ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-2.0/src/math/SquareMatrix3.hpp
Revision: 1644
Committed: Mon Oct 25 22:46:19 2004 UTC (19 years, 8 months ago) by tim
File size: 16738 byte(s)
Log Message:
add getArray function to  RectMatrix and Vector classes

File Contents

# User Rev Content
1 tim 1563 /*
2     * Copyright (C) 2000-2004 Object Oriented Parallel Simulation Engine (OOPSE) project
3     *
4     * Contact: oopse@oopse.org
5     *
6     * This program is free software; you can redistribute it and/or
7     * modify it under the terms of the GNU Lesser General Public License
8     * as published by the Free Software Foundation; either version 2.1
9     * of the License, or (at your option) any later version.
10     * All we ask is that proper credit is given for our work, which includes
11     * - but is not limited to - adding the above copyright notice to the beginning
12     * of your source code files, and to any copyright notice that you may distribute
13     * with programs based on this work.
14     *
15     * This program is distributed in the hope that it will be useful,
16     * but WITHOUT ANY WARRANTY; without even the implied warranty of
17     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18     * GNU Lesser General Public License for more details.
19     *
20     * You should have received a copy of the GNU Lesser General Public License
21     * along with this program; if not, write to the Free Software
22     * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23     *
24     */
25    
26     /**
27     * @file SquareMatrix3.hpp
28     * @author Teng Lin
29     * @date 10/11/2004
30     * @version 1.0
31     */
32 tim 1616 #ifndef MATH_SQUAREMATRIX3_HPP
33 tim 1592 #define MATH_SQUAREMATRIX3_HPP
34 tim 1563
35 tim 1586 #include "Quaternion.hpp"
36 tim 1563 #include "SquareMatrix.hpp"
37 tim 1586 #include "Vector3.hpp"
38    
39 tim 1563 namespace oopse {
40    
41     template<typename Real>
42     class SquareMatrix3 : public SquareMatrix<Real, 3> {
43     public:
44 tim 1630
45     typedef Real ElemType;
46     typedef Real* ElemPoinerType;
47 tim 1563
48     /** default constructor */
49     SquareMatrix3() : SquareMatrix<Real, 3>() {
50     }
51    
52 tim 1644 /** Constructs and initializes every element of this matrix to a scalar */
53     SquareMatrix3(Real s) : SquareMatrix<Real,3>(s){
54     }
55    
56     /** Constructs and initializes from an array */
57     SquareMatrix3(Real* array) : SquareMatrix<Real,3>(array){
58     }
59    
60    
61 tim 1563 /** copy constructor */
62     SquareMatrix3(const SquareMatrix<Real, 3>& m) : SquareMatrix<Real, 3>(m) {
63     }
64    
65 tim 1586 SquareMatrix3( const Vector3<Real>& eulerAngles) {
66     setupRotMat(eulerAngles);
67     }
68    
69     SquareMatrix3(Real phi, Real theta, Real psi) {
70     setupRotMat(phi, theta, psi);
71     }
72    
73     SquareMatrix3(const Quaternion<Real>& q) {
74 tim 1606 setupRotMat(q);
75    
76 tim 1586 }
77    
78     SquareMatrix3(Real w, Real x, Real y, Real z) {
79 tim 1606 setupRotMat(w, x, y, z);
80 tim 1586 }
81    
82 tim 1563 /** copy assignment operator */
83     SquareMatrix3<Real>& operator =(const SquareMatrix<Real, 3>& m) {
84     if (this == &m)
85     return *this;
86     SquareMatrix<Real, 3>::operator=(m);
87 tim 1594 return *this;
88 tim 1563 }
89 tim 1569
90     /**
91     * Sets this matrix to a rotation matrix by three euler angles
92     * @ param euler
93     */
94 tim 1586 void setupRotMat(const Vector3<Real>& eulerAngles) {
95     setupRotMat(eulerAngles[0], eulerAngles[1], eulerAngles[2]);
96     }
97 tim 1569
98     /**
99     * Sets this matrix to a rotation matrix by three euler angles
100     * @param phi
101     * @param theta
102     * @psi theta
103     */
104 tim 1586 void setupRotMat(Real phi, Real theta, Real psi) {
105     Real sphi, stheta, spsi;
106     Real cphi, ctheta, cpsi;
107 tim 1569
108 tim 1586 sphi = sin(phi);
109     stheta = sin(theta);
110     spsi = sin(psi);
111     cphi = cos(phi);
112     ctheta = cos(theta);
113     cpsi = cos(psi);
114 tim 1569
115 tim 1586 data_[0][0] = cpsi * cphi - ctheta * sphi * spsi;
116     data_[0][1] = cpsi * sphi + ctheta * cphi * spsi;
117     data_[0][2] = spsi * stheta;
118    
119     data_[1][0] = -spsi * ctheta - ctheta * sphi * cpsi;
120     data_[1][1] = -spsi * stheta + ctheta * cphi * cpsi;
121     data_[1][2] = cpsi * stheta;
122    
123     data_[2][0] = stheta * sphi;
124     data_[2][1] = -stheta * cphi;
125     data_[2][2] = ctheta;
126     }
127    
128    
129 tim 1569 /**
130     * Sets this matrix to a rotation matrix by quaternion
131     * @param quat
132     */
133 tim 1586 void setupRotMat(const Quaternion<Real>& quat) {
134 tim 1606 setupRotMat(quat.w(), quat.x(), quat.y(), quat.z());
135 tim 1586 }
136 tim 1569
137     /**
138     * Sets this matrix to a rotation matrix by quaternion
139 tim 1586 * @param w the first element
140     * @param x the second element
141     * @param y the third element
142 tim 1594 * @param z the fourth element
143 tim 1569 */
144 tim 1586 void setupRotMat(Real w, Real x, Real y, Real z) {
145     Quaternion<Real> q(w, x, y, z);
146     *this = q.toRotationMatrix3();
147     }
148 tim 1569
149     /**
150     * Returns the quaternion from this rotation matrix
151     * @return the quaternion from this rotation matrix
152     * @exception invalid rotation matrix
153     */
154 tim 1586 Quaternion<Real> toQuaternion() {
155     Quaternion<Real> q;
156     Real t, s;
157     Real ad1, ad2, ad3;
158     t = data_[0][0] + data_[1][1] + data_[2][2] + 1.0;
159 tim 1569
160 tim 1586 if( t > 0.0 ){
161    
162     s = 0.5 / sqrt( t );
163     q[0] = 0.25 / s;
164     q[1] = (data_[1][2] - data_[2][1]) * s;
165     q[2] = (data_[2][0] - data_[0][2]) * s;
166     q[3] = (data_[0][1] - data_[1][0]) * s;
167     } else {
168    
169     ad1 = fabs( data_[0][0] );
170     ad2 = fabs( data_[1][1] );
171     ad3 = fabs( data_[2][2] );
172    
173     if( ad1 >= ad2 && ad1 >= ad3 ){
174    
175     s = 2.0 * sqrt( 1.0 + data_[0][0] - data_[1][1] - data_[2][2] );
176     q[0] = (data_[1][2] + data_[2][1]) / s;
177     q[1] = 0.5 / s;
178     q[2] = (data_[0][1] + data_[1][0]) / s;
179     q[3] = (data_[0][2] + data_[2][0]) / s;
180     } else if ( ad2 >= ad1 && ad2 >= ad3 ) {
181     s = sqrt( 1.0 + data_[1][1] - data_[0][0] - data_[2][2] ) * 2.0;
182     q[0] = (data_[0][2] + data_[2][0]) / s;
183     q[1] = (data_[0][1] + data_[1][0]) / s;
184     q[2] = 0.5 / s;
185     q[3] = (data_[1][2] + data_[2][1]) / s;
186     } else {
187    
188     s = sqrt( 1.0 + data_[2][2] - data_[0][0] - data_[1][1] ) * 2.0;
189     q[0] = (data_[0][1] + data_[1][0]) / s;
190     q[1] = (data_[0][2] + data_[2][0]) / s;
191     q[2] = (data_[1][2] + data_[2][1]) / s;
192     q[3] = 0.5 / s;
193     }
194     }
195    
196     return q;
197    
198     }
199    
200 tim 1569 /**
201     * Returns the euler angles from this rotation matrix
202 tim 1586 * @return the euler angles in a vector
203 tim 1569 * @exception invalid rotation matrix
204 tim 1586 * We use so-called "x-convention", which is the most common definition.
205     * In this convention, the rotation given by Euler angles (phi, theta, psi), where the first
206     * rotation is by an angle phi about the z-axis, the second is by an angle
207     * theta (0 <= theta <= 180)about the x-axis, and thethird is by an angle psi about the
208     * z-axis (again).
209 tim 1569 */
210 tim 1586 Vector3<Real> toEulerAngles() {
211 tim 1606 Vector3<Real> myEuler;
212 tim 1586 Real phi,theta,psi,eps;
213     Real ctheta,stheta;
214    
215     // set the tolerance for Euler angles and rotation elements
216    
217 tim 1606 theta = acos(std::min(1.0, std::max(-1.0,data_[2][2])));
218 tim 1586 ctheta = data_[2][2];
219     stheta = sqrt(1.0 - ctheta * ctheta);
220    
221     // when sin(theta) is close to 0, we need to consider singularity
222     // In this case, we can assign an arbitary value to phi (or psi), and then determine
223     // the psi (or phi) or vice-versa. We'll assume that phi always gets the rotation, and psi is 0
224     // in cases of singularity.
225     // we use atan2 instead of atan, since atan2 will give us -Pi to Pi.
226     // Since 0 <= theta <= 180, sin(theta) will be always non-negative. Therefore, it never
227     // change the sign of both of the parameters passed to atan2.
228    
229     if (fabs(stheta) <= oopse::epsilon){
230     psi = 0.0;
231     phi = atan2(-data_[1][0], data_[0][0]);
232     }
233     // we only have one unique solution
234     else{
235     phi = atan2(data_[2][0], -data_[2][1]);
236     psi = atan2(data_[0][2], data_[1][2]);
237     }
238    
239     //wrap phi and psi, make sure they are in the range from 0 to 2*Pi
240     if (phi < 0)
241     phi += M_PI;
242    
243     if (psi < 0)
244     psi += M_PI;
245    
246     myEuler[0] = phi;
247     myEuler[1] = theta;
248     myEuler[2] = psi;
249    
250     return myEuler;
251     }
252 tim 1563
253 tim 1594 /** Returns the determinant of this matrix. */
254     Real determinant() const {
255     Real x,y,z;
256    
257     x = data_[0][0] * (data_[1][1] * data_[2][2] - data_[1][2] * data_[2][1]);
258     y = data_[0][1] * (data_[1][2] * data_[2][0] - data_[1][0] * data_[2][2]);
259     z = data_[0][2] * (data_[1][0] * data_[2][1] - data_[1][1] * data_[2][0]);
260    
261     return(x + y + z);
262     }
263    
264 tim 1563 /**
265     * Sets the value of this matrix to the inversion of itself.
266     * @note since simple algorithm can be applied to inverse the 3 by 3 matrix, we hide the
267     * implementation of inverse in SquareMatrix class
268     */
269 tim 1594 SquareMatrix3<Real> inverse() {
270     SquareMatrix3<Real> m;
271     double det = determinant();
272     if (fabs(det) <= oopse::epsilon) {
273     //"The method was called on a matrix with |determinant| <= 1e-6.",
274     //"This is a runtime or a programming error in your application.");
275     }
276 tim 1563
277 tim 1594 m(0, 0) = data_[1][1]*data_[2][2] - data_[1][2]*data_[2][1];
278     m(1, 0) = data_[1][2]*data_[2][0] - data_[1][0]*data_[2][2];
279     m(2, 0) = data_[1][0]*data_[2][1] - data_[1][1]*data_[2][0];
280     m(0, 1) = data_[2][1]*data_[0][2] - data_[2][2]*data_[0][1];
281     m(1, 1) = data_[2][2]*data_[0][0] - data_[2][0]*data_[0][2];
282     m(2, 1) = data_[2][0]*data_[0][1] - data_[2][1]*data_[0][0];
283     m(0, 2) = data_[0][1]*data_[1][2] - data_[0][2]*data_[1][1];
284     m(1, 2) = data_[0][2]*data_[1][0] - data_[0][0]*data_[1][2];
285     m(2, 2) = data_[0][0]*data_[1][1] - data_[0][1]*data_[1][0];
286    
287     m /= det;
288     return m;
289 tim 1592 }
290 tim 1616 /**
291     * Extract the eigenvalues and eigenvectors from a 3x3 matrix.
292     * The eigenvectors (the columns of V) will be normalized.
293     * The eigenvectors are aligned optimally with the x, y, and z
294     * axes respectively.
295     * @param a symmetric matrix whose eigenvectors are to be computed. On return, the matrix is
296     * overwritten
297     * @param w will contain the eigenvalues of the matrix On return of this function
298     * @param v the columns of this matrix will contain the eigenvectors. The eigenvectors are
299     * normalized and mutually orthogonal.
300     * @warning a will be overwritten
301     */
302     static void diagonalize(SquareMatrix3<Real>& a, Vector3<Real>& w, SquareMatrix3<Real>& v);
303     };
304     /*=========================================================================
305 tim 1569
306 tim 1616 Program: Visualization Toolkit
307     Module: $RCSfile: SquareMatrix3.hpp,v $
308 tim 1592
309 tim 1616 Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
310     All rights reserved.
311     See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
312 tim 1594
313 tim 1616 This software is distributed WITHOUT ANY WARRANTY; without even
314     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
315     PURPOSE. See the above copyright notice for more information.
316 tim 1594
317 tim 1616 =========================================================================*/
318     template<typename Real>
319     void SquareMatrix3<Real>::diagonalize(SquareMatrix3<Real>& a, Vector3<Real>& w,
320     SquareMatrix3<Real>& v) {
321     int i,j,k,maxI;
322     Real tmp, maxVal;
323     Vector3<Real> v_maxI, v_k, v_j;
324 tim 1594
325 tim 1616 // diagonalize using Jacobi
326     jacobi(a, w, v);
327     // if all the eigenvalues are the same, return identity matrix
328     if (w[0] == w[1] && w[0] == w[2] ) {
329     v = SquareMatrix3<Real>::identity();
330     return;
331     }
332 tim 1594
333 tim 1616 // transpose temporarily, it makes it easier to sort the eigenvectors
334     v = v.transpose();
335    
336     // if two eigenvalues are the same, re-orthogonalize to optimally line
337     // up the eigenvectors with the x, y, and z axes
338     for (i = 0; i < 3; i++) {
339     if (w((i+1)%3) == w((i+2)%3)) {// two eigenvalues are the same
340     // find maximum element of the independant eigenvector
341     maxVal = fabs(v(i, 0));
342     maxI = 0;
343     for (j = 1; j < 3; j++) {
344     if (maxVal < (tmp = fabs(v(i, j)))){
345     maxVal = tmp;
346     maxI = j;
347     }
348     }
349    
350     // swap the eigenvector into its proper position
351     if (maxI != i) {
352     tmp = w(maxI);
353     w(maxI) = w(i);
354     w(i) = tmp;
355 tim 1594
356 tim 1616 v.swapRow(i, maxI);
357     }
358     // maximum element of eigenvector should be positive
359     if (v(maxI, maxI) < 0) {
360     v(maxI, 0) = -v(maxI, 0);
361     v(maxI, 1) = -v(maxI, 1);
362     v(maxI, 2) = -v(maxI, 2);
363     }
364 tim 1594
365 tim 1616 // re-orthogonalize the other two eigenvectors
366     j = (maxI+1)%3;
367     k = (maxI+2)%3;
368 tim 1594
369 tim 1616 v(j, 0) = 0.0;
370     v(j, 1) = 0.0;
371     v(j, 2) = 0.0;
372     v(j, j) = 1.0;
373 tim 1594
374 tim 1616 /** @todo */
375     v_maxI = v.getRow(maxI);
376     v_j = v.getRow(j);
377     v_k = cross(v_maxI, v_j);
378     v_k.normalize();
379     v_j = cross(v_k, v_maxI);
380     v.setRow(j, v_j);
381     v.setRow(k, v_k);
382 tim 1594
383    
384 tim 1616 // transpose vectors back to columns
385     v = v.transpose();
386     return;
387     }
388     }
389 tim 1594
390 tim 1616 // the three eigenvalues are different, just sort the eigenvectors
391     // to align them with the x, y, and z axes
392 tim 1594
393 tim 1616 // find the vector with the largest x element, make that vector
394     // the first vector
395     maxVal = fabs(v(0, 0));
396     maxI = 0;
397     for (i = 1; i < 3; i++) {
398     if (maxVal < (tmp = fabs(v(i, 0)))) {
399     maxVal = tmp;
400     maxI = i;
401     }
402     }
403 tim 1594
404 tim 1616 // swap eigenvalue and eigenvector
405     if (maxI != 0) {
406     tmp = w(maxI);
407     w(maxI) = w(0);
408     w(0) = tmp;
409     v.swapRow(maxI, 0);
410     }
411     // do the same for the y element
412     if (fabs(v(1, 1)) < fabs(v(2, 1))) {
413     tmp = w(2);
414     w(2) = w(1);
415     w(1) = tmp;
416     v.swapRow(2, 1);
417     }
418 tim 1594
419 tim 1616 // ensure that the sign of the eigenvectors is correct
420     for (i = 0; i < 2; i++) {
421     if (v(i, i) < 0) {
422     v(i, 0) = -v(i, 0);
423     v(i, 1) = -v(i, 1);
424     v(i, 2) = -v(i, 2);
425 tim 1592 }
426 tim 1616 }
427 tim 1563
428 tim 1616 // set sign of final eigenvector to ensure that determinant is positive
429     if (v.determinant() < 0) {
430     v(2, 0) = -v(2, 0);
431     v(2, 1) = -v(2, 1);
432     v(2, 2) = -v(2, 2);
433     }
434    
435     // transpose the eigenvectors back again
436     v = v.transpose();
437     return ;
438     }
439 tim 1592 typedef SquareMatrix3<double> Mat3x3d;
440     typedef SquareMatrix3<double> RotMat3x3d;
441 tim 1586
442     } //namespace oopse
443     #endif // MATH_SQUAREMATRIX_HPP
444 tim 1616