ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-2.0/src/io/DumpWriter.cpp
(Generate patch)

Comparing trunk/OOPSE-2.0/src/io/DumpWriter.cpp (file contents):
Revision 1492 by tim, Fri Sep 24 16:27:58 2004 UTC vs.
Revision 1935 by tim, Wed Jan 12 23:24:55 2005 UTC

# Line 1 | Line 1
1 < #define _LARGEFILE_SOURCE64
2 < #define _FILE_OFFSET_BITS 64
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Acknowledgement of the program authors must be made in any
10 > *    publication of scientific results based in part on use of the
11 > *    program.  An acceptable form of acknowledgement is citation of
12 > *    the article in which the program was described (Matthew
13 > *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 > *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 > *    Parallel Simulation Engine for Molecular Dynamics,"
16 > *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 > *
18 > * 2. Redistributions of source code must retain the above copyright
19 > *    notice, this list of conditions and the following disclaimer.
20 > *
21 > * 3. Redistributions in binary form must reproduce the above copyright
22 > *    notice, this list of conditions and the following disclaimer in the
23 > *    documentation and/or other materials provided with the
24 > *    distribution.
25 > *
26 > * This software is provided "AS IS," without a warranty of any
27 > * kind. All express or implied conditions, representations and
28 > * warranties, including any implied warranty of merchantability,
29 > * fitness for a particular purpose or non-infringement, are hereby
30 > * excluded.  The University of Notre Dame and its licensors shall not
31 > * be liable for any damages suffered by licensee as a result of
32 > * using, modifying or distributing the software or its
33 > * derivatives. In no event will the University of Notre Dame or its
34 > * licensors be liable for any lost revenue, profit or data, or for
35 > * direct, indirect, special, consequential, incidental or punitive
36 > * damages, however caused and regardless of the theory of liability,
37 > * arising out of the use of or inability to use software, even if the
38 > * University of Notre Dame has been advised of the possibility of
39 > * such damages.
40 > */
41 >
42 > #include "io/DumpWriter.hpp"
43 > #include "primitives/Molecule.hpp"
44 > #include "utils/simError.h"
45  
4 #include <string.h>
5 #include <iostream>
6 #include <fstream>
7 #include <algorithm>
8 #include <utility>
9
46   #ifdef IS_MPI
47   #include <mpi.h>
12 #include "brains/mpiSimulation.hpp"
13
14 namespace dWrite{
15  void DieDieDie( void );
16 }
17
18 using namespace dWrite;
48   #endif //is_mpi
49  
50 < #include "io/ReadWrite.hpp"
22 < #include "utils/simError.h"
50 > namespace oopse {
51  
52 < DumpWriter::DumpWriter( SimInfo* the_entry_plug ){
53 <
26 <  entry_plug = the_entry_plug;
27 <
52 > DumpWriter::DumpWriter(SimInfo* info, const std::string& filename)
53 >                   : info_(info), filename_(filename){
54   #ifdef IS_MPI
55 <  if(worldRank == 0 ){
55 >
56 >    if (worldRank == 0) {
57   #endif // is_mpi
58  
59 <    dumpFile.open(entry_plug->sampleName.c_str(), ios::out | ios::trunc );
59 >        dumpFile_.open(filename_.c_str(), std::ios::out | std::ios::trunc);
60  
61 <    if( !dumpFile ){
61 >        if (!dumpFile_) {
62 >            sprintf(painCave.errMsg, "Could not open \"%s\" for dump output.\n",
63 >                    filename_.c_str());
64 >            painCave.isFatal = 1;
65 >            simError();
66 >        }
67  
68 <      sprintf( painCave.errMsg,
69 <               "Could not open \"%s\" for dump output.\n",
38 <               entry_plug->sampleName.c_str());
39 <      painCave.isFatal = 1;
40 <      simError();
68 > #ifdef IS_MPI
69 >
70      }
71  
72 < #ifdef IS_MPI
73 <  }
72 >    sprintf(checkPointMsg, "Sucessfully opened output file for dumping.\n");
73 >    MPIcheckPoint();
74  
46  //sort the local atoms by global index
47  sortByGlobalIndex();
48  
49  sprintf( checkPointMsg,
50           "Sucessfully opened output file for dumping.\n");
51  MPIcheckPoint();
75   #endif // is_mpi
76 +
77   }
78  
79 < DumpWriter::~DumpWriter( ){
79 > DumpWriter::~DumpWriter() {
80  
81   #ifdef IS_MPI
82 <  if(worldRank == 0 ){
82 >
83 >    if (worldRank == 0) {
84   #endif // is_mpi
85  
86 <    dumpFile.close();
86 >        dumpFile_.close();
87  
88   #ifdef IS_MPI
89 <  }
89 >
90 >    }
91 >
92   #endif // is_mpi
93 +
94   }
95  
96 < #ifdef IS_MPI
96 > void DumpWriter::writeCommentLine(std::ostream& os, Snapshot* s) {
97  
98 < /**
99 < * A hook function to load balancing
100 < */
98 >    double currentTime;
99 >    Mat3x3d hmat;
100 >    double chi;
101 >    double integralOfChiDt;
102 >    Mat3x3d eta;
103 >    
104 >    currentTime = s->getTime();
105 >    hmat = s->getHmat();
106 >    chi = s->getChi();
107 >    integralOfChiDt = s->getIntegralOfChiDt();
108 >    eta = s->getEta();
109 >    
110 >    os << currentTime << ";\t"
111 >         << hmat(0, 0) << "\t" << hmat(1, 0) << "\t" << hmat(2, 0) << ";\t"
112 >         << hmat(0, 1) << "\t" << hmat(1, 1) << "\t" << hmat(2, 1) << ";\t"
113 >         << hmat(0, 2) << "\t" << hmat(1, 2) << "\t" << hmat(2, 2) << ";\t";
114  
115 < void DumpWriter::update(){
75 <  sortByGlobalIndex();          
76 < }
77 <  
78 < /**
79 < * Auxiliary sorting function
80 < */
81 <
82 < bool indexSortingCriterion(const pair<int, int>& p1, const pair<int, int>& p2){
83 <  return p1.second < p2.second;
84 < }
115 >    //write out additional parameters, such as chi and eta
116  
117 < /**
118 < * Sorting the local index by global index
119 < */
120 <
121 < void DumpWriter::sortByGlobalIndex(){
122 <  Molecule* mols = entry_plug->molecules;  
123 <  indexArray.clear();
93 <  
94 <  for(int i = 0; i < entry_plug->n_mol;i++)
95 <    indexArray.push_back(make_pair(i, mols[i].getGlobalIndex()));
96 <  
97 <  sort(indexArray.begin(), indexArray.end(), indexSortingCriterion);    
117 >    os << chi << "\t" << integralOfChiDt << "\t;";
118 >
119 >    os << eta(0, 0) << "\t" << eta(1, 0) << "\t" << eta(2, 0) << ";\t"
120 >         << eta(0, 1) << "\t" << eta(1, 1) << "\t" << eta(2, 1) << ";\t"
121 >         << eta(0, 2) << "\t" << eta(1, 2) << "\t" << eta(2, 2) << ";";
122 >        
123 >    os << std::endl;
124   }
125  
126 < #endif
126 > void DumpWriter::writeFrame(std::ostream& os) {
127 >    const int BUFFERSIZE = 2000;
128 >    const int MINIBUFFERSIZE = 100;
129  
130 < void DumpWriter::writeDump(double currentTime){
130 >    char tempBuffer[BUFFERSIZE];
131 >    char writeLine[BUFFERSIZE];
132  
133 <  ofstream finalOut;
134 <  vector<ofstream*> fileStreams;
133 >    Quat4d q;
134 >    Vector3d ji;
135 >    Vector3d pos;
136 >    Vector3d vel;
137  
138 < #ifdef IS_MPI
139 <  if(worldRank == 0 ){
140 < #endif    
141 <    finalOut.open( entry_plug->finalName.c_str(), ios::out | ios::trunc );
142 <    if( !finalOut ){
143 <      sprintf( painCave.errMsg,
144 <               "Could not open \"%s\" for final dump output.\n",
114 <               entry_plug->finalName.c_str() );
115 <      painCave.isFatal = 1;
116 <      simError();
117 <    }
118 < #ifdef IS_MPI
119 <  }
120 < #endif // is_mpi
138 >    Molecule* mol;
139 >    StuntDouble* integrableObject;
140 >    SimInfo::MoleculeIterator mi;
141 >    Molecule::IntegrableObjectIterator ii;
142 >  
143 >    int nTotObjects;    
144 >    nTotObjects = info_->getNGlobalIntegrableObjects();
145  
146 <  fileStreams.push_back(&finalOut);
123 <  fileStreams.push_back(&dumpFile);
146 > #ifndef IS_MPI
147  
125  writeFrame(fileStreams, currentTime);
148  
149 < #ifdef IS_MPI
150 <  finalOut.close();
151 < #endif
130 <        
131 < }
149 >    os << nTotObjects << "\n";
150 >        
151 >    writeCommentLine(os, info_->getSnapshotManager()->getCurrentSnapshot());
152  
153 < void DumpWriter::writeFinal(double currentTime){
153 >    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
154  
155 <  ofstream finalOut;
156 <  vector<ofstream*> fileStreams;
155 >        for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
156 >            integrableObject = mol->nextIntegrableObject(ii)) {
157 >                
158  
159 < #ifdef IS_MPI
160 <  if(worldRank == 0 ){
140 < #endif // is_mpi
159 >            pos = integrableObject->getPos();
160 >            vel = integrableObject->getVel();
161  
162 <    finalOut.open( entry_plug->finalName.c_str(), ios::out | ios::trunc );
162 >            sprintf(tempBuffer, "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t",
163 >                    integrableObject->getType().c_str(),
164 >                    pos[0], pos[1], pos[2],
165 >                    vel[0], vel[1], vel[2]);
166  
167 <    if( !finalOut ){
145 <      sprintf( painCave.errMsg,
146 <               "Could not open \"%s\" for final dump output.\n",
147 <               entry_plug->finalName.c_str() );
148 <      painCave.isFatal = 1;
149 <      simError();
150 <    }
167 >            strcpy(writeLine, tempBuffer);
168  
169 < #ifdef IS_MPI
170 <  }
171 < #endif // is_mpi
155 <  
156 <  fileStreams.push_back(&finalOut);  
157 <  writeFrame(fileStreams, currentTime);
169 >            if (integrableObject->isDirectional()) {
170 >                q = integrableObject->getQ();
171 >                ji = integrableObject->getJ();
172  
173 < #ifdef IS_MPI
174 <  finalOut.close();
175 < #endif
176 <  
177 < }
173 >                sprintf(tempBuffer, "%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\n",
174 >                        q[0], q[1], q[2], q[3],
175 >                        ji[0], ji[1], ji[2]);
176 >                strcat(writeLine, tempBuffer);
177 >            } else {
178 >                strcat(writeLine, "0.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0\n");
179 >            }
180  
181 < void DumpWriter::writeFrame( vector<ofstream*>& outFile, double currentTime ){
181 >            os << writeLine;
182  
183 <  const int BUFFERSIZE = 2000;
184 <  const int MINIBUFFERSIZE = 100;
183 >        }
184 >    }
185  
186 <  char tempBuffer[BUFFERSIZE];  
187 <  char writeLine[BUFFERSIZE];
188 <
189 <  int i;
190 <  unsigned int k;
186 > #else // is_mpi
187 >    /*********************************************************************
188 >     * Documentation?  You want DOCUMENTATION?
189 >     *
190 >     * Why all the potatoes below?  
191 >     *
192 >     * To make a long story short, the original version of DumpWriter
193 >     * worked in the most inefficient way possible.  Node 0 would
194 >     * poke each of the node for an individual atom's formatted data
195 >     * as node 0 worked its way down the global index. This was particularly
196 >     * inefficient since the method blocked all processors at every atom
197 >     * (and did it twice!).
198 >     *
199 >     * An intermediate version of DumpWriter could be described from Node
200 >     * zero's perspective as follows:
201 >     *
202 >     *  1) Have 100 of your friends stand in a circle.
203 >     *  2) When you say go, have all of them start tossing potatoes at
204 >     *     you (one at a time).
205 >     *  3) Catch the potatoes.
206 >     *
207 >     * It was an improvement, but MPI has buffers and caches that could
208 >     * best be described in this analogy as "potato nets", so there's no
209 >     * need to block the processors atom-by-atom.
210 >     *
211 >     * This new and improved DumpWriter works in an even more efficient
212 >     * way:
213 >     *
214 >     *  1) Have 100 of your friend stand in a circle.
215 >     *  2) When you say go, have them start tossing 5-pound bags of
216 >     *     potatoes at you.
217 >     *  3) Once you've caught a friend's bag of potatoes,
218 >     *     toss them a spud to let them know they can toss another bag.
219 >     *
220 >     * How's THAT for documentation?
221 >     *
222 >     *********************************************************************/
223 >    const int masterNode = 0;
224  
225 < #ifdef IS_MPI
226 <  
227 <  /*********************************************************************
228 <   * Documentation?  You want DOCUMENTATION?
229 <   *
230 <   * Why all the potatoes below?  
231 <   *
232 <   * To make a long story short, the original version of DumpWriter
233 <   * worked in the most inefficient way possible.  Node 0 would
234 <   * poke each of the node for an individual atom's formatted data
235 <   * as node 0 worked its way down the global index. This was particularly
236 <   * inefficient since the method blocked all processors at every atom
188 <   * (and did it twice!).
189 <   *
190 <   * An intermediate version of DumpWriter could be described from Node
191 <   * zero's perspective as follows:
192 <   *
193 <   *  1) Have 100 of your friends stand in a circle.
194 <   *  2) When you say go, have all of them start tossing potatoes at
195 <   *     you (one at a time).
196 <   *  3) Catch the potatoes.
197 <   *
198 <   * It was an improvement, but MPI has buffers and caches that could
199 <   * best be described in this analogy as "potato nets", so there's no
200 <   * need to block the processors atom-by-atom.
201 <   *
202 <   * This new and improved DumpWriter works in an even more efficient
203 <   * way:
204 <   *
205 <   *  1) Have 100 of your friend stand in a circle.
206 <   *  2) When you say go, have them start tossing 5-pound bags of
207 <   *     potatoes at you.
208 <   *  3) Once you've caught a friend's bag of potatoes,
209 <   *     toss them a spud to let them know they can toss another bag.
210 <   *
211 <   * How's THAT for documentation?
212 <   *
213 <   *********************************************************************/
214 <
215 <  int *potatoes;
216 <  int myPotato;
217 <
218 <  int nProc;
219 <  int j, which_node, done, which_atom, local_index, currentIndex;
220 <  double atomData[13];
221 <  int isDirectional;
222 <  char* atomTypeString;
223 <  char MPIatomTypeString[MINIBUFFERSIZE];
224 <  int nObjects;
225 <  int msgLen; // the length of message actually recieved at master nodes
226 < #endif //is_mpi
227 <
228 <  double q[4], ji[3];
229 <  DirectionalAtom* dAtom;
230 <  double pos[3], vel[3];
231 <  int nTotObjects;
232 <  StuntDouble* sd;
233 <  char* molName;
234 <  vector<StuntDouble*> integrableObjects;
235 <  vector<StuntDouble*>::iterator iter;
236 <  nTotObjects = entry_plug->getTotIntegrableObjects();
237 < #ifndef IS_MPI
238 <  
239 <  for(k = 0; k < outFile.size(); k++){
240 <    *outFile[k] << nTotObjects << "\n";
241 <
242 <    *outFile[k] << currentTime << ";\t"
243 <               << entry_plug->Hmat[0][0] << "\t"
244 <                     << entry_plug->Hmat[1][0] << "\t"
245 <                     << entry_plug->Hmat[2][0] << ";\t"
246 <              
247 <               << entry_plug->Hmat[0][1] << "\t"
248 <                     << entry_plug->Hmat[1][1] << "\t"
249 <                     << entry_plug->Hmat[2][1] << ";\t"
250 <
251 <                     << entry_plug->Hmat[0][2] << "\t"
252 <                     << entry_plug->Hmat[1][2] << "\t"
253 <                     << entry_plug->Hmat[2][2] << ";";
254 <
255 <    //write out additional parameters, such as chi and eta
256 <    *outFile[k] << entry_plug->the_integrator->getAdditionalParameters() << endl;
257 <  }
258 <  
259 <  for( i=0; i< entry_plug->n_mol; i++ ){
260 <
261 <    integrableObjects = entry_plug->molecules[i].getIntegrableObjects();
262 <    molName = (entry_plug->compStamps[entry_plug->molecules[i].getStampID()])->getID();
225 >    int * potatoes;
226 >    int myPotato;
227 >    int nProc;
228 >    int which_node;
229 >    double atomData[13];
230 >    int isDirectional;
231 >    const char * atomTypeString;
232 >    char MPIatomTypeString[MINIBUFFERSIZE];
233 >    int msgLen; // the length of message actually recieved at master nodes
234 >    int haveError;
235 >    MPI_Status istatus;
236 >    int nCurObj;
237      
238 <    for( iter = integrableObjects.begin();iter !=  integrableObjects.end(); ++iter){
239 <      sd = *iter;
240 <      sd->getPos(pos);
241 <      sd->getVel(vel);
238 >    // code to find maximum tag value
239 >    int * tagub;
240 >    int flag;
241 >    int MAXTAG;
242 >    MPI_Attr_get(MPI_COMM_WORLD, MPI_TAG_UB, &tagub, &flag);
243  
244 <      sprintf( tempBuffer,
245 <             "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t",
246 <             sd->getType(),
247 <             pos[0],
248 <             pos[1],
274 <             pos[2],
275 <             vel[0],
276 <             vel[1],
277 <             vel[2]);
278 <      strcpy( writeLine, tempBuffer );
244 >    if (flag) {
245 >        MAXTAG = *tagub;
246 >    } else {
247 >        MAXTAG = 32767;
248 >    }
249  
250 <      if( sd->isDirectional() ){
250 >    if (worldRank == masterNode) { //master node (node 0) is responsible for writing the dump file
251  
252 <        sd->getQ( q );
283 <        sd->getJ( ji );
252 >        // Node 0 needs a list of the magic potatoes for each processor;
253  
254 <        sprintf( tempBuffer,
255 <               "%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\n",
287 <               q[0],
288 <               q[1],
289 <               q[2],
290 <               q[3],
291 <                 ji[0],
292 <                 ji[1],
293 <                 ji[2]);
294 <        strcat( writeLine, tempBuffer );
295 <      }
296 <      else
297 <        strcat( writeLine, "0.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0\n" );
298 <    
299 <      for(k = 0; k < outFile.size(); k++)
300 <        *outFile[k] << writeLine;      
301 <    }
254 >        MPI_Comm_size(MPI_COMM_WORLD, &nProc);
255 >        potatoes = new int[nProc];
256  
257 < }
257 >        //write out the comment lines
258 >        for(int i = 0; i < nProc; i++) {
259 >            potatoes[i] = 0;
260 >        }
261  
305 #else // is_mpi
262  
263 <  /* code to find maximum tag value */
264 <  
309 <  int *tagub, flag, MAXTAG;
310 <  MPI_Attr_get(MPI_COMM_WORLD, MPI_TAG_UB, &tagub, &flag);
311 <  if (flag) {
312 <    MAXTAG = *tagub;
313 <  } else {
314 <    MAXTAG = 32767;
315 <  }  
263 >        os << nTotObjects << "\n";
264 >        writeCommentLine(os, info_->getSnapshotManager()->getCurrentSnapshot());
265  
266 <  int haveError;
266 >        for(int i = 0; i < info_->getNGlobalMolecules(); i++) {
267  
268 <  MPI_Status istatus;
320 <  int nCurObj;
321 <  int *MolToProcMap = mpiSim->getMolToProcMap();
268 >            // Get the Node number which has this atom;
269  
270 <  // write out header and node 0's coordinates
270 >            which_node = info_->getMolToProc(i);
271  
272 <  if( worldRank == 0 ){
272 >            if (which_node != masterNode) { //current molecule is in slave node
273 >                if (potatoes[which_node] + 1 >= MAXTAG) {
274 >                    // The potato was going to exceed the maximum value,
275 >                    // so wrap this processor potato back to 0:        
276  
277 <    // Node 0 needs a list of the magic potatoes for each processor;
277 >                    potatoes[which_node] = 0;
278 >                    MPI_Send(&potatoes[which_node], 1, MPI_INT, which_node, 0,
279 >                             MPI_COMM_WORLD);
280 >                }
281  
282 <    nProc = mpiSim->getNProcessors();
330 <    potatoes = new int[nProc];
282 >                myPotato = potatoes[which_node];
283  
284 <    //write out the comment lines
285 <    for (i = 0; i < nProc; i++)
286 <      potatoes[i] = 0;
287 <    
336 <      for(k = 0; k < outFile.size(); k++){
337 <        *outFile[k] << nTotObjects << "\n";
284 >                //recieve the number of integrableObject in current molecule
285 >                MPI_Recv(&nCurObj, 1, MPI_INT, which_node, myPotato,
286 >                         MPI_COMM_WORLD, &istatus);
287 >                myPotato++;
288  
289 <        *outFile[k] << currentTime << ";\t"
290 <                         << entry_plug->Hmat[0][0] << "\t"
291 <                         << entry_plug->Hmat[1][0] << "\t"
292 <                         << entry_plug->Hmat[2][0] << ";\t"
289 >                for(int l = 0; l < nCurObj; l++) {
290 >                    if (potatoes[which_node] + 2 >= MAXTAG) {
291 >                        // The potato was going to exceed the maximum value,
292 >                        // so wrap this processor potato back to 0:        
293  
294 <                         << entry_plug->Hmat[0][1] << "\t"
295 <                         << entry_plug->Hmat[1][1] << "\t"
296 <                         << entry_plug->Hmat[2][1] << ";\t"
294 >                        potatoes[which_node] = 0;
295 >                        MPI_Send(&potatoes[which_node], 1, MPI_INT, which_node,
296 >                                 0, MPI_COMM_WORLD);
297 >                    }
298  
299 <                         << entry_plug->Hmat[0][2] << "\t"
300 <                         << entry_plug->Hmat[1][2] << "\t"
301 <                         << entry_plug->Hmat[2][2] << ";";
351 <  
352 <        *outFile[k] << entry_plug->the_integrator->getAdditionalParameters() << endl;
353 <    }
299 >                    MPI_Recv(MPIatomTypeString, MINIBUFFERSIZE, MPI_CHAR,
300 >                             which_node, myPotato, MPI_COMM_WORLD,
301 >                             &istatus);
302  
303 <    currentIndex = 0;
303 >                    atomTypeString = MPIatomTypeString;
304  
305 <    for (i = 0 ; i < mpiSim->getNMolGlobal(); i++ ) {
358 <      
359 <      // Get the Node number which has this atom;
360 <      
361 <      which_node = MolToProcMap[i];
362 <      
363 <      if (which_node != 0) {
364 <        
365 <        if (potatoes[which_node] + 1 >= MAXTAG) {
366 <          // The potato was going to exceed the maximum value,
367 <          // so wrap this processor potato back to 0:        
305 >                    myPotato++;
306  
307 <          potatoes[which_node] = 0;          
308 <          MPI_Send(&potatoes[which_node], 1, MPI_INT, which_node, 0, MPI_COMM_WORLD);
309 <          
372 <        }
307 >                    MPI_Recv(atomData, 13, MPI_DOUBLE, which_node, myPotato,
308 >                             MPI_COMM_WORLD, &istatus);
309 >                    myPotato++;
310  
311 <        myPotato = potatoes[which_node];        
311 >                    MPI_Get_count(&istatus, MPI_DOUBLE, &msgLen);
312  
313 <        //recieve the number of integrableObject in current molecule
314 <        MPI_Recv(&nCurObj, 1, MPI_INT, which_node,
315 <                 myPotato, MPI_COMM_WORLD, &istatus);
316 <        myPotato++;
380 <        
381 <        for(int l = 0; l < nCurObj; l++){
313 >                    if (msgLen == 13)
314 >                        isDirectional = 1;
315 >                    else
316 >                        isDirectional = 0;
317  
318 <          if (potatoes[which_node] + 2 >= MAXTAG) {
384 <            // The potato was going to exceed the maximum value,
385 <            // so wrap this processor potato back to 0:        
318 >                    // If we've survived to here, format the line:
319  
320 <            potatoes[which_node] = 0;          
321 <            MPI_Send(&potatoes[which_node], 1, MPI_INT, which_node, 0, MPI_COMM_WORLD);
322 <            
323 <          }
320 >                    if (!isDirectional) {
321 >                        sprintf(writeLine, "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t",
322 >                                atomTypeString, atomData[0],
323 >                                atomData[1], atomData[2],
324 >                                atomData[3], atomData[4],
325 >                                atomData[5]);
326  
327 <          MPI_Recv(MPIatomTypeString, MINIBUFFERSIZE, MPI_CHAR, which_node,
328 <          myPotato, MPI_COMM_WORLD, &istatus);
327 >                        strcat(writeLine,
328 >                               "0.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0\n");
329 >                    } else {
330 >                        sprintf(writeLine,
331 >                                "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\n",
332 >                                atomTypeString,
333 >                                atomData[0],
334 >                                atomData[1],
335 >                                atomData[2],
336 >                                atomData[3],
337 >                                atomData[4],
338 >                                atomData[5],
339 >                                atomData[6],
340 >                                atomData[7],
341 >                                atomData[8],
342 >                                atomData[9],
343 >                                atomData[10],
344 >                                atomData[11],
345 >                                atomData[12]);
346 >                    }
347  
348 <          atomTypeString = MPIatomTypeString;
348 >                    os << writeLine;
349  
350 <          myPotato++;
350 >                } // end for(int l =0)
351  
352 <          MPI_Recv(atomData, 13, MPI_DOUBLE, which_node, myPotato, MPI_COMM_WORLD, &istatus);
353 <          myPotato++;
352 >                potatoes[which_node] = myPotato;
353 >            } else { //master node has current molecule
354  
355 <          MPI_Get_count(&istatus, MPI_DOUBLE, &msgLen);
355 >                mol = info_->getMoleculeByGlobalIndex(i);
356  
357 <          if(msgLen  == 13)
358 <            isDirectional = 1;
359 <          else
360 <            isDirectional = 0;
361 <          
362 <          // If we've survived to here, format the line:
363 <            
364 <          if (!isDirectional) {
365 <        
366 <            sprintf( writeLine,
414 <                 "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t",
415 <                 atomTypeString,
416 <                 atomData[0],
417 <                 atomData[1],
418 <                 atomData[2],
419 <                 atomData[3],
420 <                 atomData[4],
421 <                 atomData[5]);
422 <        
423 <           strcat( writeLine, "0.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0\n" );
424 <        
425 <          }
426 <          else {
427 <        
428 <                sprintf( writeLine,
429 <                         "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\n",
430 <                         atomTypeString,
431 <                         atomData[0],
432 <                         atomData[1],
433 <                         atomData[2],
434 <                         atomData[3],
435 <                         atomData[4],
436 <                         atomData[5],
437 <                         atomData[6],
438 <                         atomData[7],
439 <                         atomData[8],
440 <                         atomData[9],
441 <                         atomData[10],
442 <                         atomData[11],
443 <                         atomData[12]);
444 <            
445 <          }
446 <          
447 <          for(k = 0; k < outFile.size(); k++)
448 <            *outFile[k] << writeLine;            
357 >                if (mol == NULL) {
358 >                    sprintf(painCave.errMsg, "Molecule not found on node %d!", worldRank);
359 >                    painCave.isFatal = 1;
360 >                    simError();
361 >                }
362 >                
363 >                for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
364 >                    integrableObject = mol->nextIntegrableObject(ii)) {
365 >                        
366 >                    atomTypeString = integrableObject->getType().c_str();
367  
368 <        }// end for(int l =0)
369 <        potatoes[which_node] = myPotato;
368 >                    pos = integrableObject->getPos();
369 >                    vel = integrableObject->getVel();
370  
371 <      }
372 <      else {
373 <        
456 <        haveError = 0;
457 <        
458 <            local_index = indexArray[currentIndex].first;        
371 >                    atomData[0] = pos[0];
372 >                    atomData[1] = pos[1];
373 >                    atomData[2] = pos[2];
374  
375 <        integrableObjects = (entry_plug->molecules[local_index]).getIntegrableObjects();
375 >                    atomData[3] = vel[0];
376 >                    atomData[4] = vel[1];
377 >                    atomData[5] = vel[2];
378  
379 <        for(iter= integrableObjects.begin(); iter != integrableObjects.end(); ++iter){    
463 <                sd = *iter;
464 <            atomTypeString = sd->getType();
465 <            
466 <            sd->getPos(pos);
467 <            sd->getVel(vel);          
468 <          
469 <            atomData[0] = pos[0];
470 <            atomData[1] = pos[1];
471 <            atomData[2] = pos[2];
379 >                    isDirectional = 0;
380  
381 <            atomData[3] = vel[0];
382 <            atomData[4] = vel[1];
475 <            atomData[5] = vel[2];
476 <              
477 <            isDirectional = 0;
381 >                    if (integrableObject->isDirectional()) {
382 >                        isDirectional = 1;
383  
384 <            if( sd->isDirectional() ){
384 >                        q = integrableObject->getQ();
385 >                        ji = integrableObject->getJ();
386  
387 <              isDirectional = 1;
388 <                
389 <              sd->getQ( q );
484 <              sd->getJ( ji );
387 >                        for(int j = 0; j < 6; j++) {
388 >                            atomData[j] = atomData[j];
389 >                        }
390  
391 <              for (int j = 0; j < 6 ; j++)
392 <                atomData[j] = atomData[j];            
393 <              
394 <              atomData[6] = q[0];
490 <              atomData[7] = q[1];
491 <              atomData[8] = q[2];
492 <              atomData[9] = q[3];
493 <              
494 <              atomData[10] = ji[0];
495 <              atomData[11] = ji[1];
496 <              atomData[12] = ji[2];
497 <            }
498 <            
499 <            // If we've survived to here, format the line:
500 <            
501 <            if (!isDirectional) {
502 <        
503 <              sprintf( writeLine,
504 <                 "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t",
505 <                 atomTypeString,
506 <                 atomData[0],
507 <                 atomData[1],
508 <                 atomData[2],
509 <                 atomData[3],
510 <                 atomData[4],
511 <                 atomData[5]);
512 <        
513 <             strcat( writeLine, "0.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0\n" );
514 <        
515 <            }
516 <            else {
517 <        
518 <                sprintf( writeLine,
519 <                         "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\n",
520 <                         atomTypeString,
521 <                         atomData[0],
522 <                         atomData[1],
523 <                         atomData[2],
524 <                         atomData[3],
525 <                         atomData[4],
526 <                         atomData[5],
527 <                         atomData[6],
528 <                         atomData[7],
529 <                         atomData[8],
530 <                         atomData[9],
531 <                         atomData[10],
532 <                         atomData[11],
533 <                         atomData[12]);
534 <              
535 <            }
536 <            
537 <            for(k = 0; k < outFile.size(); k++)
538 <              *outFile[k] << writeLine;
539 <            
540 <            
541 <        }//end for(iter = integrableObject.begin())
542 <        
543 <      currentIndex++;
544 <      }
391 >                        atomData[6] = q[0];
392 >                        atomData[7] = q[1];
393 >                        atomData[8] = q[2];
394 >                        atomData[9] = q[3];
395  
396 <    }//end for(i = 0; i < mpiSim->getNmol())
397 <    
398 <    for(k = 0; k < outFile.size(); k++)
399 <      outFile[k]->flush();
550 <    
551 <    sprintf( checkPointMsg,
552 <             "Sucessfully took a dump.\n");
553 <    
554 <    MPIcheckPoint();        
555 <    
556 <    delete[] potatoes;
557 <    
558 <  } else {
396 >                        atomData[10] = ji[0];
397 >                        atomData[11] = ji[1];
398 >                        atomData[12] = ji[2];
399 >                    }
400  
401 <    // worldRank != 0, so I'm a remote node.  
401 >                    // If we've survived to here, format the line:
402  
403 <    // Set my magic potato to 0:
404 <
405 <    myPotato = 0;
406 <    currentIndex = 0;
407 <    
408 <    for (i = 0 ; i < mpiSim->getNMolGlobal(); i++ ) {
568 <      
569 <      // Am I the node which has this integrableObject?
570 <      
571 <      if (MolToProcMap[i] == worldRank) {
403 >                    if (!isDirectional) {
404 >                        sprintf(writeLine, "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t",
405 >                                atomTypeString, atomData[0],
406 >                                atomData[1], atomData[2],
407 >                                atomData[3], atomData[4],
408 >                                atomData[5]);
409  
410 +                        strcat(writeLine,
411 +                               "0.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0\n");
412 +                    } else {
413 +                        sprintf(writeLine,
414 +                                "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\n",
415 +                                atomTypeString,
416 +                                atomData[0],
417 +                                atomData[1],
418 +                                atomData[2],
419 +                                atomData[3],
420 +                                atomData[4],
421 +                                atomData[5],
422 +                                atomData[6],
423 +                                atomData[7],
424 +                                atomData[8],
425 +                                atomData[9],
426 +                                atomData[10],
427 +                                atomData[11],
428 +                                atomData[12]);
429 +                    }
430  
574        if (myPotato + 1 >= MAXTAG) {
575          
576          // The potato was going to exceed the maximum value,
577          // so wrap this processor potato back to 0 (and block until
578          // node 0 says we can go:
579          
580          MPI_Recv(&myPotato, 1, MPI_INT, 0, 0, MPI_COMM_WORLD, &istatus);
581          
582        }
431  
432 <          local_index = indexArray[currentIndex].first;        
585 <          integrableObjects = entry_plug->molecules[local_index].getIntegrableObjects();
586 <          
587 <          nCurObj = integrableObjects.size();
588 <                      
589 <          MPI_Send(&nCurObj, 1, MPI_INT, 0,
590 <                             myPotato, MPI_COMM_WORLD);
591 <          myPotato++;
432 >                    os << writeLine;
433  
434 <          for( iter = integrableObjects.begin(); iter  != integrableObjects.end(); iter++){
594 <
595 <            if (myPotato + 2 >= MAXTAG) {
596 <          
597 <              // The potato was going to exceed the maximum value,
598 <              // so wrap this processor potato back to 0 (and block until
599 <              // node 0 says we can go:
600 <          
601 <              MPI_Recv(&myPotato, 1, MPI_INT, 0, 0, MPI_COMM_WORLD, &istatus);
602 <              
434 >                } //end for(iter = integrableObject.begin())
435              }
436 <            
605 <            sd = *iter;
606 <            
607 <            atomTypeString = sd->getType();
436 >        } //end for(i = 0; i < mpiSim->getNmol())
437  
438 <            sd->getPos(pos);
439 <            sd->getVel(vel);
438 >        os.flush();
439 >        
440 >        sprintf(checkPointMsg, "Sucessfully took a dump.\n");
441 >        MPIcheckPoint();
442  
443 <            atomData[0] = pos[0];
444 <            atomData[1] = pos[1];
614 <            atomData[2] = pos[2];
443 >        delete [] potatoes;
444 >    } else {
445  
446 <            atomData[3] = vel[0];
617 <            atomData[4] = vel[1];
618 <            atomData[5] = vel[2];
619 <              
620 <            isDirectional = 0;
446 >        // worldRank != 0, so I'm a remote node.  
447  
448 <            if( sd->isDirectional() ){
448 >        // Set my magic potato to 0:
449  
450 <                isDirectional = 1;
450 >        myPotato = 0;
451 >
452 >        for(int i = 0; i < info_->getNGlobalMolecules(); i++) {
453 >
454 >            // Am I the node which has this integrableObject?
455 >            int whichNode = info_->getMolToProc(i);
456 >            if (whichNode == worldRank) {
457 >                if (myPotato + 1 >= MAXTAG) {
458 >
459 >                    // The potato was going to exceed the maximum value,
460 >                    // so wrap this processor potato back to 0 (and block until
461 >                    // node 0 says we can go:
462 >
463 >                    MPI_Recv(&myPotato, 1, MPI_INT, 0, 0, MPI_COMM_WORLD,
464 >                             &istatus);
465 >                }
466 >
467 >                mol = info_->getMoleculeByGlobalIndex(i);
468 >
469                  
470 <                sd->getQ( q );
627 <                sd->getJ( ji );
628 <                
629 <                
630 <                atomData[6] = q[0];
631 <                atomData[7] = q[1];
632 <                atomData[8] = q[2];
633 <                atomData[9] = q[3];
634 <      
635 <                atomData[10] = ji[0];
636 <                atomData[11] = ji[1];
637 <                atomData[12] = ji[2];
638 <              }
470 >                nCurObj = mol->getNIntegrableObjects();
471  
472 <            
473 <            strncpy(MPIatomTypeString, atomTypeString, MINIBUFFERSIZE);
472 >                MPI_Send(&nCurObj, 1, MPI_INT, 0, myPotato, MPI_COMM_WORLD);
473 >                myPotato++;
474  
475 <            // null terminate the string before sending (just in case):
476 <            MPIatomTypeString[MINIBUFFERSIZE-1] = '\0';
475 >                for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
476 >                    integrableObject = mol->nextIntegrableObject(ii)) {
477  
478 <            MPI_Send(MPIatomTypeString, MINIBUFFERSIZE, MPI_CHAR, 0,
647 <                             myPotato, MPI_COMM_WORLD);
648 <            
649 <            myPotato++;
650 <            
651 <            if (isDirectional) {
478 >                    if (myPotato + 2 >= MAXTAG) {
479  
480 <              MPI_Send(atomData, 13, MPI_DOUBLE, 0,
481 <                       myPotato, MPI_COMM_WORLD);
482 <              
656 <            } else {
480 >                        // The potato was going to exceed the maximum value,
481 >                        // so wrap this processor potato back to 0 (and block until
482 >                        // node 0 says we can go:
483  
484 <              MPI_Send(atomData, 6, MPI_DOUBLE, 0,
485 <                       myPotato, MPI_COMM_WORLD);
486 <            }
484 >                        MPI_Recv(&myPotato, 1, MPI_INT, 0, 0, MPI_COMM_WORLD,
485 >                                 &istatus);
486 >                    }
487  
488 <            myPotato++;  
488 >                    atomTypeString = integrableObject->getType().c_str();
489  
490 <          }
490 >                    pos = integrableObject->getPos();
491 >                    vel = integrableObject->getVel();
492  
493 <          currentIndex++;    
494 <          
495 <        }
669 <      
670 <      }
493 >                    atomData[0] = pos[0];
494 >                    atomData[1] = pos[1];
495 >                    atomData[2] = pos[2];
496  
497 <    sprintf( checkPointMsg,
498 <             "Sucessfully took a dump.\n");
499 <    MPIcheckPoint();                
675 <    
676 <    }
497 >                    atomData[3] = vel[0];
498 >                    atomData[4] = vel[1];
499 >                    atomData[5] = vel[2];
500  
501 +                    isDirectional = 0;
502  
503 <  
504 < #endif // is_mpi
681 < }
503 >                    if (integrableObject->isDirectional()) {
504 >                        isDirectional = 1;
505  
506 < #ifdef IS_MPI
506 >                        q = integrableObject->getQ();
507 >                        ji = integrableObject->getJ();
508  
509 < // a couple of functions to let us escape the write loop
509 >                        atomData[6] = q[0];
510 >                        atomData[7] = q[1];
511 >                        atomData[8] = q[2];
512 >                        atomData[9] = q[3];
513  
514 < void dWrite::DieDieDie( void ){
514 >                        atomData[10] = ji[0];
515 >                        atomData[11] = ji[1];
516 >                        atomData[12] = ji[2];
517 >                    }
518  
519 <  MPI_Finalize();
520 <  exit (0);
519 >                    strncpy(MPIatomTypeString, atomTypeString, MINIBUFFERSIZE);
520 >
521 >                    // null terminate the  std::string before sending (just in case):
522 >                    MPIatomTypeString[MINIBUFFERSIZE - 1] = '\0';
523 >
524 >                    MPI_Send(MPIatomTypeString, MINIBUFFERSIZE, MPI_CHAR, 0,
525 >                             myPotato, MPI_COMM_WORLD);
526 >
527 >                    myPotato++;
528 >
529 >                    if (isDirectional) {
530 >                        MPI_Send(atomData, 13, MPI_DOUBLE, 0, myPotato,
531 >                                 MPI_COMM_WORLD);
532 >                    } else {
533 >                        MPI_Send(atomData, 6, MPI_DOUBLE, 0, myPotato,
534 >                                 MPI_COMM_WORLD);
535 >                    }
536 >
537 >                    myPotato++;
538 >                }
539 >                    
540 >            }
541 >            
542 >        }
543 >        sprintf(checkPointMsg, "Sucessfully took a dump.\n");
544 >        MPIcheckPoint();
545 >    }
546 >
547 > #endif // is_mpi
548 >
549   }
550  
551 < #endif //is_mpi
551 > }//end namespace oopse

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines