ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-2.0/src/integrators/NPTf.cpp
Revision: 2204
Committed: Fri Apr 15 22:04:00 2005 UTC (19 years, 2 months ago) by gezelter
File size: 9168 byte(s)
Log Message:
xemacs has been drafted to perform our indentation services

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Acknowledgement of the program authors must be made in any
10 * publication of scientific results based in part on use of the
11 * program. An acceptable form of acknowledgement is citation of
12 * the article in which the program was described (Matthew
13 * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 * Parallel Simulation Engine for Molecular Dynamics,"
16 * J. Comput. Chem. 26, pp. 252-271 (2005))
17 *
18 * 2. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 *
21 * 3. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the
24 * distribution.
25 *
26 * This software is provided "AS IS," without a warranty of any
27 * kind. All express or implied conditions, representations and
28 * warranties, including any implied warranty of merchantability,
29 * fitness for a particular purpose or non-infringement, are hereby
30 * excluded. The University of Notre Dame and its licensors shall not
31 * be liable for any damages suffered by licensee as a result of
32 * using, modifying or distributing the software or its
33 * derivatives. In no event will the University of Notre Dame or its
34 * licensors be liable for any lost revenue, profit or data, or for
35 * direct, indirect, special, consequential, incidental or punitive
36 * damages, however caused and regardless of the theory of liability,
37 * arising out of the use of or inability to use software, even if the
38 * University of Notre Dame has been advised of the possibility of
39 * such damages.
40 */
41
42 #include "brains/SimInfo.hpp"
43 #include "brains/Thermo.hpp"
44 #include "integrators/IntegratorCreator.hpp"
45 #include "integrators/NPTf.hpp"
46 #include "primitives/Molecule.hpp"
47 #include "utils/OOPSEConstant.hpp"
48 #include "utils/simError.h"
49
50 namespace oopse {
51
52 // Basic non-isotropic thermostating and barostating via the Melchionna
53 // modification of the Hoover algorithm:
54 //
55 // Melchionna, S., Ciccotti, G., and Holian, B. L., 1993,
56 // Molec. Phys., 78, 533.
57 //
58 // and
59 //
60 // Hoover, W. G., 1986, Phys. Rev. A, 34, 2499.
61
62 void NPTf::evolveEtaA() {
63
64 int i, j;
65
66 for(i = 0; i < 3; i ++){
67 for(j = 0; j < 3; j++){
68 if( i == j) {
69 eta(i, j) += dt2 * instaVol * (press(i, j) - targetPressure/OOPSEConstant::pressureConvert) / (NkBT*tb2);
70 } else {
71 eta(i, j) += dt2 * instaVol * press(i, j) / (NkBT*tb2);
72 }
73 }
74 }
75
76 for(i = 0; i < 3; i++) {
77 for (j = 0; j < 3; j++) {
78 oldEta(i, j) = eta(i, j);
79 }
80 }
81
82 }
83
84 void NPTf::evolveEtaB() {
85
86 int i;
87 int j;
88
89 for(i = 0; i < 3; i++) {
90 for (j = 0; j < 3; j++) {
91 prevEta(i, j) = eta(i, j);
92 }
93 }
94
95 for(i = 0; i < 3; i ++){
96 for(j = 0; j < 3; j++){
97 if( i == j) {
98 eta(i, j) = oldEta(i, j) + dt2 * instaVol *
99 (press(i, j) - targetPressure/OOPSEConstant::pressureConvert) / (NkBT*tb2);
100 } else {
101 eta(i, j) = oldEta(i, j) + dt2 * instaVol * press(i, j) / (NkBT*tb2);
102 }
103 }
104 }
105
106
107 }
108
109 void NPTf::calcVelScale(){
110
111 for (int i = 0; i < 3; i++ ) {
112 for (int j = 0; j < 3; j++ ) {
113 vScale(i, j) = eta(i, j);
114
115 if (i == j) {
116 vScale(i, j) += chi;
117 }
118 }
119 }
120 }
121
122 void NPTf::getVelScaleA(Vector3d& sc, const Vector3d& vel){
123 sc = vScale * vel;
124 }
125
126 void NPTf::getVelScaleB(Vector3d& sc, int index ) {
127 sc = vScale * oldVel[index];
128 }
129
130 void NPTf::getPosScale(const Vector3d& pos, const Vector3d& COM, int index, Vector3d& sc) {
131
132 /**@todo */
133 Vector3d rj = (oldPos[index] + pos)/2.0 -COM;
134 sc = eta * rj;
135 }
136
137 void NPTf::scaleSimBox(){
138
139 int i;
140 int j;
141 int k;
142 Mat3x3d scaleMat;
143 double eta2ij;
144 double bigScale, smallScale, offDiagMax;
145 Mat3x3d hm;
146 Mat3x3d hmnew;
147
148
149
150 // Scale the box after all the positions have been moved:
151
152 // Use a taylor expansion for eta products: Hmat = Hmat . exp(dt * etaMat)
153 // Hmat = Hmat . ( Ident + dt * etaMat + dt^2 * etaMat*etaMat / 2)
154
155 bigScale = 1.0;
156 smallScale = 1.0;
157 offDiagMax = 0.0;
158
159 for(i=0; i<3; i++){
160 for(j=0; j<3; j++){
161
162 // Calculate the matrix Product of the eta array (we only need
163 // the ij element right now):
164
165 eta2ij = 0.0;
166 for(k=0; k<3; k++){
167 eta2ij += eta(i, k) * eta(k, j);
168 }
169
170 scaleMat(i, j) = 0.0;
171 // identity matrix (see above):
172 if (i == j) scaleMat(i, j) = 1.0;
173 // Taylor expansion for the exponential truncated at second order:
174 scaleMat(i, j) += dt*eta(i, j) + 0.5*dt*dt*eta2ij;
175
176
177 if (i != j)
178 if (fabs(scaleMat(i, j)) > offDiagMax)
179 offDiagMax = fabs(scaleMat(i, j));
180 }
181
182 if (scaleMat(i, i) > bigScale) bigScale = scaleMat(i, i);
183 if (scaleMat(i, i) < smallScale) smallScale = scaleMat(i, i);
184 }
185
186 if ((bigScale > 1.01) || (smallScale < 0.99)) {
187 sprintf( painCave.errMsg,
188 "NPTf error: Attempting a Box scaling of more than 1 percent.\n"
189 " Check your tauBarostat, as it is probably too small!\n\n"
190 " scaleMat = [%lf\t%lf\t%lf]\n"
191 " [%lf\t%lf\t%lf]\n"
192 " [%lf\t%lf\t%lf]\n"
193 " eta = [%lf\t%lf\t%lf]\n"
194 " [%lf\t%lf\t%lf]\n"
195 " [%lf\t%lf\t%lf]\n",
196 scaleMat(0, 0),scaleMat(0, 1),scaleMat(0, 2),
197 scaleMat(1, 0),scaleMat(1, 1),scaleMat(1, 2),
198 scaleMat(2, 0),scaleMat(2, 1),scaleMat(2, 2),
199 eta(0, 0),eta(0, 1),eta(0, 2),
200 eta(1, 0),eta(1, 1),eta(1, 2),
201 eta(2, 0),eta(2, 1),eta(2, 2));
202 painCave.isFatal = 1;
203 simError();
204 } else if (offDiagMax > 0.01) {
205 sprintf( painCave.errMsg,
206 "NPTf error: Attempting an off-diagonal Box scaling of more than 1 percent.\n"
207 " Check your tauBarostat, as it is probably too small!\n\n"
208 " scaleMat = [%lf\t%lf\t%lf]\n"
209 " [%lf\t%lf\t%lf]\n"
210 " [%lf\t%lf\t%lf]\n"
211 " eta = [%lf\t%lf\t%lf]\n"
212 " [%lf\t%lf\t%lf]\n"
213 " [%lf\t%lf\t%lf]\n",
214 scaleMat(0, 0),scaleMat(0, 1),scaleMat(0, 2),
215 scaleMat(1, 0),scaleMat(1, 1),scaleMat(1, 2),
216 scaleMat(2, 0),scaleMat(2, 1),scaleMat(2, 2),
217 eta(0, 0),eta(0, 1),eta(0, 2),
218 eta(1, 0),eta(1, 1),eta(1, 2),
219 eta(2, 0),eta(2, 1),eta(2, 2));
220 painCave.isFatal = 1;
221 simError();
222 } else {
223
224 Mat3x3d hmat = currentSnapshot_->getHmat();
225 hmat = hmat *scaleMat;
226 currentSnapshot_->setHmat(hmat);
227
228 }
229 }
230
231 bool NPTf::etaConverged() {
232 int i;
233 double diffEta, sumEta;
234
235 sumEta = 0;
236 for(i = 0; i < 3; i++) {
237 sumEta += pow(prevEta(i, i) - eta(i, i), 2);
238 }
239
240 diffEta = sqrt( sumEta / 3.0 );
241
242 return ( diffEta <= etaTolerance );
243 }
244
245 double NPTf::calcConservedQuantity(){
246
247 chi= currentSnapshot_->getChi();
248 integralOfChidt = currentSnapshot_->getIntegralOfChiDt();
249 loadEta();
250
251 // We need NkBT a lot, so just set it here: This is the RAW number
252 // of integrableObjects, so no subtraction or addition of constraints or
253 // orientational degrees of freedom:
254 NkBT = info_->getNGlobalIntegrableObjects()*OOPSEConstant::kB *targetTemp;
255
256 // fkBT is used because the thermostat operates on more degrees of freedom
257 // than the barostat (when there are particles with orientational degrees
258 // of freedom).
259 fkBT = info_->getNdf()*OOPSEConstant::kB *targetTemp;
260
261 double conservedQuantity;
262 double totalEnergy;
263 double thermostat_kinetic;
264 double thermostat_potential;
265 double barostat_kinetic;
266 double barostat_potential;
267 double trEta;
268
269 totalEnergy = thermo.getTotalE();
270
271 thermostat_kinetic = fkBT * tt2 * chi * chi /(2.0 * OOPSEConstant::energyConvert);
272
273 thermostat_potential = fkBT* integralOfChidt / OOPSEConstant::energyConvert;
274
275 SquareMatrix<double, 3> tmp = eta.transpose() * eta;
276 trEta = tmp.trace();
277
278 barostat_kinetic = NkBT * tb2 * trEta /(2.0 * OOPSEConstant::energyConvert);
279
280 barostat_potential = (targetPressure * thermo.getVolume() / OOPSEConstant::pressureConvert) /OOPSEConstant::energyConvert;
281
282 conservedQuantity = totalEnergy + thermostat_kinetic + thermostat_potential +
283 barostat_kinetic + barostat_potential;
284
285 return conservedQuantity;
286
287 }
288
289 void NPTf::loadEta() {
290 eta= currentSnapshot_->getEta();
291
292 //if (!eta.isDiagonal()) {
293 // sprintf( painCave.errMsg,
294 // "NPTf error: the diagonal elements of eta matrix are not the same or etaMat is not a diagonal matrix");
295 // painCave.isFatal = 1;
296 // simError();
297 //}
298 }
299
300 void NPTf::saveEta() {
301 currentSnapshot_->setEta(eta);
302 }
303
304 }