ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-3.0/src/UseTheForce/DarkSide/sticky.F90
(Generate patch)

Comparing trunk/OOPSE-3.0/src/UseTheForce/DarkSide/sticky.F90 (file contents):
Revision 2219 by gezelter, Fri Apr 15 22:04:00 2005 UTC vs.
Revision 2220 by chrisfen, Thu May 5 14:47:35 2005 UTC

# Line 50 | Line 50
50   !! @author Matthew Meineke
51   !! @author Christopher Fennell
52   !! @author J. Daniel Gezelter
53 < !! @version $Id: sticky.F90,v 1.7 2005-04-15 22:03:49 gezelter Exp $, $Date: 2005-04-15 22:03:49 $, $Name: not supported by cvs2svn $, $Revision: 1.7 $
53 > !! @version $Id: sticky.F90,v 1.8 2005-05-05 14:47:35 chrisfen Exp $, $Date: 2005-05-05 14:47:35 $, $Name: not supported by cvs2svn $, $Revision: 1.8 $
54  
55   module sticky
56  
# Line 70 | Line 70 | module sticky
70    public :: newStickyType
71    public :: do_sticky_pair
72    public :: destroyStickyTypes
73 +  public :: do_sticky_power_pair
74  
75  
76    type :: StickyList
# Line 510 | Line 511 | end module sticky
511    subroutine destroyStickyTypes()  
512      if(allocated(StickyMap)) deallocate(StickyMap)
513    end subroutine destroyStickyTypes
514 +  
515 +    subroutine do_sticky_power_pair(atom1, atom2, d, rij, r2, sw, vpair, fpair, &
516 +       pot, A, f, t, do_pot)
517 +    !! We assume that the rotation matrices have already been calculated
518 +    !! and placed in the A array.
519 +
520 +    !! i and j are pointers to the two SSD atoms
521 +
522 +    integer, intent(in) :: atom1, atom2
523 +    real (kind=dp), intent(inout) :: rij, r2
524 +    real (kind=dp), dimension(3), intent(in) :: d
525 +    real (kind=dp), dimension(3), intent(inout) :: fpair
526 +    real (kind=dp) :: pot, vpair, sw
527 +    real (kind=dp), dimension(9,nLocal) :: A
528 +    real (kind=dp), dimension(3,nLocal) :: f
529 +    real (kind=dp), dimension(3,nLocal) :: t
530 +    logical, intent(in) :: do_pot
531 +
532 +    real (kind=dp) :: xi, yi, zi, xj, yj, zj, xi2, yi2, zi2, xj2, yj2, zj2
533 +    real (kind=dp) :: r3, r5, r6, s, sp, dsdr, dspdr
534 +    real (kind=dp) :: wi, wj, w, wip, wjp, wp, wi2, wj2
535 +    real (kind=dp) :: dwidx, dwidy, dwidz, dwjdx, dwjdy, dwjdz
536 +    real (kind=dp) :: dwipdx, dwipdy, dwipdz, dwjpdx, dwjpdy, dwjpdz
537 +    real (kind=dp) :: dwidux, dwiduy, dwiduz, dwjdux, dwjduy, dwjduz
538 +    real (kind=dp) :: dwipdux, dwipduy, dwipduz, dwjpdux, dwjpduy, dwjpduz
539 +    real (kind=dp) :: zif, zis, zjf, zjs, uglyi, uglyj
540 +    real (kind=dp) :: drdx, drdy, drdz
541 +    real (kind=dp) :: txi, tyi, tzi, txj, tyj, tzj
542 +    real (kind=dp) :: fxii, fyii, fzii, fxjj, fyjj, fzjj
543 +    real (kind=dp) :: fxij, fyij, fzij, fxji, fyji, fzji      
544 +    real (kind=dp) :: fxradial, fyradial, fzradial
545 +    real (kind=dp) :: rijtest, rjitest
546 +    real (kind=dp) :: radcomxi, radcomyi, radcomzi
547 +    real (kind=dp) :: radcomxj, radcomyj, radcomzj
548 +    integer :: id1, id2
549 +    integer :: me1, me2
550 +    real (kind=dp) :: w0, v0, v0p, rl, ru, rlp, rup, rbig
551 +
552 +    if (.not.allocated(StickyMap)) then
553 +       call handleError("sticky", "no StickyMap was present before first call of do_sticky_power_pair!")
554 +       return
555 +    end if
556 +
557 + #ifdef IS_MPI
558 +    me1 = atid_Row(atom1)
559 +    me2 = atid_Col(atom2)
560 + #else
561 +    me1 = atid(atom1)
562 +    me2 = atid(atom2)
563 + #endif
564 +
565 +    if (me1.eq.me2) then
566 +       w0  = StickyMap(me1)%w0
567 +       v0  = StickyMap(me1)%v0
568 +       v0p = StickyMap(me1)%v0p
569 +       rl  = StickyMap(me1)%rl
570 +       ru  = StickyMap(me1)%ru
571 +       rlp = StickyMap(me1)%rlp
572 +       rup = StickyMap(me1)%rup
573 +       rbig = StickyMap(me1)%rbig
574 +    else
575 +       ! This is silly, but if you want 2 sticky types in your
576 +       ! simulation, we'll let you do it with the Lorentz-
577 +       ! Berthelot mixing rules.
578 +       ! (Warning: you'll be SLLLLLLLLLLLLLLLOOOOOOOOOOWWWWWWWWWWW)
579 +       rl   = 0.5_dp * ( StickyMap(me1)%rl + StickyMap(me2)%rl )
580 +       ru   = 0.5_dp * ( StickyMap(me1)%ru + StickyMap(me2)%ru )
581 +       rlp  = 0.5_dp * ( StickyMap(me1)%rlp + StickyMap(me2)%rlp )
582 +       rup  = 0.5_dp * ( StickyMap(me1)%rup + StickyMap(me2)%rup )
583 +       rbig = max(ru, rup)
584 +       w0  = sqrt( StickyMap(me1)%w0   * StickyMap(me2)%w0  )
585 +       v0  = sqrt( StickyMap(me1)%v0   * StickyMap(me2)%v0  )
586 +       v0p = sqrt( StickyMap(me1)%v0p  * StickyMap(me2)%v0p )
587 +    endif
588 +
589 +    if ( rij .LE. rbig ) then
590 +
591 +       r3 = r2*rij
592 +       r5 = r3*r2
593 +
594 +       drdx = d(1) / rij
595 +       drdy = d(2) / rij
596 +       drdz = d(3) / rij
597 +
598 + #ifdef IS_MPI
599 +       ! rotate the inter-particle separation into the two different
600 +       ! body-fixed coordinate systems:
601 +
602 +       xi = A_row(1,atom1)*d(1) + A_row(2,atom1)*d(2) + A_row(3,atom1)*d(3)
603 +       yi = A_row(4,atom1)*d(1) + A_row(5,atom1)*d(2) + A_row(6,atom1)*d(3)
604 +       zi = A_row(7,atom1)*d(1) + A_row(8,atom1)*d(2) + A_row(9,atom1)*d(3)
605 +
606 +       ! negative sign because this is the vector from j to i:
607 +
608 +       xj = -(A_Col(1,atom2)*d(1) + A_Col(2,atom2)*d(2) + A_Col(3,atom2)*d(3))
609 +       yj = -(A_Col(4,atom2)*d(1) + A_Col(5,atom2)*d(2) + A_Col(6,atom2)*d(3))
610 +       zj = -(A_Col(7,atom2)*d(1) + A_Col(8,atom2)*d(2) + A_Col(9,atom2)*d(3))
611 + #else
612 +       ! rotate the inter-particle separation into the two different
613 +       ! body-fixed coordinate systems:
614 +
615 +       xi = a(1,atom1)*d(1) + a(2,atom1)*d(2) + a(3,atom1)*d(3)
616 +       yi = a(4,atom1)*d(1) + a(5,atom1)*d(2) + a(6,atom1)*d(3)
617 +       zi = a(7,atom1)*d(1) + a(8,atom1)*d(2) + a(9,atom1)*d(3)
618 +
619 +       ! negative sign because this is the vector from j to i:
620 +
621 +       xj = -(a(1,atom2)*d(1) + a(2,atom2)*d(2) + a(3,atom2)*d(3))
622 +       yj = -(a(4,atom2)*d(1) + a(5,atom2)*d(2) + a(6,atom2)*d(3))
623 +       zj = -(a(7,atom2)*d(1) + a(8,atom2)*d(2) + a(9,atom2)*d(3))
624 + #endif
625 +
626 +       xi2 = xi*xi
627 +       yi2 = yi*yi
628 +       zi2 = zi*zi
629 +
630 +       xj2 = xj*xj
631 +       yj2 = yj*yj
632 +       zj2 = zj*zj
633 +
634 +       call calc_sw_fnc(rij, rl, ru, rlp, rup, s, sp, dsdr, dspdr)
635 +
636 +       wi = 2.0d0*(xi2-yi2)*zi / r3
637 +       wj = 2.0d0*(xj2-yj2)*zj / r3
638 +       !rootwi = sqrt(abs(wi))
639 +       !rootwj = sqrt(abs(wj))
640 +       wi2 = wi*wi
641 +       wj2 = wj*wj
642 +
643 +      
644 +       w = wi*wi2+wj*wj2
645 +
646 +       zif = zi/rij - 0.6d0
647 +       zis = zi/rij + 0.8d0
648 +
649 +       zjf = zj/rij - 0.6d0
650 +       zjs = zj/rij + 0.8d0
651 +
652 +       wip = zif*zif*zis*zis - w0
653 +       wjp = zjf*zjf*zjs*zjs - w0
654 +       wp = wip + wjp
655 +
656 +       vpair = vpair + 0.5d0*(v0*s*w + v0p*sp*wp)
657 +       if (do_pot) then
658 + #ifdef IS_MPI
659 +          pot_row(atom1) = pot_row(atom1) + 0.25d0*(v0*s*w + v0p*sp*wp)*sw
660 +          pot_col(atom2) = pot_col(atom2) + 0.25d0*(v0*s*w + v0p*sp*wp)*sw
661 + #else
662 +          pot = pot + 0.5d0*(v0*s*w + v0p*sp*wp)*sw
663 + #endif  
664 +       endif
665 +
666 + !       dwidx = 1.5d0*rootwi*( 4.0d0*xi*zi/r3 - 6.0d0*xi*zi*(xi2-yi2)/r5 )
667 + !       dwidy = 1.5d0*rootwi*( -4.0d0*yi*zi/r3 - 6.0d0*yi*zi*(xi2-yi2)/r5 )
668 + !       dwidz = 1.5d0*rootwi*( 2.0d0*(xi2-yi2)/r3 - 6.0d0*zi2*(xi2-yi2)/r5 )
669 +
670 + !       dwjdx = 1.5d0*rootwj*( 4.0d0*xj*zj/r3  - 6.0d0*xj*zj*(xj2-yj2)/r5 )
671 + !       dwjdy = 1.5d0*rootwj*( -4.0d0*yj*zj/r3  - 6.0d0*yj*zj*(xj2-yj2)/r5 )
672 + !       dwjdz = 1.5d0*rootwj*( 2.0d0*(xj2-yj2)/r3  - 6.0d0*zj2*(xj2-yj2)/r5 )
673 +      
674 +       dwidx = 3.0d0*wi2*( 4.0d0*xi*zi/r3 - 6.0d0*xi*zi*(xi2-yi2)/r5 )
675 +       dwidy = 3.0d0*wi2*( -4.0d0*yi*zi/r3 - 6.0d0*yi*zi*(xi2-yi2)/r5 )
676 +       dwidz = 3.0d0*wi2*( 2.0d0*(xi2-yi2)/r3 - 6.0d0*zi2*(xi2-yi2)/r5 )
677 +
678 +       dwjdx = 3.0d0*wj2*( 4.0d0*xj*zj/r3  - 6.0d0*xj*zj*(xj2-yj2)/r5 )
679 +       dwjdy = 3.0d0*wj2*( -4.0d0*yj*zj/r3  - 6.0d0*yj*zj*(xj2-yj2)/r5 )
680 +       dwjdz = 3.0d0*wj2*( 2.0d0*(xj2-yj2)/r3  - 6.0d0*zj2*(xj2-yj2)/r5 )
681 +
682 +       uglyi = zif*zif*zis + zif*zis*zis
683 +       uglyj = zjf*zjf*zjs + zjf*zjs*zjs
684 +
685 +       dwipdx = -2.0d0*xi*zi*uglyi/r3
686 +       dwipdy = -2.0d0*yi*zi*uglyi/r3
687 +       dwipdz = 2.0d0*(1.0d0/rij - zi2/r3)*uglyi
688 +
689 +       dwjpdx = -2.0d0*xj*zj*uglyj/r3
690 +       dwjpdy = -2.0d0*yj*zj*uglyj/r3
691 +       dwjpdz = 2.0d0*(1.0d0/rij - zj2/r3)*uglyj
692 +
693 + !       dwidux = 1.5d0*rootwi*( 4.0d0*(yi*zi2 + 0.5d0*yi*(xi2-yi2))/r3 )
694 + !       dwiduy = 1.5d0*rootwi*( 4.0d0*(xi*zi2 - 0.5d0*xi*(xi2-yi2))/r3 )
695 + !       dwiduz = 1.5d0*rootwi*( -8.0d0*xi*yi*zi/r3 )
696 +
697 + !       dwjdux = 1.5d0*rootwj*( 4.0d0*(yj*zj2 + 0.5d0*yj*(xj2-yj2))/r3 )
698 + !       dwjduy = 1.5d0*rootwj*( 4.0d0*(xj*zj2 - 0.5d0*xj*(xj2-yj2))/r3 )
699 + !       dwjduz = 1.5d0*rootwj*( -8.0d0*xj*yj*zj/r3 )
700 +      
701 +       dwidux = 3.0d0*wi2*( 4.0d0*(yi*zi2 + 0.5d0*yi*(xi2-yi2))/r3 )
702 +       dwiduy = 3.0d0*wi2*( 4.0d0*(xi*zi2 - 0.5d0*xi*(xi2-yi2))/r3 )
703 +       dwiduz = 3.0d0*wi2*( -8.0d0*xi*yi*zi/r3 )
704 +
705 +       dwjdux = 3.0d0*wj2*( 4.0d0*(yj*zj2 + 0.5d0*yj*(xj2-yj2))/r3 )
706 +       dwjduy = 3.0d0*wj2*( 4.0d0*(xj*zj2 - 0.5d0*xj*(xj2-yj2))/r3 )
707 +       dwjduz = 3.0d0*wj2*( -8.0d0*xj*yj*zj/r3 )
708 +
709 +       dwipdux =  2.0d0*yi*uglyi/rij
710 +       dwipduy = -2.0d0*xi*uglyi/rij
711 +       dwipduz =  0.0d0
712 +
713 +       dwjpdux =  2.0d0*yj*uglyj/rij
714 +       dwjpduy = -2.0d0*xj*uglyj/rij
715 +       dwjpduz =  0.0d0
716 +
717 +       ! do the torques first since they are easy:
718 +       ! remember that these are still in the body fixed axes
719 +
720 +       txi = 0.5d0*(v0*s*dwidux + v0p*sp*dwipdux)*sw
721 +       tyi = 0.5d0*(v0*s*dwiduy + v0p*sp*dwipduy)*sw
722 +       tzi = 0.5d0*(v0*s*dwiduz + v0p*sp*dwipduz)*sw
723 +
724 +       txj = 0.5d0*(v0*s*dwjdux + v0p*sp*dwjpdux)*sw
725 +       tyj = 0.5d0*(v0*s*dwjduy + v0p*sp*dwjpduy)*sw
726 +       tzj = 0.5d0*(v0*s*dwjduz + v0p*sp*dwjpduz)*sw
727 +
728 +       ! go back to lab frame using transpose of rotation matrix:
729 +
730 + #ifdef IS_MPI
731 +       t_Row(1,atom1) = t_Row(1,atom1) + a_Row(1,atom1)*txi + &
732 +            a_Row(4,atom1)*tyi + a_Row(7,atom1)*tzi
733 +       t_Row(2,atom1) = t_Row(2,atom1) + a_Row(2,atom1)*txi + &
734 +            a_Row(5,atom1)*tyi + a_Row(8,atom1)*tzi
735 +       t_Row(3,atom1) = t_Row(3,atom1) + a_Row(3,atom1)*txi + &
736 +            a_Row(6,atom1)*tyi + a_Row(9,atom1)*tzi
737 +
738 +       t_Col(1,atom2) = t_Col(1,atom2) + a_Col(1,atom2)*txj + &
739 +            a_Col(4,atom2)*tyj + a_Col(7,atom2)*tzj
740 +       t_Col(2,atom2) = t_Col(2,atom2) + a_Col(2,atom2)*txj + &
741 +            a_Col(5,atom2)*tyj + a_Col(8,atom2)*tzj
742 +       t_Col(3,atom2) = t_Col(3,atom2) + a_Col(3,atom2)*txj + &
743 +            a_Col(6,atom2)*tyj + a_Col(9,atom2)*tzj
744 + #else
745 +       t(1,atom1) = t(1,atom1) + a(1,atom1)*txi + a(4,atom1)*tyi + a(7,atom1)*tzi
746 +       t(2,atom1) = t(2,atom1) + a(2,atom1)*txi + a(5,atom1)*tyi + a(8,atom1)*tzi
747 +       t(3,atom1) = t(3,atom1) + a(3,atom1)*txi + a(6,atom1)*tyi + a(9,atom1)*tzi
748 +
749 +       t(1,atom2) = t(1,atom2) + a(1,atom2)*txj + a(4,atom2)*tyj + a(7,atom2)*tzj
750 +       t(2,atom2) = t(2,atom2) + a(2,atom2)*txj + a(5,atom2)*tyj + a(8,atom2)*tzj
751 +       t(3,atom2) = t(3,atom2) + a(3,atom2)*txj + a(6,atom2)*tyj + a(9,atom2)*tzj
752 + #endif    
753 +       ! Now, on to the forces:
754 +
755 +       ! first rotate the i terms back into the lab frame:
756 +
757 +       radcomxi = (v0*s*dwidx+v0p*sp*dwipdx)*sw
758 +       radcomyi = (v0*s*dwidy+v0p*sp*dwipdy)*sw
759 +       radcomzi = (v0*s*dwidz+v0p*sp*dwipdz)*sw
760 +
761 +       radcomxj = (v0*s*dwjdx+v0p*sp*dwjpdx)*sw
762 +       radcomyj = (v0*s*dwjdy+v0p*sp*dwjpdy)*sw
763 +       radcomzj = (v0*s*dwjdz+v0p*sp*dwjpdz)*sw
764 +
765 + #ifdef IS_MPI    
766 +       fxii = a_Row(1,atom1)*(radcomxi) + &
767 +            a_Row(4,atom1)*(radcomyi) + &
768 +            a_Row(7,atom1)*(radcomzi)
769 +       fyii = a_Row(2,atom1)*(radcomxi) + &
770 +            a_Row(5,atom1)*(radcomyi) + &
771 +            a_Row(8,atom1)*(radcomzi)
772 +       fzii = a_Row(3,atom1)*(radcomxi) + &
773 +            a_Row(6,atom1)*(radcomyi) + &
774 +            a_Row(9,atom1)*(radcomzi)
775 +
776 +       fxjj = a_Col(1,atom2)*(radcomxj) + &
777 +            a_Col(4,atom2)*(radcomyj) + &
778 +            a_Col(7,atom2)*(radcomzj)
779 +       fyjj = a_Col(2,atom2)*(radcomxj) + &
780 +            a_Col(5,atom2)*(radcomyj) + &
781 +            a_Col(8,atom2)*(radcomzj)
782 +       fzjj = a_Col(3,atom2)*(radcomxj)+ &
783 +            a_Col(6,atom2)*(radcomyj) + &
784 +            a_Col(9,atom2)*(radcomzj)
785 + #else
786 +       fxii = a(1,atom1)*(radcomxi) + &
787 +            a(4,atom1)*(radcomyi) + &
788 +            a(7,atom1)*(radcomzi)
789 +       fyii = a(2,atom1)*(radcomxi) + &
790 +            a(5,atom1)*(radcomyi) + &
791 +            a(8,atom1)*(radcomzi)
792 +       fzii = a(3,atom1)*(radcomxi) + &
793 +            a(6,atom1)*(radcomyi) + &
794 +            a(9,atom1)*(radcomzi)
795 +
796 +       fxjj = a(1,atom2)*(radcomxj) + &
797 +            a(4,atom2)*(radcomyj) + &
798 +            a(7,atom2)*(radcomzj)
799 +       fyjj = a(2,atom2)*(radcomxj) + &
800 +            a(5,atom2)*(radcomyj) + &
801 +            a(8,atom2)*(radcomzj)
802 +       fzjj = a(3,atom2)*(radcomxj)+ &
803 +            a(6,atom2)*(radcomyj) + &
804 +            a(9,atom2)*(radcomzj)
805 + #endif
806 +
807 +       fxij = -fxii
808 +       fyij = -fyii
809 +       fzij = -fzii
810 +
811 +       fxji = -fxjj
812 +       fyji = -fyjj
813 +       fzji = -fzjj
814 +
815 +       ! now assemble these with the radial-only terms:
816 +
817 +       fxradial = 0.5d0*(v0*dsdr*drdx*w + v0p*dspdr*drdx*wp + fxii + fxji)
818 +       fyradial = 0.5d0*(v0*dsdr*drdy*w + v0p*dspdr*drdy*wp + fyii + fyji)
819 +       fzradial = 0.5d0*(v0*dsdr*drdz*w + v0p*dspdr*drdz*wp + fzii + fzji)
820 +
821 + #ifdef IS_MPI
822 +       f_Row(1,atom1) = f_Row(1,atom1) + fxradial
823 +       f_Row(2,atom1) = f_Row(2,atom1) + fyradial
824 +       f_Row(3,atom1) = f_Row(3,atom1) + fzradial
825 +
826 +       f_Col(1,atom2) = f_Col(1,atom2) - fxradial
827 +       f_Col(2,atom2) = f_Col(2,atom2) - fyradial
828 +       f_Col(3,atom2) = f_Col(3,atom2) - fzradial
829 + #else
830 +       f(1,atom1) = f(1,atom1) + fxradial
831 +       f(2,atom1) = f(2,atom1) + fyradial
832 +       f(3,atom1) = f(3,atom1) + fzradial
833 +
834 +       f(1,atom2) = f(1,atom2) - fxradial
835 +       f(2,atom2) = f(2,atom2) - fyradial
836 +       f(3,atom2) = f(3,atom2) - fzradial
837 + #endif
838 +
839 + #ifdef IS_MPI
840 +       id1 = AtomRowToGlobal(atom1)
841 +       id2 = AtomColToGlobal(atom2)
842 + #else
843 +       id1 = atom1
844 +       id2 = atom2
845 + #endif
846 +
847 +       if (molMembershipList(id1) .ne. molMembershipList(id2)) then
848 +
849 +          fpair(1) = fpair(1) + fxradial
850 +          fpair(2) = fpair(2) + fyradial
851 +          fpair(3) = fpair(3) + fzradial
852 +
853 +       endif
854 +    endif
855 +  end subroutine do_sticky_power_pair
856 +
857   end module sticky

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines