ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-2.0/src/math/SquareMatrix.hpp
Revision: 1569
Committed: Thu Oct 14 23:28:09 2004 UTC (19 years, 8 months ago) by tim
File size: 8995 byte(s)
Log Message:
math library in progress

File Contents

# User Rev Content
1 tim 1563 /*
2     * Copyright (C) 2000-2004 Object Oriented Parallel Simulation Engine (OOPSE) project
3     *
4     * Contact: oopse@oopse.org
5     *
6     * This program is free software; you can redistribute it and/or
7     * modify it under the terms of the GNU Lesser General Public License
8     * as published by the Free Software Foundation; either version 2.1
9     * of the License, or (at your option) any later version.
10     * All we ask is that proper credit is given for our work, which includes
11     * - but is not limited to - adding the above copyright notice to the beginning
12     * of your source code files, and to any copyright notice that you may distribute
13     * with programs based on this work.
14     *
15     * This program is distributed in the hope that it will be useful,
16     * but WITHOUT ANY WARRANTY; without even the implied warranty of
17     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18     * GNU Lesser General Public License for more details.
19     *
20     * You should have received a copy of the GNU Lesser General Public License
21     * along with this program; if not, write to the Free Software
22     * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23     *
24     */
25    
26     /**
27     * @file SquareMatrix.hpp
28     * @author Teng Lin
29     * @date 10/11/2004
30     * @version 1.0
31     */
32     #ifndef MATH_SQUAREMATRIX_HPP
33     #define MATH_SQUAREMATRIX_HPP
34    
35 tim 1567 #include "math/RectMatrix.hpp"
36 tim 1563
37     namespace oopse {
38    
39     /**
40     * @class SquareMatrix SquareMatrix.hpp "math/SquareMatrix.hpp"
41     * @brief A square matrix class
42     * @template Real the element type
43     * @template Dim the dimension of the square matrix
44     */
45     template<typename Real, int Dim>
46 tim 1567 class SquareMatrix : public RectMatrix<Real, Dim, Dim> {
47 tim 1563 public:
48    
49     /** default constructor */
50     SquareMatrix() {
51     for (unsigned int i = 0; i < Dim; i++)
52     for (unsigned int j = 0; j < Dim; j++)
53     data_[i][j] = 0.0;
54     }
55    
56     /** copy constructor */
57 tim 1567 SquareMatrix(const RectMatrix<Real, Dim, Dim>& m) : RectMatrix<Real, Dim, Dim>(m) {
58 tim 1563 }
59    
60     /** copy assignment operator */
61 tim 1567 SquareMatrix<Real, Dim>& operator =(const RectMatrix<Real, Dim, Dim>& m) {
62     RectMatrix<Real, Dim, Dim>::operator=(m);
63     return *this;
64 tim 1563 }
65 tim 1567
66     /** Retunrs an identity matrix*/
67 tim 1563
68 tim 1567 static SquareMatrix<Real, Dim> identity() {
69     SquareMatrix<Real, Dim> m;
70 tim 1563
71     for (unsigned int i = 0; i < Dim; i++)
72 tim 1567 for (unsigned int j = 0; j < Dim; j++)
73 tim 1563 if (i == j)
74 tim 1567 m(i, j) = 1.0;
75 tim 1563 else
76 tim 1567 m(i, j) = 0.0;
77    
78     return m;
79 tim 1563 }
80    
81 tim 1567 /** Retunrs the inversion of this matrix. */
82     SquareMatrix<Real, Dim> inverse() {
83     SquareMatrix<Real, Dim> result;
84    
85     return result;
86 tim 1569 }
87 tim 1563
88     /** Returns the determinant of this matrix. */
89     double determinant() const {
90 tim 1567 double det;
91     return det;
92 tim 1563 }
93    
94     /** Returns the trace of this matrix. */
95     double trace() const {
96     double tmp = 0;
97    
98     for (unsigned int i = 0; i < Dim ; i++)
99     tmp += data_[i][i];
100    
101     return tmp;
102     }
103    
104     /** Tests if this matrix is symmetrix. */
105     bool isSymmetric() const {
106     for (unsigned int i = 0; i < Dim - 1; i++)
107     for (unsigned int j = i; j < Dim; j++)
108 tim 1567 if (fabs(data_[i][j] - data_[j][i]) > oopse::epsilon)
109 tim 1563 return false;
110    
111     return true;
112     }
113    
114 tim 1569 /** Tests if this matrix is orthogonal. */
115 tim 1567 bool isOrthogonal() {
116     SquareMatrix<Real, Dim> tmp;
117 tim 1563
118 tim 1567 tmp = *this * transpose();
119 tim 1563
120 tim 1569 return tmp.isDiagonal();
121 tim 1563 }
122    
123     /** Tests if this matrix is diagonal. */
124     bool isDiagonal() const {
125     for (unsigned int i = 0; i < Dim ; i++)
126     for (unsigned int j = 0; j < Dim; j++)
127 tim 1567 if (i !=j && fabs(data_[i][j]) > oopse::epsilon)
128 tim 1563 return false;
129    
130     return true;
131     }
132    
133     /** Tests if this matrix is the unit matrix. */
134     bool isUnitMatrix() const {
135     if (!isDiagonal())
136     return false;
137    
138     for (unsigned int i = 0; i < Dim ; i++)
139 tim 1567 if (fabs(data_[i][i] - 1) > oopse::epsilon)
140 tim 1563 return false;
141    
142     return true;
143 tim 1567 }
144 tim 1563
145 tim 1569 void diagonalize() {
146     jacobi(m, eigenValues, ortMat);
147     }
148    
149     /**
150     * Finds the eigenvalues and eigenvectors of a symmetric matrix
151     * @param eigenvals a reference to a vector3 where the
152     * eigenvalues will be stored. The eigenvalues are ordered so
153     * that eigenvals[0] <= eigenvals[1] <= eigenvals[2].
154     * @return an orthogonal matrix whose ith column is an
155     * eigenvector for the eigenvalue eigenvals[i]
156     */
157     SquareMatrix<Real, Dim> findEigenvectors(Vector<Real, Dim>& eigenValues) {
158     SquareMatrix<Real, Dim> ortMat;
159    
160     if ( !isSymmetric()){
161     throw();
162     }
163    
164     SquareMatrix<Real, Dim> m(*this);
165     jacobi(m, eigenValues, ortMat);
166    
167     return ortMat;
168     }
169     /**
170     * Jacobi iteration routines for computing eigenvalues/eigenvectors of
171     * real symmetric matrix
172     *
173     * @return true if success, otherwise return false
174     * @param a source matrix
175     * @param w output eigenvalues
176     * @param v output eigenvectors
177     */
178     void jacobi(const SquareMatrix<Real, Dim>& a,
179     Vector<Real, Dim>& w,
180     SquareMatrix<Real, Dim>& v);
181 tim 1563 };//end SquareMatrix
182    
183 tim 1569
184     #define ROT(a,i,j,k,l) g=a(i, j);h=a(k, l);a(i, j)=g-s*(h+g*tau);a(k, l)=h+s*(g-h*tau)
185     #define MAX_ROTATIONS 60
186    
187     template<Real, int Dim>
188     void SquareMatrix<Real, int Dim>::jacobi(SquareMatrix<Real, Dim>& a,
189     Vector<Real, Dim>& w,
190     SquareMatrix<Real, Dim>& v) {
191     const int N = Dim;
192     int i, j, k, iq, ip;
193     double tresh, theta, tau, t, sm, s, h, g, c;
194     double tmp;
195     Vector<Real, Dim> b, z;
196    
197     // initialize
198     for (ip=0; ip<N; ip++)
199     {
200     for (iq=0; iq<N; iq++) v(ip, iq) = 0.0;
201     v(ip, ip) = 1.0;
202     }
203     for (ip=0; ip<N; ip++)
204     {
205     b(ip) = w(ip) = a(ip, ip);
206     z(ip) = 0.0;
207     }
208    
209     // begin rotation sequence
210     for (i=0; i<MAX_ROTATIONS; i++)
211     {
212     sm = 0.0;
213     for (ip=0; ip<2; ip++)
214     {
215     for (iq=ip+1; iq<N; iq++) sm += fabs(a(ip, iq));
216     }
217     if (sm == 0.0) break;
218    
219     if (i < 4) tresh = 0.2*sm/(9);
220     else tresh = 0.0;
221    
222     for (ip=0; ip<2; ip++)
223     {
224     for (iq=ip+1; iq<N; iq++)
225     {
226     g = 100.0*fabs(a(ip, iq));
227     if (i > 4 && (fabs(w(ip))+g) == fabs(w(ip))
228     && (fabs(w(iq))+g) == fabs(w(iq)))
229     {
230     a(ip, iq) = 0.0;
231     }
232     else if (fabs(a(ip, iq)) > tresh)
233     {
234     h = w(iq) - w(ip);
235     if ( (fabs(h)+g) == fabs(h)) t = (a(ip, iq)) / h;
236     else
237     {
238     theta = 0.5*h / (a(ip, iq));
239     t = 1.0 / (fabs(theta)+sqrt(1.0+theta*theta));
240     if (theta < 0.0) t = -t;
241     }
242     c = 1.0 / sqrt(1+t*t);
243     s = t*c;
244     tau = s/(1.0+c);
245     h = t*a(ip, iq);
246     z(ip) -= h;
247     z(iq) += h;
248     w(ip) -= h;
249     w(iq) += h;
250     a(ip, iq)=0.0;
251     for (j=0;j<ip-1;j++)
252     {
253     ROT(a,j,ip,j,iq);
254     }
255     for (j=ip+1;j<iq-1;j++)
256     {
257     ROT(a,ip,j,j,iq);
258     }
259     for (j=iq+1; j<N; j++)
260     {
261     ROT(a,ip,j,iq,j);
262     }
263     for (j=0; j<N; j++)
264     {
265     ROT(v,j,ip,j,iq);
266     }
267     }
268     }
269     }
270    
271     for (ip=0; ip<N; ip++)
272     {
273     b(ip) += z(ip);
274     w(ip) = b(ip);
275     z(ip) = 0.0;
276     }
277     }
278    
279     if ( i >= MAX_ROTATIONS )
280     return false;
281    
282     // sort eigenfunctions
283     for (j=0; j<N; j++)
284     {
285     k = j;
286     tmp = w(k);
287     for (i=j; i<N; i++)
288     {
289     if (w(i) >= tmp)
290     {
291     k = i;
292     tmp = w(k);
293     }
294     }
295     if (k != j)
296     {
297     w(k) = w(j);
298     w(j) = tmp;
299     for (i=0; i<N; i++)
300     {
301     tmp = v(i, j);
302     v(i, j) = v(i, k);
303     v(i, k) = tmp;
304     }
305     }
306     }
307    
308     // insure eigenvector consistency (i.e., Jacobi can compute
309     // vectors that are negative of one another (.707,.707,0) and
310     // (-.707,-.707,0). This can reek havoc in
311     // hyperstreamline/other stuff. We will select the most
312     // positive eigenvector.
313     int numPos;
314     for (j=0; j<N; j++)
315     {
316     for (numPos=0, i=0; i<N; i++) if ( v(i, j) >= 0.0 ) numPos++;
317     if ( numPos < 2 ) for(i=0; i<N; i++) v(i, j) *= -1.0;
318     }
319    
320     return true;
321 tim 1563 }
322 tim 1569
323     #undef ROT
324     #undef MAX_ROTATIONS
325    
326     }
327    
328    
329     }
330 tim 1563 #endif //MATH_SQUAREMATRIX_HPP