getMyTorsions();
69 <    for (int j = 0; j < molecules[i].getNTorsions(); j++){
70 <      constrained = theArray[j]->is_constrained();
71 <
72 <      if (constrained){
73 <        dummy_plug = theArray[j]->get_constraint();
113 <        temp_con[nConstrained].set_a(dummy_plug->get_a());
114 <        temp_con[nConstrained].set_b(dummy_plug->get_b());
115 <        temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
116 <
117 <        nConstrained++;
118 <        constrained = 0;
119 <      }
67 >    // set the status, sample, and thermal kick times
68 >    if (simParams->haveSampleTime()){
69 >        sampleTime = simParams->getSampleTime();
70 >        statusTime = sampleTime;
71 >    } else{
72 >        sampleTime = simParams->getRunTime();
73 >        statusTime = sampleTime;
74      }
121  }
75  
76 <
77 <  if (nConstrained > 0){
125 <    isConstrained = 1;
126 <
127 <    if (constrainedA != NULL)
128 <      delete[] constrainedA;
129 <    if (constrainedB != NULL)
130 <      delete[] constrainedB;
131 <    if (constrainedDsqr != NULL)
132 <      delete[] constrainedDsqr;
133 <
134 <    constrainedA = new int[nConstrained];
135 <    constrainedB = new int[nConstrained];
136 <    constrainedDsqr = new double[nConstrained];
137 <
138 <    for (int i = 0; i < nConstrained; i++){
139 <      constrainedA[i] = temp_con[i].get_a();
140 <      constrainedB[i] = temp_con[i].get_b();
141 <      constrainedDsqr[i] = temp_con[i].get_dsqr();
76 >    if (simParams->haveStatusTime()){
77 >        statusTime = simParams->getStatusTime();
78      }
79  
80 <
81 <    // save oldAtoms to check for lode balancing later on.
82 <
83 <    oldAtoms = nAtoms;
148 <
149 <    moving = new int[nAtoms];
150 <    moved = new int[nAtoms];
151 <
152 <    oldPos = new double[nAtoms * 3];
153 <  }
154 <
155 <  delete[] temp_con;
156 < }
157 <
158 <
159 < template<typename T> void Integrator<T>::integrate(void){
160 <
161 <  double runTime = info->run_time;
162 <  double sampleTime = info->sampleTime;
163 <  double statusTime = info->statusTime;
164 <  double thermalTime = info->thermalTime;
165 <  double resetTime = info->resetTime;
166 <
167 <  double difference;
168 <  double currSample;
169 <  double currThermal;
170 <  double currStatus;
171 <  double currReset;
172 <
173 <  int calcPot, calcStress;
174 <  int i;
175 <  int localIndex;
176 <
177 < #ifdef IS_MPI
178 <  int which_node;
179 < #endif // is_mpi
180 <  
181 <  vector<StuntDouble*> particles;
182 <  string inAngle;
183 <
184 <  tStats = new Thermo(info);
185 <  statOut = new StatWriter(info);
186 <  dumpOut = new DumpWriter(info);
187 <
188 <  if (info->useSolidThermInt && !info->useLiquidThermInt) {
189 <    restOut = new RestraintWriter(info);
190 <    initRestraints = new RestraintReader(info);
191 <  }
192 <
193 <  atoms = info->atoms;
194 <
195 <  dt = info->dt;
196 <  dt2 = 0.5 * dt;
197 <
198 <  readyCheck();
199 <
200 <  // remove center of mass drift velocity (in case we passed in a configuration
201 <  // that was drifting
202 <  tStats->removeCOMdrift();
203 <
204 <  // initialize the retraints if necessary
205 <  if (info->useSolidThermInt && !info->useLiquidThermInt) {
206 <    initRestraints->zeroZangle();
207 <    inAngle = info->zAngleName + "_in";
208 <    initRestraints->readZangle(inAngle.c_str());
209 <    initRestraints->readIdealCrystal();
210 <  }
211 <
212 <  // initialize the forces before the first step
213 <  calcForce(1, 1);
214 <
215 <  //execute constraint algorithm to make sure at the very beginning the system is constrained  
216 <  if(nConstrained){
217 <    preMove();
218 <    constrainA();
219 <    calcForce(1, 1);
220 <    constrainB();
221 <  }
222 <
223 <  if (info->setTemp){
224 <    thermalize();
225 <  }
226 <
227 <  calcPot     = 0;
228 <  calcStress  = 0;
229 <  currSample  = sampleTime + info->getTime();
230 <  currThermal = thermalTime+ info->getTime();
231 <  currStatus  = statusTime + info->getTime();
232 <  currReset   = resetTime  + info->getTime();
233 <
234 <  dumpOut->writeDump(info->getTime());
235 <  statOut->writeStat(info->getTime());
236 <  if (info->useSolidThermInt && !info->useLiquidThermInt)
237 <    restOut->writeZangle(info->getTime());
238 <
239 < #ifdef IS_MPI
240 <  strcpy(checkPointMsg, "The integrator is ready to go.");
241 <  MPIcheckPoint();
242 < #endif // is_mpi
243 <
244 <  while (info->getTime() < runTime && !stopIntegrator()){
245 <    difference = info->getTime() + dt - currStatus;
246 <    if (difference > 0 || fabs(difference) < 1e-4 ){
247 <      calcPot = 1;
248 <      calcStress = 1;
80 >    if (simParams->haveThermalTime()){
81 >        thermalTime = simParams->getThermalTime();
82 >    } else {
83 >        thermalTime = simParams->getRunTime();
84      }
85  
86 < #ifdef PROFILE
87 <    startProfile( pro1 );
253 < #endif
254 <    
255 <    integrateStep(calcPot, calcStress);
256 <
257 < #ifdef PROFILE
258 <    endProfile( pro1 );
259 <
260 <    startProfile( pro2 );
261 < #endif // profile
262 <
263 <    info->incrTime(dt);
264 <
265 <    if (info->setTemp){
266 <      if (info->getTime() >= currThermal){
267 <        thermalize();
268 <        currThermal += thermalTime;
269 <      }
86 >    if (!simParams->getUseInitTime()) {
87 >        currentSnapshot_->setTime(0.0);
88      }
271
272    if (info->getTime() >= currSample){
273      dumpOut->writeDump(info->getTime());
274      // write a zAng file to coincide with each dump or eor file
275      if (info->useSolidThermInt && !info->useLiquidThermInt)
276        restOut->writeZangle(info->getTime());
277      currSample += sampleTime;
278    }
279
280    if (info->getTime() >= currStatus){
281      statOut->writeStat(info->getTime());
282      calcPot = 0;
283      calcStress = 0;
284      currStatus += statusTime;
285    }
286
287    if (info->resetIntegrator){
288      if (info->getTime() >= currReset){
289        this->resetIntegrator();
290        currReset += resetTime;
291      }
292    }
89      
90 < #ifdef PROFILE
91 <    endProfile( pro2 );
92 < #endif //profile
297 <
298 < #ifdef IS_MPI
299 <    strcpy(checkPointMsg, "successfully took a time step.");
300 <    MPIcheckPoint();
301 < #endif // is_mpi
302 <  }
303 <
304 <  dumpOut->writeFinal(info->getTime());
305 <
306 <  // write the file containing the omega values of the final configuration
307 <  if (info->useSolidThermInt && !info->useLiquidThermInt){
308 <    restOut->writeZangle(info->getTime());
309 <    restOut->writeZangle(info->getTime(), inAngle.c_str());
310 <  }
311 <
312 <  delete dumpOut;
313 <  delete statOut;
314 < }
315 <
316 < template<typename T> void Integrator<T>::integrateStep(int calcPot,
317 <                                                       int calcStress){
318 <  // Position full step, and velocity half step
319 <
320 < #ifdef PROFILE
321 <  startProfile(pro3);
322 < #endif //profile
323 <
324 <  //save old state (position, velocity etc)
325 <  preMove();
326 < #ifdef PROFILE
327 <  endProfile(pro3);
328 <
329 <  startProfile(pro4);
330 < #endif // profile
331 <
332 <  moveA();
333 <
334 < #ifdef PROFILE
335 <  endProfile(pro4);
336 <  
337 <  startProfile(pro5);
338 < #endif//profile
339 <
340 <
341 < #ifdef IS_MPI
342 <  strcpy(checkPointMsg, "Succesful moveA\n");
343 <  MPIcheckPoint();
344 < #endif // is_mpi
345 <
346 <  // calc forces
347 <  calcForce(calcPot, calcStress);
348 <
349 < #ifdef IS_MPI
350 <  strcpy(checkPointMsg, "Succesful doForces\n");
351 <  MPIcheckPoint();
352 < #endif // is_mpi
353 <
354 < #ifdef PROFILE
355 <  endProfile( pro5 );
356 <
357 <  startProfile( pro6 );
358 < #endif //profile
359 <
360 <  // finish the velocity  half step
361 <
362 <  moveB();
363 <
364 < #ifdef PROFILE
365 <  endProfile(pro6);
366 < #endif // profile
367 <
368 < #ifdef IS_MPI
369 <  strcpy(checkPointMsg, "Succesful moveB\n");
370 <  MPIcheckPoint();
371 < #endif // is_mpi
372 < }
373 <
374 <
375 < template<typename T> void Integrator<T>::moveA(void){
376 <  size_t i, j;
377 <  DirectionalAtom* dAtom;
378 <  double Tb[3], ji[3];
379 <  double vel[3], pos[3], frc[3];
380 <  double mass;
381 <  double omega;
382 <
383 <  for (i = 0; i < integrableObjects.size() ; i++){
384 <    integrableObjects[i]->getVel(vel);
385 <    integrableObjects[i]->getPos(pos);
386 <    integrableObjects[i]->getFrc(frc);
387 <    //    std::cerr << "f = " << frc[0] << "\t" << frc[1] << "\t" << frc[2] << "\n";
90 >    //create a default a ForceManager
91 >    //if the subclass want to using different ForceManager, use setForceManager
92 >    forceMan_ = new ForceManager(info);
93      
94 <    mass = integrableObjects[i]->getMass();
94 >    // check for the temperature set flag (velocity scaling)      
95 >    if (simParams->haveTempSet()) {
96 >        needVelocityScaling = simParams->getTempSet();
97  
98 <    for (j = 0; j < 3; j++){
99 <      // velocity half step
100 <      vel[j] += (dt2 * frc[j] / mass) * eConvert;
101 <      // position whole step
102 <      pos[j] += dt * vel[j];
103 <    }
397 <
398 <    integrableObjects[i]->setVel(vel);
399 <    integrableObjects[i]->setPos(pos);
400 <
401 <
402 <    if (integrableObjects[i]->isDirectional()){
403 <
404 <      // get and convert the torque to body frame
405 <
406 <      integrableObjects[i]->getTrq(Tb);
407 <
408 <      //      std::cerr << "t = " << Tb[0] << "\t" << Tb[1] << "\t" << Tb[2] << "\n";
409 <      integrableObjects[i]->lab2Body(Tb);
410 <
411 <      // get the angular momentum, and propagate a half step
412 <
413 <      integrableObjects[i]->getJ(ji);
414 <
415 <      for (j = 0; j < 3; j++)
416 <        ji[j] += (dt2 * Tb[j]) * eConvert;
417 <
418 <      this->rotationPropagation( integrableObjects[i], ji );
419 <
420 <      integrableObjects[i]->setJ(ji);
421 <    }
422 <  }
423 <
424 <  if(nConstrained)
425 <    constrainA();
426 < }
427 <
428 <
429 < template<typename T> void Integrator<T>::moveB(void){
430 <  int i, j;
431 <  double Tb[3], ji[3];
432 <  double vel[3], frc[3];
433 <  double mass;
434 <
435 <  for (i = 0; i < integrableObjects.size(); i++){
436 <    integrableObjects[i]->getVel(vel);
437 <    integrableObjects[i]->getFrc(frc);
438 <
439 <    mass = integrableObjects[i]->getMass();
440 <
441 <    // velocity half step
442 <    for (j = 0; j < 3; j++)
443 <      vel[j] += (dt2 * frc[j] / mass) * eConvert;
444 <
445 <    integrableObjects[i]->setVel(vel);
446 <
447 <    if (integrableObjects[i]->isDirectional()){
448 <
449 <      // get and convert the torque to body frame
450 <
451 <      integrableObjects[i]->getTrq(Tb);
452 <      integrableObjects[i]->lab2Body(Tb);
453 <
454 <      // get the angular momentum, and propagate a half step
455 <
456 <      integrableObjects[i]->getJ(ji);
457 <
458 <      for (j = 0; j < 3; j++)
459 <        ji[j] += (dt2 * Tb[j]) * eConvert;
460 <
461 <
462 <      integrableObjects[i]->setJ(ji);
463 <    }
464 <  }
465 <
466 <  if(nConstrained)
467 <    constrainB();
468 < }
469 <
470 <
471 < template<typename T> void Integrator<T>::preMove(void){
472 <  int i, j;
473 <  double pos[3];
474 <
475 <  if (nConstrained){
476 <    for (i = 0; i < nAtoms; i++){
477 <      atoms[i]->getPos(pos);
478 <
479 <      for (j = 0; j < 3; j++){
480 <        oldPos[3 * i + j] = pos[j];
481 <      }
482 <    }
483 <  }
484 < }
485 <
486 < template<typename T> void Integrator<T>::constrainA(){
487 <  int i, j;
488 <  int done;
489 <  double posA[3], posB[3];
490 <  double velA[3], velB[3];
491 <  double pab[3];
492 <  double rab[3];
493 <  int a, b, ax, ay, az, bx, by, bz;
494 <  double rma, rmb;
495 <  double dx, dy, dz;
496 <  double rpab;
497 <  double rabsq, pabsq, rpabsq;
498 <  double diffsq;
499 <  double gab;
500 <  int iteration;
501 <
502 <  for (i = 0; i < nAtoms; i++){
503 <    moving[i] = 0;
504 <    moved[i] = 1;
505 <  }
506 <
507 <  iteration = 0;
508 <  done = 0;
509 <  while (!done && (iteration < maxIteration)){
510 <    done = 1;
511 <    for (i = 0; i < nConstrained; i++){
512 <      a = constrainedA[i];
513 <      b = constrainedB[i];
514 <
515 <      ax = (a * 3) + 0;
516 <      ay = (a * 3) + 1;
517 <      az = (a * 3) + 2;
518 <
519 <      bx = (b * 3) + 0;
520 <      by = (b * 3) + 1;
521 <      bz = (b * 3) + 2;
522 <
523 <      if (moved[a] || moved[b]){
524 <        atoms[a]->getPos(posA);
525 <        atoms[b]->getPos(posB);
526 <
527 <        for (j = 0; j < 3; j++)
528 <          pab[j] = posA[j] - posB[j];
529 <
530 <        //periodic boundary condition
531 <
532 <        info->wrapVector(pab);
533 <
534 <        pabsq = pab[0] * pab[0] + pab[1] * pab[1] + pab[2] * pab[2];
535 <
536 <        rabsq = constrainedDsqr[i];
537 <        diffsq = rabsq - pabsq;
538 <
539 <        // the original rattle code from alan tidesley
540 <        if (fabs(diffsq) > (tol * rabsq * 2)){
541 <          rab[0] = oldPos[ax] - oldPos[bx];
542 <          rab[1] = oldPos[ay] - oldPos[by];
543 <          rab[2] = oldPos[az] - oldPos[bz];
544 <
545 <          info->wrapVector(rab);
546 <
547 <          rpab = rab[0] * pab[0] + rab[1] * pab[1] + rab[2] * pab[2];
548 <
549 <          rpabsq = rpab * rpab;
550 <
551 <
552 <          if (rpabsq < (rabsq * -diffsq)){
553 < #ifdef IS_MPI
554 <            a = atoms[a]->getGlobalIndex();
555 <            b = atoms[b]->getGlobalIndex();
556 < #endif //is_mpi
557 <            sprintf(painCave.errMsg,
558 <                    "Constraint failure in constrainA at atom %d and %d.\n", a,
559 <                    b);
98 >        if (simParams->haveTargetTemp()) {
99 >            targetScalingTemp = simParams->getTargetTemp();
100 >        }
101 >        else {
102 >            sprintf(painCave.errMsg,
103 >                    "Integrator Error: Target Temperature is not set\n");
104              painCave.isFatal = 1;
105              simError();
562          }
106  
564          rma = 1.0 / atoms[a]->getMass();
565          rmb = 1.0 / atoms[b]->getMass();
566
567          gab = diffsq / (2.0 * (rma + rmb) * rpab);
568
569          dx = rab[0] * gab;
570          dy = rab[1] * gab;
571          dz = rab[2] * gab;
572
573          posA[0] += rma * dx;
574          posA[1] += rma * dy;
575          posA[2] += rma * dz;
576
577          atoms[a]->setPos(posA);
578
579          posB[0] -= rmb * dx;
580          posB[1] -= rmb * dy;
581          posB[2] -= rmb * dz;
582
583          atoms[b]->setPos(posB);
584
585          dx = dx / dt;
586          dy = dy / dt;
587          dz = dz / dt;
588
589          atoms[a]->getVel(velA);
590
591          velA[0] += rma * dx;
592          velA[1] += rma * dy;
593          velA[2] += rma * dz;
594
595          atoms[a]->setVel(velA);
596
597          atoms[b]->getVel(velB);
598
599          velB[0] -= rmb * dx;
600          velB[1] -= rmb * dy;
601          velB[2] -= rmb * dz;
602
603          atoms[b]->setVel(velB);
604
605          moving[a] = 1;
606          moving[b] = 1;
607          done = 0;
107          }
609      }
108      }
611
612    for (i = 0; i < nAtoms; i++){
613      moved[i] = moving[i];
614      moving[i] = 0;
615    }
616
617    iteration++;
618  }
619
620  if (!done){
621    sprintf(painCave.errMsg,
622            "Constraint failure in constrainA, too many iterations: %d\n",
623            iteration);
624    painCave.isFatal = 1;
625    simError();
626  }
627
628 }
629
630 template<typename T> void Integrator<T>::constrainB(void){
631  int i, j;
632  int done;
633  double posA[3], posB[3];
634  double velA[3], velB[3];
635  double vxab, vyab, vzab;
636  double rab[3];
637  int a, b, ax, ay, az, bx, by, bz;
638  double rma, rmb;
639  double dx, dy, dz;
640  double rvab;
641  double gab;
642  int iteration;
643
644  for (i = 0; i < nAtoms; i++){
645    moving[i] = 0;
646    moved[i] = 1;
647  }
648
649  done = 0;
650  iteration = 0;
651  while (!done && (iteration < maxIteration)){
652    done = 1;
653
654    for (i = 0; i < nConstrained; i++){
655      a = constrainedA[i];
656      b = constrainedB[i];
657
658      ax = (a * 3) + 0;
659      ay = (a * 3) + 1;
660      az = (a * 3) + 2;
661
662      bx = (b * 3) + 0;
663      by = (b * 3) + 1;
664      bz = (b * 3) + 2;
665
666      if (moved[a] || moved[b]){
667        atoms[a]->getVel(velA);
668        atoms[b]->getVel(velB);
669
670        vxab = velA[0] - velB[0];
671        vyab = velA[1] - velB[1];
672        vzab = velA[2] - velB[2];
673
674        atoms[a]->getPos(posA);
675        atoms[b]->getPos(posB);
676
677        for (j = 0; j < 3; j++)
678          rab[j] = posA[j] - posB[j];
679
680        info->wrapVector(rab);
681
682        rma = 1.0 / atoms[a]->getMass();
683        rmb = 1.0 / atoms[b]->getMass();
684
685        rvab = rab[0] * vxab + rab[1] * vyab + rab[2] * vzab;
686
687        gab = -rvab / ((rma + rmb) * constrainedDsqr[i]);
688
689        if (fabs(gab) > tol){
690          dx = rab[0] * gab;
691          dy = rab[1] * gab;
692          dz = rab[2] * gab;
693
694          velA[0] += rma * dx;
695          velA[1] += rma * dy;
696          velA[2] += rma * dz;
697
698          atoms[a]->setVel(velA);
699
700          velB[0] -= rmb * dx;
701          velB[1] -= rmb * dy;
702          velB[2] -= rmb * dz;
703
704          atoms[b]->setVel(velB);
705
706          moving[a] = 1;
707          moving[b] = 1;
708          done = 0;
709        }
710      }
711    }
712
713    for (i = 0; i < nAtoms; i++){
714      moved[i] = moving[i];
715      moving[i] = 0;
716    }
717
718    iteration++;
719  }
720
721  if (!done){
722    sprintf(painCave.errMsg,
723            "Constraint failure in constrainB, too many iterations: %d\n",
724            iteration);
725    painCave.isFatal = 1;
726    simError();
727  }
728 }
729
730 template<typename T> void Integrator<T>::rotationPropagation
731 ( StuntDouble* sd, double ji[3] ){
732
733  double angle;
734  double A[3][3], I[3][3];
735  int i, j, k;
736
737  // use the angular velocities to propagate the rotation matrix a
738  // full time step
739
740  sd->getA(A);
741  sd->getI(I);
742
743  if (sd->isLinear()) {
744
745    i = sd->linearAxis();
746    j = (i+1)%3;
747    k = (i+2)%3;
748
749    angle = dt2 * ji[j] / I[j][j];
750    this->rotate( k, i, angle, ji, A );
751
752    angle = dt * ji[k] / I[k][k];
753    this->rotate( i, j, angle, ji, A);
754
755    angle = dt2 * ji[j] / I[j][j];
756    this->rotate( k, i, angle, ji, A );
757
758  } else {
759    // rotate about the x-axis
760    angle = dt2 * ji[0] / I[0][0];
761    this->rotate( 1, 2, angle, ji, A );
109      
110 <    // rotate about the y-axis
111 <    angle = dt2 * ji[1] / I[1][1];
112 <    this->rotate( 2, 0, angle, ji, A );
110 >    //create a default a velocitizer
111 >    //if the subclass want to using different velocitizer, use setVelocitizer
112 >    velocitizer_ = new Velocitizer(info);
113      
767    // rotate about the z-axis
768    angle = dt * ji[2] / I[2][2];
769    sd->addZangle(angle);
770    this->rotate( 0, 1, angle, ji, A);
771    
772    // rotate about the y-axis
773    angle = dt2 * ji[1] / I[1][1];
774    this->rotate( 2, 0, angle, ji, A );
775    
776    // rotate about the x-axis
777    angle = dt2 * ji[0] / I[0][0];
778    this->rotate( 1, 2, angle, ji, A );
779    
780  }
781  sd->setA( A  );
114   }
115  
116 < template<typename T> void Integrator<T>::rotate(int axes1, int axes2,
117 <                                                double angle, double ji[3],
118 <                                                double A[3][3]){
119 <  int i, j, k;
120 <  double sinAngle;
121 <  double cosAngle;
790 <  double angleSqr;
791 <  double angleSqrOver4;
792 <  double top, bottom;
793 <  double rot[3][3];
794 <  double tempA[3][3];
795 <  double tempJ[3];
796 <
797 <  // initialize the tempA
798 <
799 <  for (i = 0; i < 3; i++){
800 <    for (j = 0; j < 3; j++){
801 <      tempA[j][i] = A[i][j];
802 <    }
803 <  }
804 <
805 <  // initialize the tempJ
806 <
807 <  for (i = 0; i < 3; i++)
808 <    tempJ[i] = ji[i];
809 <
810 <  // initalize rot as a unit matrix
811 <
812 <  rot[0][0] = 1.0;
813 <  rot[0][1] = 0.0;
814 <  rot[0][2] = 0.0;
815 <
816 <  rot[1][0] = 0.0;
817 <  rot[1][1] = 1.0;
818 <  rot[1][2] = 0.0;
819 <
820 <  rot[2][0] = 0.0;
821 <  rot[2][1] = 0.0;
822 <  rot[2][2] = 1.0;
823 <
824 <  // use a small angle aproximation for sin and cosine
825 <
826 <  angleSqr = angle * angle;
827 <  angleSqrOver4 = angleSqr / 4.0;
828 <  top = 1.0 - angleSqrOver4;
829 <  bottom = 1.0 + angleSqrOver4;
830 <
831 <  cosAngle = top / bottom;
832 <  sinAngle = angle / bottom;
833 <
834 <  rot[axes1][axes1] = cosAngle;
835 <  rot[axes2][axes2] = cosAngle;
836 <
837 <  rot[axes1][axes2] = sinAngle;
838 <  rot[axes2][axes1] = -sinAngle;
839 <
840 <  // rotate the momentum acoording to: ji[] = rot[][] * ji[]
841 <
842 <  for (i = 0; i < 3; i++){
843 <    ji[i] = 0.0;
844 <    for (k = 0; k < 3; k++){
845 <      ji[i] += rot[i][k] * tempJ[k];
846 <    }
847 <  }
848 <
849 <  // rotate the Rotation matrix acording to:
850 <  //            A[][] = A[][] * transpose(rot[][])
851 <
852 <
853 <  // NOte for as yet unknown reason, we are performing the
854 <  // calculation as:
855 <  //                transpose(A[][]) = transpose(A[][]) * transpose(rot[][])
856 <
857 <  for (i = 0; i < 3; i++){
858 <    for (j = 0; j < 3; j++){
859 <      A[j][i] = 0.0;
860 <      for (k = 0; k < 3; k++){
861 <        A[j][i] += tempA[i][k] * rot[j][k];
862 <      }
863 <    }
864 <  }
116 > Integrator::~Integrator(){
117 >    delete forceMan_;
118 >    delete velocitizer_;
119 >    
120 >    delete dumpWriter;
121 >    delete statWriter;
122   }
123  
867 template<typename T> void Integrator<T>::calcForce(int calcPot, int calcStress){
868  myFF->doForces(calcPot, calcStress);
869 }
124  
871 template<typename T> void Integrator<T>::thermalize(){
872  tStats->velocitize();
125   }
126  
875 template<typename T> double Integrator<T>::getConservedQuantity(void){
876  return tStats->getTotalE();
877 }
878 template<typename T> string Integrator<T>::getAdditionalParameters(void){
879  //By default, return a null string
880  //The reason we use string instead of char* is that if we use char*, we will
881  //return a pointer point to local variable which might cause problem
882  return string();
883 }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines