ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-2.0/src/math/SquareMatrix.hpp
Revision: 1930
Committed: Wed Jan 12 22:41:40 2005 UTC (19 years, 5 months ago) by gezelter
File size: 13650 byte(s)
Log Message:
merging new_design branch into OOPSE-2.0

File Contents

# User Rev Content
1 gezelter 1930 /*
2     * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 tim 1563 *
4 gezelter 1930 * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9     * 1. Acknowledgement of the program authors must be made in any
10     * publication of scientific results based in part on use of the
11     * program. An acceptable form of acknowledgement is citation of
12     * the article in which the program was described (Matthew
13     * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14     * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15     * Parallel Simulation Engine for Molecular Dynamics,"
16     * J. Comput. Chem. 26, pp. 252-271 (2005))
17     *
18     * 2. Redistributions of source code must retain the above copyright
19     * notice, this list of conditions and the following disclaimer.
20     *
21     * 3. Redistributions in binary form must reproduce the above copyright
22     * notice, this list of conditions and the following disclaimer in the
23     * documentation and/or other materials provided with the
24     * distribution.
25     *
26     * This software is provided "AS IS," without a warranty of any
27     * kind. All express or implied conditions, representations and
28     * warranties, including any implied warranty of merchantability,
29     * fitness for a particular purpose or non-infringement, are hereby
30     * excluded. The University of Notre Dame and its licensors shall not
31     * be liable for any damages suffered by licensee as a result of
32     * using, modifying or distributing the software or its
33     * derivatives. In no event will the University of Notre Dame or its
34     * licensors be liable for any lost revenue, profit or data, or for
35     * direct, indirect, special, consequential, incidental or punitive
36     * damages, however caused and regardless of the theory of liability,
37     * arising out of the use of or inability to use software, even if the
38     * University of Notre Dame has been advised of the possibility of
39     * such damages.
40 tim 1563 */
41 gezelter 1930
42 tim 1563 /**
43     * @file SquareMatrix.hpp
44     * @author Teng Lin
45     * @date 10/11/2004
46     * @version 1.0
47     */
48 tim 1616 #ifndef MATH_SQUAREMATRIX_HPP
49 tim 1563 #define MATH_SQUAREMATRIX_HPP
50    
51 tim 1567 #include "math/RectMatrix.hpp"
52 tim 1563
53     namespace oopse {
54    
55     /**
56     * @class SquareMatrix SquareMatrix.hpp "math/SquareMatrix.hpp"
57     * @brief A square matrix class
58     * @template Real the element type
59     * @template Dim the dimension of the square matrix
60     */
61     template<typename Real, int Dim>
62 tim 1567 class SquareMatrix : public RectMatrix<Real, Dim, Dim> {
63 tim 1563 public:
64 tim 1630 typedef Real ElemType;
65     typedef Real* ElemPoinerType;
66 tim 1563
67 tim 1630 /** default constructor */
68     SquareMatrix() {
69     for (unsigned int i = 0; i < Dim; i++)
70     for (unsigned int j = 0; j < Dim; j++)
71     data_[i][j] = 0.0;
72     }
73 tim 1563
74 tim 1644 /** Constructs and initializes every element of this matrix to a scalar */
75     SquareMatrix(Real s) : RectMatrix<Real, Dim, Dim>(s){
76     }
77    
78     /** Constructs and initializes from an array */
79     SquareMatrix(Real* array) : RectMatrix<Real, Dim, Dim>(array){
80     }
81    
82    
83 tim 1630 /** copy constructor */
84     SquareMatrix(const RectMatrix<Real, Dim, Dim>& m) : RectMatrix<Real, Dim, Dim>(m) {
85     }
86 tim 1563
87 tim 1630 /** copy assignment operator */
88     SquareMatrix<Real, Dim>& operator =(const RectMatrix<Real, Dim, Dim>& m) {
89     RectMatrix<Real, Dim, Dim>::operator=(m);
90     return *this;
91     }
92    
93     /** Retunrs an identity matrix*/
94 tim 1567
95 tim 1630 static SquareMatrix<Real, Dim> identity() {
96     SquareMatrix<Real, Dim> m;
97    
98     for (unsigned int i = 0; i < Dim; i++)
99     for (unsigned int j = 0; j < Dim; j++)
100     if (i == j)
101     m(i, j) = 1.0;
102     else
103     m(i, j) = 0.0;
104 tim 1563
105 tim 1630 return m;
106     }
107 tim 1567
108 tim 1630 /**
109     * Retunrs the inversion of this matrix.
110     * @todo need implementation
111     */
112     SquareMatrix<Real, Dim> inverse() {
113     SquareMatrix<Real, Dim> result;
114 tim 1563
115 tim 1630 return result;
116     }
117 tim 1563
118 tim 1630 /**
119     * Returns the determinant of this matrix.
120     * @todo need implementation
121     */
122     Real determinant() const {
123     Real det;
124     return det;
125     }
126 tim 1563
127 tim 1630 /** Returns the trace of this matrix. */
128     Real trace() const {
129     Real tmp = 0;
130    
131     for (unsigned int i = 0; i < Dim ; i++)
132     tmp += data_[i][i];
133 tim 1563
134 tim 1630 return tmp;
135     }
136 tim 1563
137 tim 1630 /** Tests if this matrix is symmetrix. */
138     bool isSymmetric() const {
139     for (unsigned int i = 0; i < Dim - 1; i++)
140     for (unsigned int j = i; j < Dim; j++)
141     if (fabs(data_[i][j] - data_[j][i]) > oopse::epsilon)
142     return false;
143    
144     return true;
145     }
146 tim 1563
147 tim 1630 /** Tests if this matrix is orthogonal. */
148     bool isOrthogonal() {
149     SquareMatrix<Real, Dim> tmp;
150 tim 1563
151 tim 1630 tmp = *this * transpose();
152 tim 1563
153 tim 1630 return tmp.isDiagonal();
154     }
155 tim 1563
156 tim 1630 /** Tests if this matrix is diagonal. */
157     bool isDiagonal() const {
158     for (unsigned int i = 0; i < Dim ; i++)
159     for (unsigned int j = 0; j < Dim; j++)
160     if (i !=j && fabs(data_[i][j]) > oopse::epsilon)
161     return false;
162    
163     return true;
164     }
165    
166     /** Tests if this matrix is the unit matrix. */
167     bool isUnitMatrix() const {
168     if (!isDiagonal())
169 tim 1563 return false;
170    
171 tim 1630 for (unsigned int i = 0; i < Dim ; i++)
172     if (fabs(data_[i][i] - 1) > oopse::epsilon)
173     return false;
174    
175     return true;
176     }
177 tim 1563
178 tim 1630 /** @todo need implementation */
179     void diagonalize() {
180     //jacobi(m, eigenValues, ortMat);
181     }
182 tim 1569
183 tim 1630 /**
184     * Jacobi iteration routines for computing eigenvalues/eigenvectors of
185     * real symmetric matrix
186     *
187     * @return true if success, otherwise return false
188     * @param a symmetric matrix whose eigenvectors are to be computed. On return, the matrix is
189     * overwritten
190     * @param w will contain the eigenvalues of the matrix On return of this function
191     * @param v the columns of this matrix will contain the eigenvectors. The eigenvectors are
192     * normalized and mutually orthogonal.
193     */
194    
195     static int jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& d,
196     SquareMatrix<Real, Dim>& v);
197 tim 1563 };//end SquareMatrix
198    
199 tim 1569
200 tim 1616 /*=========================================================================
201 tim 1569
202 tim 1616 Program: Visualization Toolkit
203     Module: $RCSfile: SquareMatrix.hpp,v $
204 tim 1569
205 tim 1616 Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
206     All rights reserved.
207     See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
208    
209     This software is distributed WITHOUT ANY WARRANTY; without even
210     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
211     PURPOSE. See the above copyright notice for more information.
212    
213     =========================================================================*/
214    
215     #define VTK_ROTATE(a,i,j,k,l) g=a(i, j);h=a(k, l);a(i, j)=g-s*(h+g*tau);\
216     a(k, l)=h+s*(g-h*tau)
217    
218     #define VTK_MAX_ROTATIONS 20
219    
220     // Jacobi iteration for the solution of eigenvectors/eigenvalues of a nxn
221     // real symmetric matrix. Square nxn matrix a; size of matrix in n;
222     // output eigenvalues in w; and output eigenvectors in v. Resulting
223     // eigenvalues/vectors are sorted in decreasing order; eigenvectors are
224     // normalized.
225     template<typename Real, int Dim>
226     int SquareMatrix<Real, Dim>::jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& w,
227 tim 1639 SquareMatrix<Real, Dim>& v) {
228     const int n = Dim;
229     int i, j, k, iq, ip, numPos;
230     Real tresh, theta, tau, t, sm, s, h, g, c, tmp;
231     Real bspace[4], zspace[4];
232     Real *b = bspace;
233     Real *z = zspace;
234 tim 1616
235 tim 1639 // only allocate memory if the matrix is large
236     if (n > 4) {
237     b = new Real[n];
238     z = new Real[n];
239 tim 1616 }
240    
241 tim 1639 // initialize
242     for (ip=0; ip<n; ip++) {
243     for (iq=0; iq<n; iq++) {
244     v(ip, iq) = 0.0;
245     }
246     v(ip, ip) = 1.0;
247 tim 1616 }
248 tim 1639 for (ip=0; ip<n; ip++) {
249     b[ip] = w[ip] = a(ip, ip);
250     z[ip] = 0.0;
251 tim 1616 }
252 tim 1569
253 tim 1639 // begin rotation sequence
254     for (i=0; i<VTK_MAX_ROTATIONS; i++) {
255     sm = 0.0;
256     for (ip=0; ip<n-1; ip++) {
257     for (iq=ip+1; iq<n; iq++) {
258     sm += fabs(a(ip, iq));
259     }
260 tim 1616 }
261 tim 1639 if (sm == 0.0) {
262     break;
263     }
264 tim 1569
265 tim 1639 if (i < 3) { // first 3 sweeps
266     tresh = 0.2*sm/(n*n);
267     } else {
268     tresh = 0.0;
269     }
270 tim 1569
271 tim 1639 for (ip=0; ip<n-1; ip++) {
272     for (iq=ip+1; iq<n; iq++) {
273     g = 100.0*fabs(a(ip, iq));
274 tim 1569
275 tim 1639 // after 4 sweeps
276     if (i > 3 && (fabs(w[ip])+g) == fabs(w[ip])
277     && (fabs(w[iq])+g) == fabs(w[iq])) {
278     a(ip, iq) = 0.0;
279     } else if (fabs(a(ip, iq)) > tresh) {
280     h = w[iq] - w[ip];
281     if ( (fabs(h)+g) == fabs(h)) {
282     t = (a(ip, iq)) / h;
283     } else {
284     theta = 0.5*h / (a(ip, iq));
285     t = 1.0 / (fabs(theta)+sqrt(1.0+theta*theta));
286     if (theta < 0.0) {
287     t = -t;
288     }
289     }
290     c = 1.0 / sqrt(1+t*t);
291     s = t*c;
292     tau = s/(1.0+c);
293     h = t*a(ip, iq);
294     z[ip] -= h;
295     z[iq] += h;
296     w[ip] -= h;
297     w[iq] += h;
298     a(ip, iq)=0.0;
299 tim 1569
300 tim 1639 // ip already shifted left by 1 unit
301     for (j = 0;j <= ip-1;j++) {
302     VTK_ROTATE(a,j,ip,j,iq);
303     }
304     // ip and iq already shifted left by 1 unit
305     for (j = ip+1;j <= iq-1;j++) {
306     VTK_ROTATE(a,ip,j,j,iq);
307     }
308     // iq already shifted left by 1 unit
309     for (j=iq+1; j<n; j++) {
310     VTK_ROTATE(a,ip,j,iq,j);
311     }
312     for (j=0; j<n; j++) {
313     VTK_ROTATE(v,j,ip,j,iq);
314     }
315     }
316 tim 1586 }
317     }
318    
319 tim 1639 for (ip=0; ip<n; ip++) {
320     b[ip] += z[ip];
321     w[ip] = b[ip];
322     z[ip] = 0.0;
323     }
324 tim 1586 }
325    
326 tim 1639 //// this is NEVER called
327     if ( i >= VTK_MAX_ROTATIONS ) {
328     std::cout << "vtkMath::Jacobi: Error extracting eigenfunctions" << std::endl;
329     return 0;
330 tim 1616 }
331 tim 1569
332 tim 1639 // sort eigenfunctions these changes do not affect accuracy
333     for (j=0; j<n-1; j++) { // boundary incorrect
334     k = j;
335 tim 1616 tmp = w[k];
336 tim 1639 for (i=j+1; i<n; i++) { // boundary incorrect, shifted already
337     if (w[i] >= tmp) { // why exchage if same?
338     k = i;
339     tmp = w[k];
340     }
341 tim 1586 }
342 tim 1639 if (k != j) {
343     w[k] = w[j];
344     w[j] = tmp;
345     for (i=0; i<n; i++) {
346     tmp = v(i, j);
347     v(i, j) = v(i, k);
348     v(i, k) = tmp;
349     }
350 tim 1616 }
351 tim 1586 }
352 tim 1639 // insure eigenvector consistency (i.e., Jacobi can compute vectors that
353     // are negative of one another (.707,.707,0) and (-.707,-.707,0). This can
354     // reek havoc in hyperstreamline/other stuff. We will select the most
355     // positive eigenvector.
356     int ceil_half_n = (n >> 1) + (n & 1);
357     for (j=0; j<n; j++) {
358     for (numPos=0, i=0; i<n; i++) {
359     if ( v(i, j) >= 0.0 ) {
360     numPos++;
361     }
362 tim 1586 }
363 tim 1639 // if ( numPos < ceil(double(n)/double(2.0)) )
364     if ( numPos < ceil_half_n) {
365     for (i=0; i<n; i++) {
366     v(i, j) *= -1.0;
367     }
368 tim 1616 }
369 tim 1586 }
370 tim 1569
371 tim 1639 if (n > 4) {
372     delete [] b;
373     delete [] z;
374 tim 1616 }
375 tim 1639 return 1;
376 tim 1569 }
377    
378    
379     }
380 tim 1616 #endif //MATH_SQUAREMATRIX_HPP
381 tim 1569