ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-2.0/src/math/SquareMatrix3.hpp
Revision: 1616
Committed: Wed Oct 20 18:07:08 2004 UTC (19 years, 8 months ago) by tim
File size: 16349 byte(s)
Log Message:
Math library pass the unit test

File Contents

# User Rev Content
1 tim 1563 /*
2     * Copyright (C) 2000-2004 Object Oriented Parallel Simulation Engine (OOPSE) project
3     *
4     * Contact: oopse@oopse.org
5     *
6     * This program is free software; you can redistribute it and/or
7     * modify it under the terms of the GNU Lesser General Public License
8     * as published by the Free Software Foundation; either version 2.1
9     * of the License, or (at your option) any later version.
10     * All we ask is that proper credit is given for our work, which includes
11     * - but is not limited to - adding the above copyright notice to the beginning
12     * of your source code files, and to any copyright notice that you may distribute
13     * with programs based on this work.
14     *
15     * This program is distributed in the hope that it will be useful,
16     * but WITHOUT ANY WARRANTY; without even the implied warranty of
17     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18     * GNU Lesser General Public License for more details.
19     *
20     * You should have received a copy of the GNU Lesser General Public License
21     * along with this program; if not, write to the Free Software
22     * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23     *
24     */
25    
26     /**
27     * @file SquareMatrix3.hpp
28     * @author Teng Lin
29     * @date 10/11/2004
30     * @version 1.0
31     */
32 tim 1616 #ifndef MATH_SQUAREMATRIX3_HPP
33 tim 1592 #define MATH_SQUAREMATRIX3_HPP
34 tim 1563
35 tim 1586 #include "Quaternion.hpp"
36 tim 1563 #include "SquareMatrix.hpp"
37 tim 1586 #include "Vector3.hpp"
38    
39 tim 1563 namespace oopse {
40    
41     template<typename Real>
42     class SquareMatrix3 : public SquareMatrix<Real, 3> {
43     public:
44    
45     /** default constructor */
46     SquareMatrix3() : SquareMatrix<Real, 3>() {
47     }
48    
49     /** copy constructor */
50     SquareMatrix3(const SquareMatrix<Real, 3>& m) : SquareMatrix<Real, 3>(m) {
51     }
52    
53 tim 1586 SquareMatrix3( const Vector3<Real>& eulerAngles) {
54     setupRotMat(eulerAngles);
55     }
56    
57     SquareMatrix3(Real phi, Real theta, Real psi) {
58     setupRotMat(phi, theta, psi);
59     }
60    
61     SquareMatrix3(const Quaternion<Real>& q) {
62 tim 1606 setupRotMat(q);
63    
64 tim 1586 }
65    
66     SquareMatrix3(Real w, Real x, Real y, Real z) {
67 tim 1606 setupRotMat(w, x, y, z);
68 tim 1586 }
69    
70 tim 1563 /** copy assignment operator */
71     SquareMatrix3<Real>& operator =(const SquareMatrix<Real, 3>& m) {
72     if (this == &m)
73     return *this;
74     SquareMatrix<Real, 3>::operator=(m);
75 tim 1594 return *this;
76 tim 1563 }
77 tim 1569
78     /**
79     * Sets this matrix to a rotation matrix by three euler angles
80     * @ param euler
81     */
82 tim 1586 void setupRotMat(const Vector3<Real>& eulerAngles) {
83     setupRotMat(eulerAngles[0], eulerAngles[1], eulerAngles[2]);
84     }
85 tim 1569
86     /**
87     * Sets this matrix to a rotation matrix by three euler angles
88     * @param phi
89     * @param theta
90     * @psi theta
91     */
92 tim 1586 void setupRotMat(Real phi, Real theta, Real psi) {
93     Real sphi, stheta, spsi;
94     Real cphi, ctheta, cpsi;
95 tim 1569
96 tim 1586 sphi = sin(phi);
97     stheta = sin(theta);
98     spsi = sin(psi);
99     cphi = cos(phi);
100     ctheta = cos(theta);
101     cpsi = cos(psi);
102 tim 1569
103 tim 1586 data_[0][0] = cpsi * cphi - ctheta * sphi * spsi;
104     data_[0][1] = cpsi * sphi + ctheta * cphi * spsi;
105     data_[0][2] = spsi * stheta;
106    
107     data_[1][0] = -spsi * ctheta - ctheta * sphi * cpsi;
108     data_[1][1] = -spsi * stheta + ctheta * cphi * cpsi;
109     data_[1][2] = cpsi * stheta;
110    
111     data_[2][0] = stheta * sphi;
112     data_[2][1] = -stheta * cphi;
113     data_[2][2] = ctheta;
114     }
115    
116    
117 tim 1569 /**
118     * Sets this matrix to a rotation matrix by quaternion
119     * @param quat
120     */
121 tim 1586 void setupRotMat(const Quaternion<Real>& quat) {
122 tim 1606 setupRotMat(quat.w(), quat.x(), quat.y(), quat.z());
123 tim 1586 }
124 tim 1569
125     /**
126     * Sets this matrix to a rotation matrix by quaternion
127 tim 1586 * @param w the first element
128     * @param x the second element
129     * @param y the third element
130 tim 1594 * @param z the fourth element
131 tim 1569 */
132 tim 1586 void setupRotMat(Real w, Real x, Real y, Real z) {
133     Quaternion<Real> q(w, x, y, z);
134     *this = q.toRotationMatrix3();
135     }
136 tim 1569
137     /**
138     * Returns the quaternion from this rotation matrix
139     * @return the quaternion from this rotation matrix
140     * @exception invalid rotation matrix
141     */
142 tim 1586 Quaternion<Real> toQuaternion() {
143     Quaternion<Real> q;
144     Real t, s;
145     Real ad1, ad2, ad3;
146     t = data_[0][0] + data_[1][1] + data_[2][2] + 1.0;
147 tim 1569
148 tim 1586 if( t > 0.0 ){
149    
150     s = 0.5 / sqrt( t );
151     q[0] = 0.25 / s;
152     q[1] = (data_[1][2] - data_[2][1]) * s;
153     q[2] = (data_[2][0] - data_[0][2]) * s;
154     q[3] = (data_[0][1] - data_[1][0]) * s;
155     } else {
156    
157     ad1 = fabs( data_[0][0] );
158     ad2 = fabs( data_[1][1] );
159     ad3 = fabs( data_[2][2] );
160    
161     if( ad1 >= ad2 && ad1 >= ad3 ){
162    
163     s = 2.0 * sqrt( 1.0 + data_[0][0] - data_[1][1] - data_[2][2] );
164     q[0] = (data_[1][2] + data_[2][1]) / s;
165     q[1] = 0.5 / s;
166     q[2] = (data_[0][1] + data_[1][0]) / s;
167     q[3] = (data_[0][2] + data_[2][0]) / s;
168     } else if ( ad2 >= ad1 && ad2 >= ad3 ) {
169     s = sqrt( 1.0 + data_[1][1] - data_[0][0] - data_[2][2] ) * 2.0;
170     q[0] = (data_[0][2] + data_[2][0]) / s;
171     q[1] = (data_[0][1] + data_[1][0]) / s;
172     q[2] = 0.5 / s;
173     q[3] = (data_[1][2] + data_[2][1]) / s;
174     } else {
175    
176     s = sqrt( 1.0 + data_[2][2] - data_[0][0] - data_[1][1] ) * 2.0;
177     q[0] = (data_[0][1] + data_[1][0]) / s;
178     q[1] = (data_[0][2] + data_[2][0]) / s;
179     q[2] = (data_[1][2] + data_[2][1]) / s;
180     q[3] = 0.5 / s;
181     }
182     }
183    
184     return q;
185    
186     }
187    
188 tim 1569 /**
189     * Returns the euler angles from this rotation matrix
190 tim 1586 * @return the euler angles in a vector
191 tim 1569 * @exception invalid rotation matrix
192 tim 1586 * We use so-called "x-convention", which is the most common definition.
193     * In this convention, the rotation given by Euler angles (phi, theta, psi), where the first
194     * rotation is by an angle phi about the z-axis, the second is by an angle
195     * theta (0 <= theta <= 180)about the x-axis, and thethird is by an angle psi about the
196     * z-axis (again).
197 tim 1569 */
198 tim 1586 Vector3<Real> toEulerAngles() {
199 tim 1606 Vector3<Real> myEuler;
200 tim 1586 Real phi,theta,psi,eps;
201     Real ctheta,stheta;
202    
203     // set the tolerance for Euler angles and rotation elements
204    
205 tim 1606 theta = acos(std::min(1.0, std::max(-1.0,data_[2][2])));
206 tim 1586 ctheta = data_[2][2];
207     stheta = sqrt(1.0 - ctheta * ctheta);
208    
209     // when sin(theta) is close to 0, we need to consider singularity
210     // In this case, we can assign an arbitary value to phi (or psi), and then determine
211     // the psi (or phi) or vice-versa. We'll assume that phi always gets the rotation, and psi is 0
212     // in cases of singularity.
213     // we use atan2 instead of atan, since atan2 will give us -Pi to Pi.
214     // Since 0 <= theta <= 180, sin(theta) will be always non-negative. Therefore, it never
215     // change the sign of both of the parameters passed to atan2.
216    
217     if (fabs(stheta) <= oopse::epsilon){
218     psi = 0.0;
219     phi = atan2(-data_[1][0], data_[0][0]);
220     }
221     // we only have one unique solution
222     else{
223     phi = atan2(data_[2][0], -data_[2][1]);
224     psi = atan2(data_[0][2], data_[1][2]);
225     }
226    
227     //wrap phi and psi, make sure they are in the range from 0 to 2*Pi
228     if (phi < 0)
229     phi += M_PI;
230    
231     if (psi < 0)
232     psi += M_PI;
233    
234     myEuler[0] = phi;
235     myEuler[1] = theta;
236     myEuler[2] = psi;
237    
238     return myEuler;
239     }
240 tim 1563
241 tim 1594 /** Returns the determinant of this matrix. */
242     Real determinant() const {
243     Real x,y,z;
244    
245     x = data_[0][0] * (data_[1][1] * data_[2][2] - data_[1][2] * data_[2][1]);
246     y = data_[0][1] * (data_[1][2] * data_[2][0] - data_[1][0] * data_[2][2]);
247     z = data_[0][2] * (data_[1][0] * data_[2][1] - data_[1][1] * data_[2][0]);
248    
249     return(x + y + z);
250     }
251    
252 tim 1563 /**
253     * Sets the value of this matrix to the inversion of itself.
254     * @note since simple algorithm can be applied to inverse the 3 by 3 matrix, we hide the
255     * implementation of inverse in SquareMatrix class
256     */
257 tim 1594 SquareMatrix3<Real> inverse() {
258     SquareMatrix3<Real> m;
259     double det = determinant();
260     if (fabs(det) <= oopse::epsilon) {
261     //"The method was called on a matrix with |determinant| <= 1e-6.",
262     //"This is a runtime or a programming error in your application.");
263     }
264 tim 1563
265 tim 1594 m(0, 0) = data_[1][1]*data_[2][2] - data_[1][2]*data_[2][1];
266     m(1, 0) = data_[1][2]*data_[2][0] - data_[1][0]*data_[2][2];
267     m(2, 0) = data_[1][0]*data_[2][1] - data_[1][1]*data_[2][0];
268     m(0, 1) = data_[2][1]*data_[0][2] - data_[2][2]*data_[0][1];
269     m(1, 1) = data_[2][2]*data_[0][0] - data_[2][0]*data_[0][2];
270     m(2, 1) = data_[2][0]*data_[0][1] - data_[2][1]*data_[0][0];
271     m(0, 2) = data_[0][1]*data_[1][2] - data_[0][2]*data_[1][1];
272     m(1, 2) = data_[0][2]*data_[1][0] - data_[0][0]*data_[1][2];
273     m(2, 2) = data_[0][0]*data_[1][1] - data_[0][1]*data_[1][0];
274    
275     m /= det;
276     return m;
277 tim 1592 }
278 tim 1616 /**
279     * Extract the eigenvalues and eigenvectors from a 3x3 matrix.
280     * The eigenvectors (the columns of V) will be normalized.
281     * The eigenvectors are aligned optimally with the x, y, and z
282     * axes respectively.
283     * @param a symmetric matrix whose eigenvectors are to be computed. On return, the matrix is
284     * overwritten
285     * @param w will contain the eigenvalues of the matrix On return of this function
286     * @param v the columns of this matrix will contain the eigenvectors. The eigenvectors are
287     * normalized and mutually orthogonal.
288     * @warning a will be overwritten
289     */
290     static void diagonalize(SquareMatrix3<Real>& a, Vector3<Real>& w, SquareMatrix3<Real>& v);
291     };
292     /*=========================================================================
293 tim 1569
294 tim 1616 Program: Visualization Toolkit
295     Module: $RCSfile: SquareMatrix3.hpp,v $
296 tim 1592
297 tim 1616 Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
298     All rights reserved.
299     See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
300 tim 1594
301 tim 1616 This software is distributed WITHOUT ANY WARRANTY; without even
302     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
303     PURPOSE. See the above copyright notice for more information.
304 tim 1594
305 tim 1616 =========================================================================*/
306     template<typename Real>
307     void SquareMatrix3<Real>::diagonalize(SquareMatrix3<Real>& a, Vector3<Real>& w,
308     SquareMatrix3<Real>& v) {
309     int i,j,k,maxI;
310     Real tmp, maxVal;
311     Vector3<Real> v_maxI, v_k, v_j;
312 tim 1594
313 tim 1616 // diagonalize using Jacobi
314     jacobi(a, w, v);
315     // if all the eigenvalues are the same, return identity matrix
316     if (w[0] == w[1] && w[0] == w[2] ) {
317     v = SquareMatrix3<Real>::identity();
318     return;
319     }
320 tim 1594
321 tim 1616 // transpose temporarily, it makes it easier to sort the eigenvectors
322     v = v.transpose();
323    
324     // if two eigenvalues are the same, re-orthogonalize to optimally line
325     // up the eigenvectors with the x, y, and z axes
326     for (i = 0; i < 3; i++) {
327     if (w((i+1)%3) == w((i+2)%3)) {// two eigenvalues are the same
328     // find maximum element of the independant eigenvector
329     maxVal = fabs(v(i, 0));
330     maxI = 0;
331     for (j = 1; j < 3; j++) {
332     if (maxVal < (tmp = fabs(v(i, j)))){
333     maxVal = tmp;
334     maxI = j;
335     }
336     }
337    
338     // swap the eigenvector into its proper position
339     if (maxI != i) {
340     tmp = w(maxI);
341     w(maxI) = w(i);
342     w(i) = tmp;
343 tim 1594
344 tim 1616 v.swapRow(i, maxI);
345     }
346     // maximum element of eigenvector should be positive
347     if (v(maxI, maxI) < 0) {
348     v(maxI, 0) = -v(maxI, 0);
349     v(maxI, 1) = -v(maxI, 1);
350     v(maxI, 2) = -v(maxI, 2);
351     }
352 tim 1594
353 tim 1616 // re-orthogonalize the other two eigenvectors
354     j = (maxI+1)%3;
355     k = (maxI+2)%3;
356 tim 1594
357 tim 1616 v(j, 0) = 0.0;
358     v(j, 1) = 0.0;
359     v(j, 2) = 0.0;
360     v(j, j) = 1.0;
361 tim 1594
362 tim 1616 /** @todo */
363     v_maxI = v.getRow(maxI);
364     v_j = v.getRow(j);
365     v_k = cross(v_maxI, v_j);
366     v_k.normalize();
367     v_j = cross(v_k, v_maxI);
368     v.setRow(j, v_j);
369     v.setRow(k, v_k);
370 tim 1594
371    
372 tim 1616 // transpose vectors back to columns
373     v = v.transpose();
374     return;
375     }
376     }
377 tim 1594
378 tim 1616 // the three eigenvalues are different, just sort the eigenvectors
379     // to align them with the x, y, and z axes
380 tim 1594
381 tim 1616 // find the vector with the largest x element, make that vector
382     // the first vector
383     maxVal = fabs(v(0, 0));
384     maxI = 0;
385     for (i = 1; i < 3; i++) {
386     if (maxVal < (tmp = fabs(v(i, 0)))) {
387     maxVal = tmp;
388     maxI = i;
389     }
390     }
391 tim 1594
392 tim 1616 // swap eigenvalue and eigenvector
393     if (maxI != 0) {
394     tmp = w(maxI);
395     w(maxI) = w(0);
396     w(0) = tmp;
397     v.swapRow(maxI, 0);
398     }
399     // do the same for the y element
400     if (fabs(v(1, 1)) < fabs(v(2, 1))) {
401     tmp = w(2);
402     w(2) = w(1);
403     w(1) = tmp;
404     v.swapRow(2, 1);
405     }
406 tim 1594
407 tim 1616 // ensure that the sign of the eigenvectors is correct
408     for (i = 0; i < 2; i++) {
409     if (v(i, i) < 0) {
410     v(i, 0) = -v(i, 0);
411     v(i, 1) = -v(i, 1);
412     v(i, 2) = -v(i, 2);
413 tim 1592 }
414 tim 1616 }
415 tim 1563
416 tim 1616 // set sign of final eigenvector to ensure that determinant is positive
417     if (v.determinant() < 0) {
418     v(2, 0) = -v(2, 0);
419     v(2, 1) = -v(2, 1);
420     v(2, 2) = -v(2, 2);
421     }
422    
423     // transpose the eigenvectors back again
424     v = v.transpose();
425     return ;
426     }
427 tim 1592 typedef SquareMatrix3<double> Mat3x3d;
428     typedef SquareMatrix3<double> RotMat3x3d;
429 tim 1586
430     } //namespace oopse
431     #endif // MATH_SQUAREMATRIX_HPP
432 tim 1616