ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-3.0/src/UseTheForce/DarkSide/sticky.F90
(Generate patch)

Comparing trunk/OOPSE-3.0/src/UseTheForce/DarkSide/sticky.F90 (file contents):
Revision 2204 by gezelter, Fri Apr 15 22:04:00 2005 UTC vs.
Revision 2229 by chrisfen, Tue May 17 22:35:01 2005 UTC

# Line 50 | Line 50
50   !! @author Matthew Meineke
51   !! @author Christopher Fennell
52   !! @author J. Daniel Gezelter
53 < !! @version $Id: sticky.F90,v 1.7 2005-04-15 22:03:49 gezelter Exp $, $Date: 2005-04-15 22:03:49 $, $Name: not supported by cvs2svn $, $Revision: 1.7 $
53 > !! @version $Id: sticky.F90,v 1.10 2005-05-17 22:35:01 chrisfen Exp $, $Date: 2005-05-17 22:35:01 $, $Name: not supported by cvs2svn $, $Revision: 1.10 $
54  
55   module sticky
56  
# Line 70 | Line 70 | module sticky
70    public :: newStickyType
71    public :: do_sticky_pair
72    public :: destroyStickyTypes
73 +  public :: do_sticky_power_pair
74  
75  
76    type :: StickyList
# Line 510 | Line 511 | end module sticky
511    subroutine destroyStickyTypes()  
512      if(allocated(StickyMap)) deallocate(StickyMap)
513    end subroutine destroyStickyTypes
514 +  
515 +    subroutine do_sticky_power_pair(atom1, atom2, d, rij, r2, sw, vpair, fpair, &
516 +       pot, A, f, t, do_pot)
517 +    !! We assume that the rotation matrices have already been calculated
518 +    !! and placed in the A array.
519 +
520 +    !! i and j are pointers to the two SSD atoms
521 +
522 +    integer, intent(in) :: atom1, atom2
523 +    real (kind=dp), intent(inout) :: rij, r2
524 +    real (kind=dp), dimension(3), intent(in) :: d
525 +    real (kind=dp), dimension(3), intent(inout) :: fpair
526 +    real (kind=dp) :: pot, vpair, sw
527 +    real (kind=dp), dimension(9,nLocal) :: A
528 +    real (kind=dp), dimension(3,nLocal) :: f
529 +    real (kind=dp), dimension(3,nLocal) :: t
530 +    logical, intent(in) :: do_pot
531 +
532 +    real (kind=dp) :: xi, yi, zi, xj, yj, zj, xi2, yi2, zi2, xj2, yj2, zj2
533 +    real (kind=dp) :: xihat, yihat, zihat, xjhat, yjhat, zjhat
534 +    real (kind=dp) :: rI, rI2, rI3, rI4, rI5, rI6, rI7, s, sp, dsdr, dspdr
535 +    real (kind=dp) :: wi, wj, w, wip, wjp, wp, wi2, wj2, wip3, wjp3
536 +    real (kind=dp) :: dwidx, dwidy, dwidz, dwjdx, dwjdy, dwjdz
537 +    real (kind=dp) :: dwipdx, dwipdy, dwipdz, dwjpdx, dwjpdy, dwjpdz
538 +    real (kind=dp) :: dwidux, dwiduy, dwiduz, dwjdux, dwjduy, dwjduz
539 +    real (kind=dp) :: dwipdux, dwipduy, dwipduz, dwjpdux, dwjpduy, dwjpduz
540 +    real (kind=dp) :: zif, zis, zjf, zjs, uglyi, uglyj
541 +    real (kind=dp) :: drdx, drdy, drdz
542 +    real (kind=dp) :: txi, tyi, tzi, txj, tyj, tzj
543 +    real (kind=dp) :: fxii, fyii, fzii, fxjj, fyjj, fzjj
544 +    real (kind=dp) :: fxij, fyij, fzij, fxji, fyji, fzji      
545 +    real (kind=dp) :: fxradial, fyradial, fzradial
546 +    real (kind=dp) :: rijtest, rjitest
547 +    real (kind=dp) :: radcomxi, radcomyi, radcomzi
548 +    real (kind=dp) :: radcomxj, radcomyj, radcomzj
549 +    integer :: id1, id2
550 +    integer :: me1, me2
551 +    real (kind=dp) :: w0, v0, v0p, rl, ru, rlp, rup, rbig
552 +    real (kind=dp) :: zi3, zi4, zi5, zj3, zj4, zj5
553 +    real (kind=dp) :: frac1, frac2, prodVal
554 +    real (kind=dp) :: prei1, prei2, prei, prej1, prej2, prej
555 +    real (kind=dp) :: walt, walti, waltj, dwaltidx, dwaltidy, dwaltidz
556 +    real (kind=dp) :: dwaltjdx, dwaltjdy, dwaltjdz
557 +    real (kind=dp) :: dwaltidux, dwaltiduy, dwaltiduz
558 +    real (kind=dp) :: dwaltjdux, dwaltjduy, dwaltjduz
559 +    real (kind=dp) :: doSw1idx, doSw1idy, doSw1idz, doSw1jdx, doSw1jdy, doSw1jdz
560 +    real (kind=dp) :: doSw1idux, doSw1iduy, doSw1iduz
561 +    real (kind=dp) :: doSw1jdux, doSw1jduy, doSw1jduz
562 +    real (kind=dp) :: doSw2idx, doSw2idy, doSw2idz, doSw2jdx, doSw2jdy, doSw2jdz
563 +    real (kind=dp) :: doSw2idux, doSw2iduy, doSw2iduz
564 +    real (kind=dp) :: doSw2jdux, doSw2jduy, doSw2jduz
565 +    
566 +    if (.not.allocated(StickyMap)) then
567 +       call handleError("sticky", "no StickyMap was present before first call of do_sticky_power_pair!")
568 +       return
569 +    end if
570 +
571 + #ifdef IS_MPI
572 +    me1 = atid_Row(atom1)
573 +    me2 = atid_Col(atom2)
574 + #else
575 +    me1 = atid(atom1)
576 +    me2 = atid(atom2)
577 + #endif
578 +
579 +    if (me1.eq.me2) then
580 +       w0  = StickyMap(me1)%w0
581 +       v0  = StickyMap(me1)%v0
582 +       v0p = StickyMap(me1)%v0p
583 +       rl  = StickyMap(me1)%rl
584 +       ru  = StickyMap(me1)%ru
585 +       rlp = StickyMap(me1)%rlp
586 +       rup = StickyMap(me1)%rup
587 +       rbig = StickyMap(me1)%rbig
588 +    else
589 +       ! This is silly, but if you want 2 sticky types in your
590 +       ! simulation, we'll let you do it with the Lorentz-
591 +       ! Berthelot mixing rules.
592 +       ! (Warning: you'll be SLLLLLLLLLLLLLLLOOOOOOOOOOWWWWWWWWWWW)
593 +       rl   = 0.5_dp * ( StickyMap(me1)%rl + StickyMap(me2)%rl )
594 +       ru   = 0.5_dp * ( StickyMap(me1)%ru + StickyMap(me2)%ru )
595 +       rlp  = 0.5_dp * ( StickyMap(me1)%rlp + StickyMap(me2)%rlp )
596 +       rup  = 0.5_dp * ( StickyMap(me1)%rup + StickyMap(me2)%rup )
597 +       rbig = max(ru, rup)
598 +       w0  = sqrt( StickyMap(me1)%w0   * StickyMap(me2)%w0  )
599 +       v0  = sqrt( StickyMap(me1)%v0   * StickyMap(me2)%v0  )
600 +       v0p = sqrt( StickyMap(me1)%v0p  * StickyMap(me2)%v0p )
601 +    endif
602 +
603 +    if ( rij .LE. rbig ) then
604 +
605 +       rI = 1.0d0/rij
606 +       rI2 = rI*rI
607 +       rI3 = rI2*rI
608 +       rI4 = rI2*rI2
609 +       rI5 = rI3*rI2
610 +       rI6 = rI3*rI3
611 +       rI7 = rI4*rI3
612 +              
613 +       drdx = d(1) * rI
614 +       drdy = d(2) * rI
615 +       drdz = d(3) * rI
616 +
617 + #ifdef IS_MPI
618 +       ! rotate the inter-particle separation into the two different
619 +       ! body-fixed coordinate systems:
620 +
621 +       xi = A_row(1,atom1)*d(1) + A_row(2,atom1)*d(2) + A_row(3,atom1)*d(3)
622 +       yi = A_row(4,atom1)*d(1) + A_row(5,atom1)*d(2) + A_row(6,atom1)*d(3)
623 +       zi = A_row(7,atom1)*d(1) + A_row(8,atom1)*d(2) + A_row(9,atom1)*d(3)
624 +
625 +       ! negative sign because this is the vector from j to i:
626 +
627 +       xj = -(A_Col(1,atom2)*d(1) + A_Col(2,atom2)*d(2) + A_Col(3,atom2)*d(3))
628 +       yj = -(A_Col(4,atom2)*d(1) + A_Col(5,atom2)*d(2) + A_Col(6,atom2)*d(3))
629 +       zj = -(A_Col(7,atom2)*d(1) + A_Col(8,atom2)*d(2) + A_Col(9,atom2)*d(3))
630 + #else
631 +       ! rotate the inter-particle separation into the two different
632 +       ! body-fixed coordinate systems:
633 +
634 +       xi = a(1,atom1)*d(1) + a(2,atom1)*d(2) + a(3,atom1)*d(3)
635 +       yi = a(4,atom1)*d(1) + a(5,atom1)*d(2) + a(6,atom1)*d(3)
636 +       zi = a(7,atom1)*d(1) + a(8,atom1)*d(2) + a(9,atom1)*d(3)
637 +
638 +       ! negative sign because this is the vector from j to i:
639 +
640 +       xj = -(a(1,atom2)*d(1) + a(2,atom2)*d(2) + a(3,atom2)*d(3))
641 +       yj = -(a(4,atom2)*d(1) + a(5,atom2)*d(2) + a(6,atom2)*d(3))
642 +       zj = -(a(7,atom2)*d(1) + a(8,atom2)*d(2) + a(9,atom2)*d(3))
643 + #endif
644 +
645 +       xi2 = xi*xi
646 +       yi2 = yi*yi
647 +       zi2 = zi*zi
648 +       zi3 = zi2*zi
649 +       zi4 = zi2*zi2
650 +       zi5 = zi4*zi
651 +       xihat = xi*rI
652 +       yihat = yi*rI
653 +       zihat = zi*rI
654 +      
655 +       xj2 = xj*xj
656 +       yj2 = yj*yj
657 +       zj2 = zj*zj
658 +       zj3 = zj2*zj
659 +       zj4 = zj2*zj2
660 +       zj5 = zj4*zj
661 +       xjhat = xj*rI
662 +       yjhat = yj*rI
663 +       zjhat = zj*rI
664 +      
665 +       call calc_sw_fnc(rij, rl, ru, rlp, rup, s, sp, dsdr, dspdr)
666 +          
667 +       frac1 = 0.5d0
668 +       frac2 = 0.5d0
669 +      
670 +       wi = 2.0d0*(xi2-yi2)*zi*rI3
671 +       wj = 2.0d0*(xj2-yj2)*zj*rI3
672 +      
673 + !       prodVal = zihat*zjhat
674 + !       if (prodVal .ge. 0.0d0) then
675 + !         wi = 0.0d0
676 + !         wj = 0.0d0
677 + !       endif
678 +
679 +       wi2 = wi*wi
680 +       wj2 = wj*wj
681 +
682 +       w = frac1*wi*wi2 + frac2*wi + wj*wj2
683 +
684 +       zif = zihat - 0.6d0
685 +       zis = zihat + 0.8d0
686 +
687 +       zjf = zjhat - 0.6d0
688 +       zjs = zjhat + 0.8d0
689 +
690 +       wip = zif*zif*zis*zis - w0
691 +       wjp = zjf*zjf*zjs*zjs - w0
692 +       wp = wip + wjp
693 +        
694 +       !wip = zihat - 0.2d0
695 +       !wjp = zjhat - 0.2d0
696 +       !wip3 = wip*wip*wip
697 +       !wjp3 = wjp*wjp*wjp
698 +      
699 +       !wp = wip3*wip + wjp3*wjp
700 +
701 +       vpair = vpair + 0.5d0*(v0*s*w + v0p*sp*wp)
702 +      
703 +       if (do_pot) then
704 + #ifdef IS_MPI
705 +         pot_row(atom1) = pot_row(atom1) + 0.25d0*(v0*s*w + v0p*sp*wp)*sw
706 +         pot_col(atom2) = pot_col(atom2) + 0.25d0*(v0*s*w + v0p*sp*wp)*sw
707 + #else
708 +         pot = pot + 0.5d0*(v0*s*w + v0p*sp*wp)*sw
709 + #endif  
710 +       endif
711 +
712 +       dwidx = ( 4.0d0*xi*zi*rI3 - 6.0d0*xi*zi*(xi2-yi2)*rI5 )
713 +       dwidy = ( -4.0d0*yi*zi*rI3 - 6.0d0*yi*zi*(xi2-yi2)*rI5 )
714 +       dwidz = ( 2.0d0*(xi2-yi2)*rI3 - 6.0d0*zi2*(xi2-yi2)*rI5 )
715 +      
716 +       dwidx = frac1*3.0d0*wi2*dwidx + frac2*dwidx
717 +       dwidy = frac1*3.0d0*wi2*dwidy + frac2*dwidy
718 +       dwidz = frac1*3.0d0*wi2*dwidz + frac2*dwidz
719 +
720 +       dwjdx = ( 4.0d0*xj*zj*rI3  - 6.0d0*xj*zj*(xj2-yj2)*rI5 )
721 +       dwjdy = ( -4.0d0*yj*zj*rI3  - 6.0d0*yj*zj*(xj2-yj2)*rI5 )
722 +       dwjdz = ( 2.0d0*(xj2-yj2)*rI3  - 6.0d0*zj2*(xj2-yj2)*rI5 )
723 +
724 +       dwjdx = frac1*3.0d0*wj2*dwjdx + frac2*dwjdx
725 +       dwjdy = frac1*3.0d0*wj2*dwjdy + frac2*dwjdy
726 +       dwjdz = frac1*3.0d0*wj2*dwjdz + frac2*dwjdz
727 +      
728 +       uglyi = zif*zif*zis + zif*zis*zis
729 +       uglyj = zjf*zjf*zjs + zjf*zjs*zjs
730 +
731 +       dwipdx = -2.0d0*xi*zi*uglyi*rI3
732 +       dwipdy = -2.0d0*yi*zi*uglyi*rI3
733 +       dwipdz = 2.0d0*(rI - zi2*rI3)*uglyi
734 +
735 +       dwjpdx = -2.0d0*xj*zj*uglyj*rI3
736 +       dwjpdy = -2.0d0*yj*zj*uglyj*rI3
737 +       dwjpdz = 2.0d0*(rI - zj2*rI3)*uglyj
738 +
739 +       !dwipdx = -4.0d0*wip3*zi*xihat
740 +       !dwipdy = -4.0d0*wip3*zi*yihat
741 +       !dwipdz = -4.0d0*wip3*(zi2 - 1.0d0)*rI
742 +
743 +       !dwjpdx = -4.0d0*wjp3*zj*xjhat
744 +       !dwjpdy = -4.0d0*wjp3*zj*yjhat
745 +       !dwjpdz = -4.0d0*wjp3*(zj2 - 1.0d0)*rI
746 +      
747 +       !dwipdx = 0.0d0
748 +       !dwipdy = 0.0d0
749 +       !dwipdz = 0.0d0
750 +
751 +       !dwjpdx = 0.0d0
752 +       !dwjpdy = 0.0d0
753 +       !dwjpdz = 0.0d0
754 +      
755 +       dwidux = ( 4.0d0*(yi*zi2 + 0.5d0*yi*(xi2-yi2))*rI3 )
756 +       dwiduy = ( 4.0d0*(xi*zi2 - 0.5d0*xi*(xi2-yi2))*rI3 )
757 +       dwiduz = ( -8.0d0*xi*yi*zi*rI3 )
758 +
759 +       dwidux = frac1*3.0d0*wi2*dwidux + frac2*dwidux
760 +       dwiduy = frac1*3.0d0*wi2*dwiduy + frac2*dwiduy
761 +       dwiduz = frac1*3.0d0*wi2*dwiduz + frac2*dwiduz
762 +
763 +       dwjdux = ( 4.0d0*(yj*zj2 + 0.5d0*yj*(xj2-yj2))*rI3 )
764 +       dwjduy = ( 4.0d0*(xj*zj2 - 0.5d0*xj*(xj2-yj2))*rI3 )
765 +       dwjduz = ( -8.0d0*xj*yj*zj*rI3 )
766 +
767 +       dwjdux = frac1*3.0d0*wj2*dwjdux + frac2*dwjdux
768 +       dwjduy = frac1*3.0d0*wj2*dwjduy + frac2*dwjduy
769 +       dwjduz = frac1*3.0d0*wj2*dwjduz + frac2*dwjduz
770 +
771 +       dwipdux =  2.0d0*yi*uglyi*rI
772 +       dwipduy = -2.0d0*xi*uglyi*rI
773 +       dwipduz =  0.0d0
774 +
775 +       dwjpdux =  2.0d0*yj*uglyj*rI
776 +       dwjpduy = -2.0d0*xj*uglyj*rI
777 +       dwjpduz =  0.0d0
778 +
779 +       !dwipdux =  4.0d0*wip3*yihat
780 +       !dwipduy = -4.0d0*wip3*xihat
781 +       !dwipduz =  0.0d0
782 +
783 +       !dwjpdux =  4.0d0*wjp3*yjhat
784 +       !dwjpduy = -4.0d0*wjp3*xjhat
785 +       !dwjpduz =  0.0d0
786 +
787 +       !dwipdux = 0.0d0
788 +       !dwipduy = 0.0d0
789 +       !dwipduz = 0.0d0
790 +
791 +       !dwjpdux = 0.0d0
792 +       !dwjpduy = 0.0d0
793 +       !dwjpduz = 0.0d0
794 +      
795 +       ! do the torques first since they are easy:
796 +       ! remember that these are still in the body fixed axes
797 +
798 +       txi = 0.5d0*(v0*s*dwidux + v0p*sp*dwipdux)*sw
799 +       tyi = 0.5d0*(v0*s*dwiduy + v0p*sp*dwipduy)*sw
800 +       tzi = 0.5d0*(v0*s*dwiduz + v0p*sp*dwipduz)*sw
801 +
802 +       txj = 0.5d0*(v0*s*dwjdux + v0p*sp*dwjpdux)*sw
803 +       tyj = 0.5d0*(v0*s*dwjduy + v0p*sp*dwjpduy)*sw
804 +       tzj = 0.5d0*(v0*s*dwjduz + v0p*sp*dwjpduz)*sw
805 +
806 +       ! go back to lab frame using transpose of rotation matrix:
807 +
808 + #ifdef IS_MPI
809 +       t_Row(1,atom1) = t_Row(1,atom1) + a_Row(1,atom1)*txi + &
810 +            a_Row(4,atom1)*tyi + a_Row(7,atom1)*tzi
811 +       t_Row(2,atom1) = t_Row(2,atom1) + a_Row(2,atom1)*txi + &
812 +            a_Row(5,atom1)*tyi + a_Row(8,atom1)*tzi
813 +       t_Row(3,atom1) = t_Row(3,atom1) + a_Row(3,atom1)*txi + &
814 +            a_Row(6,atom1)*tyi + a_Row(9,atom1)*tzi
815 +
816 +       t_Col(1,atom2) = t_Col(1,atom2) + a_Col(1,atom2)*txj + &
817 +            a_Col(4,atom2)*tyj + a_Col(7,atom2)*tzj
818 +       t_Col(2,atom2) = t_Col(2,atom2) + a_Col(2,atom2)*txj + &
819 +            a_Col(5,atom2)*tyj + a_Col(8,atom2)*tzj
820 +       t_Col(3,atom2) = t_Col(3,atom2) + a_Col(3,atom2)*txj + &
821 +            a_Col(6,atom2)*tyj + a_Col(9,atom2)*tzj
822 + #else
823 +       t(1,atom1) = t(1,atom1) + a(1,atom1)*txi + a(4,atom1)*tyi + a(7,atom1)*tzi
824 +       t(2,atom1) = t(2,atom1) + a(2,atom1)*txi + a(5,atom1)*tyi + a(8,atom1)*tzi
825 +       t(3,atom1) = t(3,atom1) + a(3,atom1)*txi + a(6,atom1)*tyi + a(9,atom1)*tzi
826 +
827 +       t(1,atom2) = t(1,atom2) + a(1,atom2)*txj + a(4,atom2)*tyj + a(7,atom2)*tzj
828 +       t(2,atom2) = t(2,atom2) + a(2,atom2)*txj + a(5,atom2)*tyj + a(8,atom2)*tzj
829 +       t(3,atom2) = t(3,atom2) + a(3,atom2)*txj + a(6,atom2)*tyj + a(9,atom2)*tzj
830 + #endif    
831 +       ! Now, on to the forces:
832 +
833 +       ! first rotate the i terms back into the lab frame:
834 +
835 +       radcomxi = (v0*s*dwidx+v0p*sp*dwipdx)*sw
836 +       radcomyi = (v0*s*dwidy+v0p*sp*dwipdy)*sw
837 +       radcomzi = (v0*s*dwidz+v0p*sp*dwipdz)*sw
838 +
839 +       radcomxj = (v0*s*dwjdx+v0p*sp*dwjpdx)*sw
840 +       radcomyj = (v0*s*dwjdy+v0p*sp*dwjpdy)*sw
841 +       radcomzj = (v0*s*dwjdz+v0p*sp*dwjpdz)*sw
842 +
843 + #ifdef IS_MPI    
844 +       fxii = a_Row(1,atom1)*(radcomxi) + &
845 +            a_Row(4,atom1)*(radcomyi) + &
846 +            a_Row(7,atom1)*(radcomzi)
847 +       fyii = a_Row(2,atom1)*(radcomxi) + &
848 +            a_Row(5,atom1)*(radcomyi) + &
849 +            a_Row(8,atom1)*(radcomzi)
850 +       fzii = a_Row(3,atom1)*(radcomxi) + &
851 +            a_Row(6,atom1)*(radcomyi) + &
852 +            a_Row(9,atom1)*(radcomzi)
853 +
854 +       fxjj = a_Col(1,atom2)*(radcomxj) + &
855 +            a_Col(4,atom2)*(radcomyj) + &
856 +            a_Col(7,atom2)*(radcomzj)
857 +       fyjj = a_Col(2,atom2)*(radcomxj) + &
858 +            a_Col(5,atom2)*(radcomyj) + &
859 +            a_Col(8,atom2)*(radcomzj)
860 +       fzjj = a_Col(3,atom2)*(radcomxj)+ &
861 +            a_Col(6,atom2)*(radcomyj) + &
862 +            a_Col(9,atom2)*(radcomzj)
863 + #else
864 +       fxii = a(1,atom1)*(radcomxi) + &
865 +            a(4,atom1)*(radcomyi) + &
866 +            a(7,atom1)*(radcomzi)
867 +       fyii = a(2,atom1)*(radcomxi) + &
868 +            a(5,atom1)*(radcomyi) + &
869 +            a(8,atom1)*(radcomzi)
870 +       fzii = a(3,atom1)*(radcomxi) + &
871 +            a(6,atom1)*(radcomyi) + &
872 +            a(9,atom1)*(radcomzi)
873 +
874 +       fxjj = a(1,atom2)*(radcomxj) + &
875 +            a(4,atom2)*(radcomyj) + &
876 +            a(7,atom2)*(radcomzj)
877 +       fyjj = a(2,atom2)*(radcomxj) + &
878 +            a(5,atom2)*(radcomyj) + &
879 +            a(8,atom2)*(radcomzj)
880 +       fzjj = a(3,atom2)*(radcomxj)+ &
881 +            a(6,atom2)*(radcomyj) + &
882 +            a(9,atom2)*(radcomzj)
883 + #endif
884 +
885 +       fxij = -fxii
886 +       fyij = -fyii
887 +       fzij = -fzii
888 +
889 +       fxji = -fxjj
890 +       fyji = -fyjj
891 +       fzji = -fzjj
892 +
893 +       ! now assemble these with the radial-only terms:
894 +
895 +       fxradial = 0.5d0*((v0*dsdr*w + v0p*dspdr*wp)*drdx + fxii + fxji)
896 +       fyradial = 0.5d0*((v0*dsdr*w + v0p*dspdr*wp)*drdy + fyii + fyji)
897 +       fzradial = 0.5d0*((v0*dsdr*w + v0p*dspdr*wp)*drdz + fzii + fzji)
898 +
899 + #ifdef IS_MPI
900 +       f_Row(1,atom1) = f_Row(1,atom1) + fxradial
901 +       f_Row(2,atom1) = f_Row(2,atom1) + fyradial
902 +       f_Row(3,atom1) = f_Row(3,atom1) + fzradial
903 +
904 +       f_Col(1,atom2) = f_Col(1,atom2) - fxradial
905 +       f_Col(2,atom2) = f_Col(2,atom2) - fyradial
906 +       f_Col(3,atom2) = f_Col(3,atom2) - fzradial
907 + #else
908 +       f(1,atom1) = f(1,atom1) + fxradial
909 +       f(2,atom1) = f(2,atom1) + fyradial
910 +       f(3,atom1) = f(3,atom1) + fzradial
911 +
912 +       f(1,atom2) = f(1,atom2) - fxradial
913 +       f(2,atom2) = f(2,atom2) - fyradial
914 +       f(3,atom2) = f(3,atom2) - fzradial
915 + #endif
916 +
917 + #ifdef IS_MPI
918 +       id1 = AtomRowToGlobal(atom1)
919 +       id2 = AtomColToGlobal(atom2)
920 + #else
921 +       id1 = atom1
922 +       id2 = atom2
923 + #endif
924 +
925 +       if (molMembershipList(id1) .ne. molMembershipList(id2)) then
926 +
927 +          fpair(1) = fpair(1) + fxradial
928 +          fpair(2) = fpair(2) + fyradial
929 +          fpair(3) = fpair(3) + fzradial
930 +
931 +       endif
932 +    endif
933 +  end subroutine do_sticky_power_pair
934 +
935   end module sticky

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines