ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-2.0/src/integrators/NPT.cpp
Revision: 1930
Committed: Wed Jan 12 22:41:40 2005 UTC (19 years, 6 months ago) by gezelter
File size: 11168 byte(s)
Log Message:
merging new_design branch into OOPSE-2.0

File Contents

# User Rev Content
1 gezelter 1930 /*
2     * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9     * 1. Acknowledgement of the program authors must be made in any
10     * publication of scientific results based in part on use of the
11     * program. An acceptable form of acknowledgement is citation of
12     * the article in which the program was described (Matthew
13     * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14     * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15     * Parallel Simulation Engine for Molecular Dynamics,"
16     * J. Comput. Chem. 26, pp. 252-271 (2005))
17     *
18     * 2. Redistributions of source code must retain the above copyright
19     * notice, this list of conditions and the following disclaimer.
20     *
21     * 3. Redistributions in binary form must reproduce the above copyright
22     * notice, this list of conditions and the following disclaimer in the
23     * documentation and/or other materials provided with the
24     * distribution.
25     *
26     * This software is provided "AS IS," without a warranty of any
27     * kind. All express or implied conditions, representations and
28     * warranties, including any implied warranty of merchantability,
29     * fitness for a particular purpose or non-infringement, are hereby
30     * excluded. The University of Notre Dame and its licensors shall not
31     * be liable for any damages suffered by licensee as a result of
32     * using, modifying or distributing the software or its
33     * derivatives. In no event will the University of Notre Dame or its
34     * licensors be liable for any lost revenue, profit or data, or for
35     * direct, indirect, special, consequential, incidental or punitive
36     * damages, however caused and regardless of the theory of liability,
37     * arising out of the use of or inability to use software, even if the
38     * University of Notre Dame has been advised of the possibility of
39     * such damages.
40     */
41    
42 gezelter 1490 #include <math.h>
43    
44 tim 1492 #include "brains/SimInfo.hpp"
45     #include "brains/Thermo.hpp"
46 gezelter 1930 #include "integrators/NPT.hpp"
47     #include "math/SquareMatrix3.hpp"
48     #include "primitives/Molecule.hpp"
49     #include "utils/OOPSEConstant.hpp"
50 tim 1492 #include "utils/simError.h"
51 gezelter 1490
52     // Basic isotropic thermostating and barostating via the Melchionna
53     // modification of the Hoover algorithm:
54     //
55     // Melchionna, S., Ciccotti, G., and Holian, B. L., 1993,
56     // Molec. Phys., 78, 533.
57     //
58     // and
59     //
60     // Hoover, W. G., 1986, Phys. Rev. A, 34, 2499.
61    
62 gezelter 1930 namespace oopse {
63 gezelter 1490
64 gezelter 1930 NPT::NPT(SimInfo* info) :
65     VelocityVerletIntegrator(info), chiTolerance(1e-6), etaTolerance(1e-6), maxIterNum_(4) {
66 gezelter 1490
67 gezelter 1930 Globals* simParams = info_->getSimParams();
68    
69     if (!simParams->getUseInitXSstate()) {
70     Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
71     currSnapshot->setChi(0.0);
72     currSnapshot->setIntegralOfChiDt(0.0);
73     currSnapshot->setEta(Mat3x3d(0.0));
74     }
75    
76     if (!simParams->haveTargetTemp()) {
77     sprintf(painCave.errMsg, "You can't use the NVT integrator without a targetTemp!\n");
78     painCave.isFatal = 1;
79     painCave.severity = OOPSE_ERROR;
80     simError();
81     } else {
82     targetTemp = simParams->getTargetTemp();
83     }
84 gezelter 1490
85 gezelter 1930 // We must set tauThermostat
86     if (!simParams->haveTauThermostat()) {
87     sprintf(painCave.errMsg, "If you use the constant temperature\n"
88     "\tintegrator, you must set tauThermostat_.\n");
89 gezelter 1490
90 gezelter 1930 painCave.severity = OOPSE_ERROR;
91     painCave.isFatal = 1;
92     simError();
93     } else {
94     tauThermostat = simParams->getTauThermostat();
95     }
96 gezelter 1490
97 gezelter 1930 if (!simParams->haveTargetPressure()) {
98     sprintf(painCave.errMsg, "NPT error: You can't use the NPT integrator\n"
99     " without a targetPressure!\n");
100 gezelter 1490
101 gezelter 1930 painCave.isFatal = 1;
102     simError();
103     } else {
104     targetPressure = simParams->getTargetPressure();
105     }
106    
107     if (!simParams->haveTauBarostat()) {
108     sprintf(painCave.errMsg,
109     "If you use the NPT integrator, you must set tauBarostat.\n");
110     painCave.severity = OOPSE_ERROR;
111     painCave.isFatal = 1;
112     simError();
113     } else {
114     tauBarostat = simParams->getTauBarostat();
115     }
116    
117     tt2 = tauThermostat * tauThermostat;
118     tb2 = tauBarostat * tauBarostat;
119 gezelter 1490
120 gezelter 1930 update();
121 gezelter 1490 }
122    
123 gezelter 1930 NPT::~NPT() {
124 gezelter 1490 }
125    
126 gezelter 1930 void NPT::doUpdate() {
127 gezelter 1490
128 gezelter 1930 oldPos.resize(info_->getNIntegrableObjects());
129     oldVel.resize(info_->getNIntegrableObjects());
130     oldJi.resize(info_->getNIntegrableObjects());
131 gezelter 1490
132 gezelter 1930 }
133 gezelter 1490
134 gezelter 1930 void NPT::moveA() {
135     SimInfo::MoleculeIterator i;
136     Molecule::IntegrableObjectIterator j;
137     Molecule* mol;
138     StuntDouble* integrableObject;
139     Vector3d Tb, ji;
140     double mass;
141     Vector3d vel;
142     Vector3d pos;
143     Vector3d frc;
144     Vector3d sc;
145     int index;
146 gezelter 1490
147 gezelter 1930 chi= currentSnapshot_->getChi();
148     integralOfChidt = currentSnapshot_->getIntegralOfChiDt();
149     loadEta();
150    
151     instaTemp =thermo.getTemperature();
152     press = thermo.getPressureTensor();
153     instaPress = OOPSEConstant::pressureConvert* (press(0, 0) + press(1, 1) + press(2, 2)) / 3.0;
154     instaVol =thermo.getVolume();
155 gezelter 1490
156 gezelter 1930 Vector3d COM = info_->getCom();
157 gezelter 1490
158 gezelter 1930 //evolve velocity half step
159 gezelter 1490
160 gezelter 1930 calcVelScale();
161 gezelter 1490
162 gezelter 1930 for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) {
163     for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
164     integrableObject = mol->nextIntegrableObject(j)) {
165    
166     vel = integrableObject->getVel();
167     frc = integrableObject->getFrc();
168 gezelter 1490
169 gezelter 1930 mass = integrableObject->getMass();
170 gezelter 1490
171 gezelter 1930 getVelScaleA(sc, vel);
172 gezelter 1490
173 gezelter 1930 // velocity half step (use chi from previous step here):
174     //vel[j] += dt2 * ((frc[j] / mass) * OOPSEConstant::energyConvert - sc[j]);
175     vel += dt2*OOPSEConstant::energyConvert/mass* frc - dt2*sc;
176     integrableObject->setVel(vel);
177 gezelter 1490
178 gezelter 1930 if (integrableObject->isDirectional()) {
179 gezelter 1490
180 gezelter 1930 // get and convert the torque to body frame
181 gezelter 1490
182 gezelter 1930 Tb = integrableObject->lab2Body(integrableObject->getTrq());
183 gezelter 1490
184 gezelter 1930 // get the angular momentum, and propagate a half step
185 gezelter 1490
186 gezelter 1930 ji = integrableObject->getJ();
187 gezelter 1490
188 gezelter 1930 //ji[j] += dt2 * (Tb[j] * OOPSEConstant::energyConvert - ji[j]*chi);
189     ji += dt2*OOPSEConstant::energyConvert * Tb - dt2*chi* ji;
190    
191     rotAlgo->rotate(integrableObject, ji, dt);
192 gezelter 1490
193 gezelter 1930 integrableObject->setJ(ji);
194     }
195    
196     }
197     }
198     // evolve chi and eta half step
199 gezelter 1490
200 gezelter 1930 chi += dt2 * (instaTemp / targetTemp - 1.0) / tt2;
201    
202     evolveEtaA();
203 gezelter 1490
204 gezelter 1930 //calculate the integral of chidt
205     integralOfChidt += dt2 * chi;
206    
207     index = 0;
208     for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) {
209     for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
210     integrableObject = mol->nextIntegrableObject(j)) {
211     oldPos[index++] = integrableObject->getPos();
212     }
213 gezelter 1490 }
214 gezelter 1930
215     //the first estimation of r(t+dt) is equal to r(t)
216 gezelter 1490
217 gezelter 1930 for(int k = 0; k < maxIterNum_; k++) {
218     index = 0;
219     for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) {
220     for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
221     integrableObject = mol->nextIntegrableObject(j)) {
222 gezelter 1490
223 gezelter 1930 vel = integrableObject->getVel();
224     pos = integrableObject->getPos();
225 gezelter 1490
226 gezelter 1930 this->getPosScale(pos, COM, index, sc);
227 gezelter 1490
228 gezelter 1930 pos = oldPos[index] + dt * (vel + sc);
229     integrableObject->setPos(pos);
230 gezelter 1490
231 gezelter 1930 ++index;
232     }
233     }
234 gezelter 1490
235 gezelter 1930 rattle->constraintA();
236     }
237 gezelter 1490
238 gezelter 1930 // Scale the box after all the positions have been moved:
239 gezelter 1490
240 gezelter 1930 this->scaleSimBox();
241 gezelter 1490
242 gezelter 1930 currentSnapshot_->setChi(chi);
243     currentSnapshot_->setIntegralOfChiDt(integralOfChidt);
244 gezelter 1490
245 gezelter 1930 saveEta();
246 gezelter 1490 }
247    
248 gezelter 1930 void NPT::moveB(void) {
249     SimInfo::MoleculeIterator i;
250     Molecule::IntegrableObjectIterator j;
251     Molecule* mol;
252     StuntDouble* integrableObject;
253     int index;
254     Vector3d Tb;
255     Vector3d ji;
256     Vector3d sc;
257     Vector3d vel;
258     Vector3d frc;
259     double mass;
260 gezelter 1490
261    
262 gezelter 1930 chi= currentSnapshot_->getChi();
263     integralOfChidt = currentSnapshot_->getIntegralOfChiDt();
264     double oldChi = chi;
265     double prevChi;
266 gezelter 1490
267 gezelter 1930 loadEta();
268    
269     //save velocity and angular momentum
270     index = 0;
271     for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) {
272     for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
273     integrableObject = mol->nextIntegrableObject(j)) {
274    
275     oldVel[index] = integrableObject->getVel();
276     oldJi[index] = integrableObject->getJ();
277     ++index;
278     }
279 gezelter 1490 }
280    
281 gezelter 1930 // do the iteration:
282     instaVol =thermo.getVolume();
283 gezelter 1490
284 gezelter 1930 for(int k = 0; k < maxIterNum_; k++) {
285     instaTemp =thermo.getTemperature();
286     instaPress =thermo.getPressure();
287 gezelter 1490
288 gezelter 1930 // evolve chi another half step using the temperature at t + dt/2
289     prevChi = chi;
290     chi = oldChi + dt2 * (instaTemp / targetTemp - 1.0) / tt2;
291 gezelter 1490
292 gezelter 1930 //evolve eta
293     this->evolveEtaB();
294     this->calcVelScale();
295 gezelter 1490
296 gezelter 1930 index = 0;
297     for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) {
298     for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
299     integrableObject = mol->nextIntegrableObject(j)) {
300 gezelter 1490
301 gezelter 1930 frc = integrableObject->getFrc();
302     vel = integrableObject->getVel();
303 gezelter 1490
304 gezelter 1930 mass = integrableObject->getMass();
305 gezelter 1490
306 gezelter 1930 getVelScaleB(sc, index);
307 gezelter 1490
308 gezelter 1930 // velocity half step
309     //vel[j] = oldVel[3 * i + j] + dt2 *((frc[j] / mass) * OOPSEConstant::energyConvert - sc[j]);
310     vel = oldVel[index] + dt2*OOPSEConstant::energyConvert/mass* frc - dt2*sc;
311     integrableObject->setVel(vel);
312 gezelter 1490
313 gezelter 1930 if (integrableObject->isDirectional()) {
314     // get and convert the torque to body frame
315     Tb = integrableObject->lab2Body(integrableObject->getTrq());
316 gezelter 1490
317 gezelter 1930 //ji[j] = oldJi[3*i + j] + dt2 * (Tb[j] * OOPSEConstant::energyConvert - oldJi[3*i+j]*chi);
318     ji = oldJi[index] + dt2*OOPSEConstant::energyConvert*Tb - dt2*chi*oldJi[index];
319     integrableObject->setJ(ji);
320     }
321 gezelter 1490
322 gezelter 1930 ++index;
323     }
324     }
325    
326     rattle->constraintB();
327 gezelter 1490
328 gezelter 1930 if ((fabs(prevChi - chi) <= chiTolerance) && this->etaConverged())
329     break;
330 gezelter 1490 }
331    
332 gezelter 1930 //calculate integral of chidt
333     integralOfChidt += dt2 * chi;
334 gezelter 1490
335 gezelter 1930 currentSnapshot_->setChi(chi);
336     currentSnapshot_->setIntegralOfChiDt(integralOfChidt);
337 gezelter 1490
338 gezelter 1930 saveEta();
339 gezelter 1490 }
340    
341     }