ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-3.0/src/UseTheForce/doForces.F90
(Generate patch)

Comparing trunk/OOPSE-3.0/src/UseTheForce/doForces.F90 (file contents):
Revision 2085 by gezelter, Tue Mar 8 21:05:46 2005 UTC vs.
Revision 2277 by chrisfen, Fri Aug 26 21:30:41 2005 UTC

# Line 45 | Line 45
45  
46   !! @author Charles F. Vardeman II
47   !! @author Matthew Meineke
48 < !! @version $Id: doForces.F90,v 1.11 2005-03-08 21:05:46 gezelter Exp $, $Date: 2005-03-08 21:05:46 $, $Name: not supported by cvs2svn $, $Revision: 1.11 $
48 > !! @version $Id: doForces.F90,v 1.32 2005-08-26 21:30:30 chrisfen Exp $, $Date: 2005-08-26 21:30:30 $, $Name: not supported by cvs2svn $, $Revision: 1.32 $
49  
50  
51   module doForces
# Line 73 | Line 73 | module doForces
73  
74   #define __FORTRAN90
75   #include "UseTheForce/fSwitchingFunction.h"
76 + #include "UseTheForce/fCutoffPolicy.h"
77 + #include "UseTheForce/DarkSide/fInteractionMap.h"
78  
79 +
80    INTEGER, PARAMETER:: PREPAIR_LOOP = 1
81    INTEGER, PARAMETER:: PAIR_LOOP    = 2
82  
80  logical, save :: haveRlist = .false.
83    logical, save :: haveNeighborList = .false.
84    logical, save :: haveSIMvariables = .false.
83  logical, save :: havePropertyMap = .false.
85    logical, save :: haveSaneForceField = .false.
86 <  
86 >  logical, save :: haveInteractionHash = .false.
87 >  logical, save :: haveGtypeCutoffMap = .false.
88 >
89    logical, save :: FF_uses_DirectionalAtoms
87  logical, save :: FF_uses_LennardJones
88  logical, save :: FF_uses_Electrostatics
89  logical, save :: FF_uses_Charges
90    logical, save :: FF_uses_Dipoles
91  logical, save :: FF_uses_Quadrupoles
92  logical, save :: FF_uses_sticky
91    logical, save :: FF_uses_GayBerne
92    logical, save :: FF_uses_EAM
95  logical, save :: FF_uses_Shapes
96  logical, save :: FF_uses_FLARB
93    logical, save :: FF_uses_RF
94  
95    logical, save :: SIM_uses_DirectionalAtoms
100  logical, save :: SIM_uses_LennardJones
101  logical, save :: SIM_uses_Electrostatics
102  logical, save :: SIM_uses_Charges
103  logical, save :: SIM_uses_Dipoles
104  logical, save :: SIM_uses_Quadrupoles
105  logical, save :: SIM_uses_Sticky
106  logical, save :: SIM_uses_GayBerne
96    logical, save :: SIM_uses_EAM
108  logical, save :: SIM_uses_Shapes
109  logical, save :: SIM_uses_FLARB
97    logical, save :: SIM_uses_RF
98    logical, save :: SIM_requires_postpair_calc
99    logical, save :: SIM_requires_prepair_calc
100    logical, save :: SIM_uses_PBC
114  logical, save :: SIM_uses_molecular_cutoffs
101  
116  real(kind=dp), save :: rlist, rlistsq
117
102    public :: init_FF
103 +  public :: setDefaultCutoffs
104    public :: do_force_loop
105 <  public :: setRlistDF
105 >  public :: createInteractionHash
106 >  public :: createGtypeCutoffMap
107 >  public :: getStickyCut
108 >  public :: getStickyPowerCut
109 >  public :: getGayBerneCut
110 >  public :: getEAMCut
111 >  public :: getShapeCut
112  
113   #ifdef PROFILE
114    public :: getforcetime
# Line 125 | Line 116 | module doForces
116    real :: forceTimeInitial, forceTimeFinal
117    integer :: nLoops
118   #endif
119 +  
120 +  !! Variables for cutoff mapping and interaction mapping
121 +  ! Bit hash to determine pair-pair interactions.
122 +  integer, dimension(:,:), allocatable :: InteractionHash
123 +  real(kind=dp), dimension(:), allocatable :: atypeMaxCutoff
124 +  real(kind=dp), dimension(:), allocatable :: groupMaxCutoff
125 +  integer, dimension(:), allocatable :: groupToGtype
126 +  real(kind=dp), dimension(:), allocatable :: gtypeMaxCutoff
127 +  type ::gtypeCutoffs
128 +     real(kind=dp) :: rcut
129 +     real(kind=dp) :: rcutsq
130 +     real(kind=dp) :: rlistsq
131 +  end type gtypeCutoffs
132 +  type(gtypeCutoffs), dimension(:,:), allocatable :: gtypeCutoffMap
133  
134 <  type :: Properties
135 <     logical :: is_Directional   = .false.
136 <     logical :: is_LennardJones  = .false.
132 <     logical :: is_Electrostatic = .false.
133 <     logical :: is_Charge        = .false.
134 <     logical :: is_Dipole        = .false.
135 <     logical :: is_Quadrupole    = .false.
136 <     logical :: is_Sticky        = .false.
137 <     logical :: is_GayBerne      = .false.
138 <     logical :: is_EAM           = .false.
139 <     logical :: is_Shape         = .false.
140 <     logical :: is_FLARB         = .false.
141 <  end type Properties
142 <
143 <  type(Properties), dimension(:),allocatable :: PropertyMap
144 <
134 >  integer, save :: cutoffPolicy = TRADITIONAL_CUTOFF_POLICY
135 >  real(kind=dp),save :: defaultRcut, defaultRsw, defaultRlist
136 >  
137   contains
138  
139 <  subroutine setRlistDF( this_rlist )
148 <    
149 <    real(kind=dp) :: this_rlist
150 <
151 <    rlist = this_rlist
152 <    rlistsq = rlist * rlist
153 <    
154 <    haveRlist = .true.
155 <
156 <  end subroutine setRlistDF    
157 <
158 <  subroutine createPropertyMap(status)
139 >  subroutine createInteractionHash(status)
140      integer :: nAtypes
141 <    integer :: status
141 >    integer, intent(out) :: status
142      integer :: i
143 <    logical :: thisProperty
144 <    real (kind=DP) :: thisDPproperty
143 >    integer :: j
144 >    integer :: iHash
145 >    !! Test Types
146 >    logical :: i_is_LJ
147 >    logical :: i_is_Elect
148 >    logical :: i_is_Sticky
149 >    logical :: i_is_StickyP
150 >    logical :: i_is_GB
151 >    logical :: i_is_EAM
152 >    logical :: i_is_Shape
153 >    logical :: j_is_LJ
154 >    logical :: j_is_Elect
155 >    logical :: j_is_Sticky
156 >    logical :: j_is_StickyP
157 >    logical :: j_is_GB
158 >    logical :: j_is_EAM
159 >    logical :: j_is_Shape
160 >    real(kind=dp) :: myRcut
161  
162 <    status = 0
162 >    status = 0  
163  
164 +    if (.not. associated(atypes)) then
165 +       call handleError("atype", "atypes was not present before call of createInteractionHash!")
166 +       status = -1
167 +       return
168 +    endif
169 +    
170      nAtypes = getSize(atypes)
171 <
171 >    
172      if (nAtypes == 0) then
173         status = -1
174         return
175      end if
176 <        
177 <    if (.not. allocated(PropertyMap)) then
178 <       allocate(PropertyMap(nAtypes))
176 >
177 >    if (.not. allocated(InteractionHash)) then
178 >       allocate(InteractionHash(nAtypes,nAtypes))
179      endif
180  
181 +    if (.not. allocated(atypeMaxCutoff)) then
182 +       allocate(atypeMaxCutoff(nAtypes))
183 +    endif
184 +        
185      do i = 1, nAtypes
186 <       call getElementProperty(atypes, i, "is_Directional", thisProperty)
187 <       PropertyMap(i)%is_Directional = thisProperty
186 >       call getElementProperty(atypes, i, "is_LennardJones", i_is_LJ)
187 >       call getElementProperty(atypes, i, "is_Electrostatic", i_is_Elect)
188 >       call getElementProperty(atypes, i, "is_Sticky", i_is_Sticky)
189 >       call getElementProperty(atypes, i, "is_StickyPower", i_is_StickyP)
190 >       call getElementProperty(atypes, i, "is_GayBerne", i_is_GB)
191 >       call getElementProperty(atypes, i, "is_EAM", i_is_EAM)
192 >       call getElementProperty(atypes, i, "is_Shape", i_is_Shape)
193  
194 <       call getElementProperty(atypes, i, "is_LennardJones", thisProperty)
183 <       PropertyMap(i)%is_LennardJones = thisProperty
184 <      
185 <       call getElementProperty(atypes, i, "is_Electrostatic", thisProperty)
186 <       PropertyMap(i)%is_Electrostatic = thisProperty
194 >       do j = i, nAtypes
195  
196 <       call getElementProperty(atypes, i, "is_Charge", thisProperty)
197 <       PropertyMap(i)%is_Charge = thisProperty
190 <      
191 <       call getElementProperty(atypes, i, "is_Dipole", thisProperty)
192 <       PropertyMap(i)%is_Dipole = thisProperty
196 >          iHash = 0
197 >          myRcut = 0.0_dp
198  
199 <       call getElementProperty(atypes, i, "is_Quadrupole", thisProperty)
200 <       PropertyMap(i)%is_Quadrupole = thisProperty
199 >          call getElementProperty(atypes, j, "is_LennardJones", j_is_LJ)
200 >          call getElementProperty(atypes, j, "is_Electrostatic", j_is_Elect)
201 >          call getElementProperty(atypes, j, "is_Sticky", j_is_Sticky)
202 >          call getElementProperty(atypes, j, "is_StickyPower", j_is_StickyP)
203 >          call getElementProperty(atypes, j, "is_GayBerne", j_is_GB)
204 >          call getElementProperty(atypes, j, "is_EAM", j_is_EAM)
205 >          call getElementProperty(atypes, j, "is_Shape", j_is_Shape)
206  
207 <       call getElementProperty(atypes, i, "is_Sticky", thisProperty)
208 <       PropertyMap(i)%is_Sticky = thisProperty
209 <
210 <       call getElementProperty(atypes, i, "is_GayBerne", thisProperty)
211 <       PropertyMap(i)%is_GayBerne = thisProperty
212 <
213 <       call getElementProperty(atypes, i, "is_EAM", thisProperty)
214 <       PropertyMap(i)%is_EAM = thisProperty
207 >          if (i_is_LJ .and. j_is_LJ) then
208 >             iHash = ior(iHash, LJ_PAIR)            
209 >          endif
210 >          
211 >          if (i_is_Elect .and. j_is_Elect) then
212 >             iHash = ior(iHash, ELECTROSTATIC_PAIR)
213 >          endif
214 >          
215 >          if (i_is_Sticky .and. j_is_Sticky) then
216 >             iHash = ior(iHash, STICKY_PAIR)
217 >          endif
218  
219 <       call getElementProperty(atypes, i, "is_Shape", thisProperty)
220 <       PropertyMap(i)%is_Shape = thisProperty
219 >          if (i_is_StickyP .and. j_is_StickyP) then
220 >             iHash = ior(iHash, STICKYPOWER_PAIR)
221 >          endif
222  
223 <       call getElementProperty(atypes, i, "is_FLARB", thisProperty)
224 <       PropertyMap(i)%is_FLARB = thisProperty
223 >          if (i_is_EAM .and. j_is_EAM) then
224 >             iHash = ior(iHash, EAM_PAIR)
225 >          endif
226 >
227 >          if (i_is_GB .and. j_is_GB) iHash = ior(iHash, GAYBERNE_PAIR)
228 >          if (i_is_GB .and. j_is_LJ) iHash = ior(iHash, GAYBERNE_LJ)
229 >          if (i_is_LJ .and. j_is_GB) iHash = ior(iHash, GAYBERNE_LJ)
230 >
231 >          if (i_is_Shape .and. j_is_Shape) iHash = ior(iHash, SHAPE_PAIR)
232 >          if (i_is_Shape .and. j_is_LJ) iHash = ior(iHash, SHAPE_LJ)
233 >          if (i_is_LJ .and. j_is_Shape) iHash = ior(iHash, SHAPE_LJ)
234 >
235 >
236 >          InteractionHash(i,j) = iHash
237 >          InteractionHash(j,i) = iHash
238 >
239 >       end do
240 >
241      end do
242  
243 <    havePropertyMap = .true.
243 >    haveInteractionHash = .true.
244 >  end subroutine createInteractionHash
245  
246 <  end subroutine createPropertyMap
246 >  subroutine createGtypeCutoffMap(stat)
247  
248 +    integer, intent(out), optional :: stat
249 +    logical :: i_is_LJ
250 +    logical :: i_is_Elect
251 +    logical :: i_is_Sticky
252 +    logical :: i_is_StickyP
253 +    logical :: i_is_GB
254 +    logical :: i_is_EAM
255 +    logical :: i_is_Shape
256 +
257 +    integer :: myStatus, nAtypes,  i, j, istart, iend, jstart, jend
258 +    integer :: n_in_i
259 +    real(kind=dp):: thisSigma, bigSigma, thisRcut
260 +    real(kind=dp) :: biggestAtypeCutoff
261 +
262 +    stat = 0
263 +    if (.not. haveInteractionHash) then
264 +       call createInteractionHash(myStatus)      
265 +       if (myStatus .ne. 0) then
266 +          write(default_error, *) 'createInteractionHash failed in doForces!'
267 +          stat = -1
268 +          return
269 +       endif
270 +    endif
271 +
272 +    nAtypes = getSize(atypes)
273 +    
274 +    do i = 1, nAtypes
275 +       if (SimHasAtype(i)) then          
276 +          call getElementProperty(atypes, i, "is_LennardJones", i_is_LJ)
277 +          call getElementProperty(atypes, i, "is_Electrostatic", i_is_Elect)
278 +          call getElementProperty(atypes, i, "is_Sticky", i_is_Sticky)
279 +          call getElementProperty(atypes, i, "is_StickyPower", i_is_StickyP)
280 +          call getElementProperty(atypes, i, "is_GayBerne", i_is_GB)
281 +          call getElementProperty(atypes, i, "is_EAM", i_is_EAM)
282 +          call getElementProperty(atypes, i, "is_Shape", i_is_Shape)
283 +          
284 +          if (i_is_LJ) then
285 +             thisRcut = getSigma(i) * 2.5_dp
286 +             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
287 +          endif
288 +          if (i_is_Elect) then
289 +             thisRcut = defaultRcut
290 +             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
291 +          endif
292 +          if (i_is_Sticky) then
293 +             thisRcut = getStickyCut(i)
294 +             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
295 +          endif
296 +          if (i_is_StickyP) then
297 +             thisRcut = getStickyPowerCut(i)
298 +             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
299 +          endif
300 +          if (i_is_GB) then
301 +             thisRcut = getGayBerneCut(i)
302 +             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
303 +          endif
304 +          if (i_is_EAM) then
305 +             thisRcut = getEAMCut(i)
306 +             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
307 +          endif
308 +          if (i_is_Shape) then
309 +             thisRcut = getShapeCut(i)
310 +             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
311 +          endif
312 +          
313 +          if (atypeMaxCutoff(i).gt.biggestAtypeCutoff) then
314 +             biggestAtypeCutoff = atypeMaxCutoff(i)
315 +          endif
316 +       endif
317 +    enddo
318 +
319 +    istart = 1
320 + #ifdef IS_MPI
321 +    iend = nGroupsInRow
322 + #else
323 +    iend = nGroups
324 + #endif
325 +    outer: do i = istart, iend
326 +      
327 +       n_in_i = groupStartRow(i+1) - groupStartRow(i)
328 +      
329 + #ifdef IS_MPI
330 +       jstart = 1
331 +       jend = nGroupsInCol
332 + #else
333 +       jstart = i+1
334 +       jend = nGroups
335 + #endif
336 +      
337 +      
338 +      
339 +      
340 +      
341 +      
342 +    enddo outer        
343 +    
344 +     haveGtypeCutoffMap = .true.
345 +   end subroutine createGtypeCutoffMap
346 +
347 +   subroutine setDefaultCutoffs(defRcut, defRsw, defRlist, cutPolicy)
348 +     real(kind=dp),intent(in) :: defRcut, defRsw, defRlist
349 +     integer, intent(in) :: cutPolicy
350 +
351 +     defaultRcut = defRcut
352 +     defaultRsw = defRsw
353 +     defaultRlist = defRlist
354 +     cutoffPolicy = cutPolicy
355 +   end subroutine setDefaultCutoffs
356 +
357 +   subroutine setCutoffPolicy(cutPolicy)
358 +
359 +     integer, intent(in) :: cutPolicy
360 +     cutoffPolicy = cutPolicy
361 +     call createGtypeCutoffMap()
362 +
363 +   end subroutine setCutoffPolicy
364 +    
365 +    
366    subroutine setSimVariables()
367      SIM_uses_DirectionalAtoms = SimUsesDirectionalAtoms()
219    SIM_uses_LennardJones = SimUsesLennardJones()
220    SIM_uses_Electrostatics = SimUsesElectrostatics()
221    SIM_uses_Charges = SimUsesCharges()
222    SIM_uses_Dipoles = SimUsesDipoles()
223    SIM_uses_Sticky = SimUsesSticky()
224    SIM_uses_GayBerne = SimUsesGayBerne()
368      SIM_uses_EAM = SimUsesEAM()
226    SIM_uses_Shapes = SimUsesShapes()
227    SIM_uses_FLARB = SimUsesFLARB()
369      SIM_uses_RF = SimUsesRF()
370      SIM_requires_postpair_calc = SimRequiresPostpairCalc()
371      SIM_requires_prepair_calc = SimRequiresPrepairCalc()
# Line 241 | Line 382 | contains
382      integer :: myStatus
383  
384      error = 0
244    
245    if (.not. havePropertyMap) then
385  
386 <       myStatus = 0
387 <
388 <       call createPropertyMap(myStatus)
386 >    if (.not. haveInteractionHash) then      
387 >       myStatus = 0      
388 >       call createInteractionHash(myStatus)      
389 >       if (myStatus .ne. 0) then
390 >          write(default_error, *) 'createInteractionHash failed in doForces!'
391 >          error = -1
392 >          return
393 >       endif
394 >    endif
395  
396 +    if (.not. haveGtypeCutoffMap) then        
397 +       myStatus = 0      
398 +       call createGtypeCutoffMap(myStatus)      
399         if (myStatus .ne. 0) then
400 <          write(default_error, *) 'createPropertyMap failed in doForces!'
400 >          write(default_error, *) 'createGtypeCutoffMap failed in doForces!'
401            error = -1
402            return
403         endif
# Line 286 | Line 434 | contains
434   #endif
435      return
436    end subroutine doReadyCheck
289    
437  
438 +
439    subroutine init_FF(use_RF_c, thisStat)
440  
441      logical, intent(in) :: use_RF_c
# Line 302 | Line 450 | contains
450  
451      !! Fortran's version of a cast:
452      FF_uses_RF = use_RF_c
453 <    
453 >
454      !! init_FF is called *after* all of the atom types have been
455      !! defined in atype_module using the new_atype subroutine.
456      !!
457      !! this will scan through the known atypes and figure out what
458      !! interactions are used by the force field.    
459 <  
459 >
460      FF_uses_DirectionalAtoms = .false.
313    FF_uses_LennardJones = .false.
314    FF_uses_Electrostatics = .false.
315    FF_uses_Charges = .false.    
461      FF_uses_Dipoles = .false.
317    FF_uses_Sticky = .false.
462      FF_uses_GayBerne = .false.
463      FF_uses_EAM = .false.
464 <    FF_uses_Shapes = .false.
321 <    FF_uses_FLARB = .false.
322 <    
464 >
465      call getMatchingElementList(atypes, "is_Directional", .true., &
466           nMatches, MatchList)
467      if (nMatches .gt. 0) FF_uses_DirectionalAtoms = .true.
468  
327    call getMatchingElementList(atypes, "is_LennardJones", .true., &
328         nMatches, MatchList)
329    if (nMatches .gt. 0) FF_uses_LennardJones = .true.
330    
331    call getMatchingElementList(atypes, "is_Electrostatic", .true., &
332         nMatches, MatchList)
333    if (nMatches .gt. 0) then
334       FF_uses_Electrostatics = .true.
335    endif
336
337    call getMatchingElementList(atypes, "is_Charge", .true., &
338         nMatches, MatchList)
339    if (nMatches .gt. 0) then
340       FF_uses_Charges = .true.  
341       FF_uses_Electrostatics = .true.
342    endif
343    
469      call getMatchingElementList(atypes, "is_Dipole", .true., &
470           nMatches, MatchList)
471 <    if (nMatches .gt. 0) then
347 <       FF_uses_Dipoles = .true.
348 <       FF_uses_Electrostatics = .true.
349 <       FF_uses_DirectionalAtoms = .true.
350 <    endif
351 <
352 <    call getMatchingElementList(atypes, "is_Quadrupole", .true., &
353 <         nMatches, MatchList)
354 <    if (nMatches .gt. 0) then
355 <       FF_uses_Quadrupoles = .true.
356 <       FF_uses_Electrostatics = .true.
357 <       FF_uses_DirectionalAtoms = .true.
358 <    endif
471 >    if (nMatches .gt. 0) FF_uses_Dipoles = .true.
472      
360    call getMatchingElementList(atypes, "is_Sticky", .true., nMatches, &
361         MatchList)
362    if (nMatches .gt. 0) then
363       FF_uses_Sticky = .true.
364       FF_uses_DirectionalAtoms = .true.
365    endif
366    
473      call getMatchingElementList(atypes, "is_GayBerne", .true., &
474           nMatches, MatchList)
475 <    if (nMatches .gt. 0) then
476 <       FF_uses_GayBerne = .true.
371 <       FF_uses_DirectionalAtoms = .true.
372 <    endif
373 <    
475 >    if (nMatches .gt. 0) FF_uses_GayBerne = .true.
476 >
477      call getMatchingElementList(atypes, "is_EAM", .true., nMatches, MatchList)
478      if (nMatches .gt. 0) FF_uses_EAM = .true.
376    
377    call getMatchingElementList(atypes, "is_Shape", .true., &
378         nMatches, MatchList)
379    if (nMatches .gt. 0) then
380       FF_uses_Shapes = .true.
381       FF_uses_DirectionalAtoms = .true.
382    endif
479  
384    call getMatchingElementList(atypes, "is_FLARB", .true., &
385         nMatches, MatchList)
386    if (nMatches .gt. 0) FF_uses_FLARB = .true.
480  
388    !! Assume sanity (for the sake of argument)
481      haveSaneForceField = .true.
482 <    
482 >
483      !! check to make sure the FF_uses_RF setting makes sense
484 <    
485 <    if (FF_uses_dipoles) then
484 >
485 >    if (FF_uses_Dipoles) then
486         if (FF_uses_RF) then
487            dielect = getDielect()
488            call initialize_rf(dielect)
# Line 402 | Line 494 | contains
494            haveSaneForceField = .false.
495            return
496         endif
497 <    endif
497 >    endif
498  
407    !sticky module does not contain check_sticky_FF anymore
408    !if (FF_uses_sticky) then
409    !   call check_sticky_FF(my_status)
410    !   if (my_status /= 0) then
411    !      thisStat = -1
412    !      haveSaneForceField = .false.
413    !      return
414    !   end if
415    !endif
416
499      if (FF_uses_EAM) then
500 <         call init_EAM_FF(my_status)
500 >       call init_EAM_FF(my_status)
501         if (my_status /= 0) then
502            write(default_error, *) "init_EAM_FF returned a bad status"
503            thisStat = -1
# Line 433 | Line 515 | contains
515         endif
516      endif
517  
436    if (FF_uses_GayBerne .and. FF_uses_LennardJones) then
437    endif
438    
518      if (.not. haveNeighborList) then
519         !! Create neighbor lists
520         call expandNeighborList(nLocal, my_status)
# Line 445 | Line 524 | contains
524            return
525         endif
526         haveNeighborList = .true.
527 <    endif    
528 <    
527 >    endif
528 >
529    end subroutine init_FF
451  
530  
531 +
532    !! Does force loop over i,j pairs. Calls do_pair to calculates forces.
533    !------------------------------------------------------------->
534    subroutine do_force_loop(q, q_group, A, eFrame, f, t, tau, pot, &
# Line 499 | Line 578 | contains
578      integer :: localError
579      integer :: propPack_i, propPack_j
580      integer :: loopStart, loopEnd, loop
581 <
581 >    integer :: iHash
582      real(kind=dp) :: listSkin = 1.0  
583 <    
583 >
584      !! initialize local variables  
585 <    
585 >
586   #ifdef IS_MPI
587      pot_local = 0.0_dp
588      nAtomsInRow   = getNatomsInRow(plan_atom_row)
# Line 513 | Line 592 | contains
592   #else
593      natoms = nlocal
594   #endif
595 <    
595 >
596      call doReadyCheck(localError)
597      if ( localError .ne. 0 ) then
598         call handleError("do_force_loop", "Not Initialized")
# Line 521 | Line 600 | contains
600         return
601      end if
602      call zero_work_arrays()
603 <        
603 >
604      do_pot = do_pot_c
605      do_stress = do_stress_c
606 <    
606 >
607      ! Gather all information needed by all force loops:
608 <    
608 >
609   #ifdef IS_MPI    
610 <    
610 >
611      call gather(q, q_Row, plan_atom_row_3d)
612      call gather(q, q_Col, plan_atom_col_3d)
613  
614      call gather(q_group, q_group_Row, plan_group_row_3d)
615      call gather(q_group, q_group_Col, plan_group_col_3d)
616 <        
616 >
617      if (FF_UsesDirectionalAtoms() .and. SIM_uses_DirectionalAtoms) then
618         call gather(eFrame, eFrame_Row, plan_atom_row_rotation)
619         call gather(eFrame, eFrame_Col, plan_atom_col_rotation)
620 <      
620 >
621         call gather(A, A_Row, plan_atom_row_rotation)
622         call gather(A, A_Col, plan_atom_col_rotation)
623      endif
624 <    
624 >
625   #endif
626 <    
626 >
627      !! Begin force loop timing:
628   #ifdef PROFILE
629      call cpu_time(forceTimeInitial)
630      nloops = nloops + 1
631   #endif
632 <    
632 >
633      loopEnd = PAIR_LOOP
634      if (FF_RequiresPrepairCalc() .and. SIM_requires_prepair_calc) then
635         loopStart = PREPAIR_LOOP
# Line 565 | Line 644 | contains
644         if (loop .eq. loopStart) then
645   #ifdef IS_MPI
646            call checkNeighborList(nGroupsInRow, q_group_row, listSkin, &
647 <             update_nlist)
647 >               update_nlist)
648   #else
649            call checkNeighborList(nGroups, q_group, listSkin, &
650 <             update_nlist)
650 >               update_nlist)
651   #endif
652         endif
653 <      
653 >
654         if (update_nlist) then
655            !! save current configuration and construct neighbor list
656   #ifdef IS_MPI
# Line 582 | Line 661 | contains
661            neighborListSize = size(list)
662            nlist = 0
663         endif
664 <      
664 >
665         istart = 1
666   #ifdef IS_MPI
667         iend = nGroupsInRow
# Line 592 | Line 671 | contains
671         outer: do i = istart, iend
672  
673            if (update_nlist) point(i) = nlist + 1
674 <          
674 >
675            n_in_i = groupStartRow(i+1) - groupStartRow(i)
676 <          
676 >
677            if (update_nlist) then
678   #ifdef IS_MPI
679               jstart = 1
# Line 609 | Line 688 | contains
688               ! make sure group i has neighbors
689               if (jstart .gt. jend) cycle outer
690            endif
691 <          
691 >
692            do jnab = jstart, jend
693               if (update_nlist) then
694                  j = jnab
# Line 618 | Line 697 | contains
697               endif
698  
699   #ifdef IS_MPI
700 +             me_j = atid_col(j)
701               call get_interatomic_vector(q_group_Row(:,i), &
702                    q_group_Col(:,j), d_grp, rgrpsq)
703   #else
704 +             me_j = atid(j)
705               call get_interatomic_vector(q_group(:,i), &
706                    q_group(:,j), d_grp, rgrpsq)
707   #endif
708  
709 <             if (rgrpsq < rlistsq) then
709 >             if (rgrpsq < InteractionHash(me_i,me_j)%rListsq) then
710                  if (update_nlist) then
711                     nlist = nlist + 1
712 <                  
712 >
713                     if (nlist > neighborListSize) then
714   #ifdef IS_MPI                
715                        call expandNeighborList(nGroupsInRow, listerror)
# Line 642 | Line 723 | contains
723                        end if
724                        neighborListSize = size(list)
725                     endif
726 <                  
726 >
727                     list(nlist) = j
728                  endif
729 <                
729 >
730                  if (loop .eq. PAIR_LOOP) then
731                     vij = 0.0d0
732                     fij(1:3) = 0.0d0
733                  endif
734 <                
734 >
735                  call get_switch(rgrpsq, sw, dswdr, rgrp, group_switch, &
736                       in_switching_region)
737 <                
737 >
738                  n_in_j = groupStartCol(j+1) - groupStartCol(j)
739 <                
739 >
740                  do ia = groupStartRow(i), groupStartRow(i+1)-1
741 <                  
741 >
742                     atom1 = groupListRow(ia)
743 <                  
743 >
744                     inner: do jb = groupStartCol(j), groupStartCol(j+1)-1
745 <                      
745 >
746                        atom2 = groupListCol(jb)
747 <                      
747 >
748                        if (skipThisPair(atom1, atom2)) cycle inner
749  
750                        if ((n_in_i .eq. 1).and.(n_in_j .eq. 1)) then
# Line 705 | Line 786 | contains
786                        endif
787                     enddo inner
788                  enddo
789 <                
789 >
790                  if (loop .eq. PAIR_LOOP) then
791                     if (in_switching_region) then
792                        swderiv = vij*dswdr/rgrp
793                        fij(1) = fij(1) + swderiv*d_grp(1)
794                        fij(2) = fij(2) + swderiv*d_grp(2)
795                        fij(3) = fij(3) + swderiv*d_grp(3)
796 <                      
796 >
797                        do ia=groupStartRow(i), groupStartRow(i+1)-1
798                           atom1=groupListRow(ia)
799                           mf = mfactRow(atom1)
# Line 726 | Line 807 | contains
807                           f(3,atom1) = f(3,atom1) + swderiv*d_grp(3)*mf
808   #endif
809                        enddo
810 <                      
810 >
811                        do jb=groupStartCol(j), groupStartCol(j+1)-1
812                           atom2=groupListCol(jb)
813                           mf = mfactCol(atom2)
# Line 741 | Line 822 | contains
822   #endif
823                        enddo
824                     endif
825 <                  
825 >
826                     if (do_stress) call add_stress_tensor(d_grp, fij)
827                  endif
828               end if
829            enddo
830         enddo outer
831 <      
831 >
832         if (update_nlist) then
833   #ifdef IS_MPI
834            point(nGroupsInRow + 1) = nlist + 1
# Line 761 | Line 842 | contains
842               update_nlist = .false.                              
843            endif
844         endif
845 <            
845 >
846         if (loop .eq. PREPAIR_LOOP) then
847            call do_preforce(nlocal, pot)
848         endif
849 <      
849 >
850      enddo
851 <    
851 >
852      !! Do timing
853   #ifdef PROFILE
854      call cpu_time(forceTimeFinal)
855      forceTime = forceTime + forceTimeFinal - forceTimeInitial
856   #endif    
857 <    
857 >
858   #ifdef IS_MPI
859      !!distribute forces
860 <    
860 >
861      f_temp = 0.0_dp
862      call scatter(f_Row,f_temp,plan_atom_row_3d)
863      do i = 1,nlocal
864         f(1:3,i) = f(1:3,i) + f_temp(1:3,i)
865      end do
866 <    
866 >
867      f_temp = 0.0_dp
868      call scatter(f_Col,f_temp,plan_atom_col_3d)
869      do i = 1,nlocal
870         f(1:3,i) = f(1:3,i) + f_temp(1:3,i)
871      end do
872 <    
872 >
873      if (FF_UsesDirectionalAtoms() .and. SIM_uses_DirectionalAtoms) then
874         t_temp = 0.0_dp
875         call scatter(t_Row,t_temp,plan_atom_row_3d)
# Line 797 | Line 878 | contains
878         end do
879         t_temp = 0.0_dp
880         call scatter(t_Col,t_temp,plan_atom_col_3d)
881 <      
881 >
882         do i = 1,nlocal
883            t(1:3,i) = t(1:3,i) + t_temp(1:3,i)
884         end do
885      endif
886 <    
886 >
887      if (do_pot) then
888         ! scatter/gather pot_row into the members of my column
889         call scatter(pot_Row, pot_Temp, plan_atom_row)
890 <      
890 >
891         ! scatter/gather pot_local into all other procs
892         ! add resultant to get total pot
893         do i = 1, nlocal
894            pot_local = pot_local + pot_Temp(i)
895         enddo
896 <      
896 >
897         pot_Temp = 0.0_DP
898 <      
898 >
899         call scatter(pot_Col, pot_Temp, plan_atom_col)
900         do i = 1, nlocal
901            pot_local = pot_local + pot_Temp(i)
902         enddo
903 <      
903 >
904      endif
905   #endif
906 <    
906 >
907      if (FF_RequiresPostpairCalc() .and. SIM_requires_postpair_calc) then
908 <      
908 >
909         if (FF_uses_RF .and. SIM_uses_RF) then
910 <          
910 >
911   #ifdef IS_MPI
912            call scatter(rf_Row,rf,plan_atom_row_3d)
913            call scatter(rf_Col,rf_Temp,plan_atom_col_3d)
# Line 834 | Line 915 | contains
915               rf(1:3,i) = rf(1:3,i) + rf_Temp(1:3,i)
916            end do
917   #endif
918 <          
918 >
919            do i = 1, nLocal
920 <            
920 >
921               rfpot = 0.0_DP
922   #ifdef IS_MPI
923               me_i = atid_row(i)
924   #else
925               me_i = atid(i)
926   #endif
927 +             iHash = InteractionHash(me_i,me_j)
928              
929 <             if (PropertyMap(me_i)%is_Dipole) then
930 <                
929 >             if ( iand(iHash, ELECTROSTATIC_PAIR).ne.0 ) then
930 >
931                  mu_i = getDipoleMoment(me_i)
932 <                
932 >
933                  !! The reaction field needs to include a self contribution
934                  !! to the field:
935                  call accumulate_self_rf(i, mu_i, eFrame)
# Line 858 | Line 940 | contains
940                  pot_local = pot_local + rfpot
941   #else
942                  pot = pot + rfpot
943 <      
943 >
944   #endif
945 <             endif            
945 >             endif
946            enddo
947         endif
948      endif
949 <    
950 <    
949 >
950 >
951   #ifdef IS_MPI
952 <    
952 >
953      if (do_pot) then
954         pot = pot + pot_local
955         !! we assume the c code will do the allreduce to get the total potential
956         !! we could do it right here if we needed to...
957      endif
958 <    
958 >
959      if (do_stress) then
960         call mpi_allreduce(tau_Temp, tau, 9,mpi_double_precision,mpi_sum, &
961              mpi_comm_world,mpi_err)
962         call mpi_allreduce(virial_Temp, virial,1,mpi_double_precision,mpi_sum, &
963              mpi_comm_world,mpi_err)
964      endif
965 <    
965 >
966   #else
967 <    
967 >
968      if (do_stress) then
969         tau = tau_Temp
970         virial = virial_Temp
971      endif
972 <    
972 >
973   #endif
974 <      
974 >
975    end subroutine do_force_loop
976 <  
976 >
977    subroutine do_pair(i, j, rijsq, d, sw, do_pot, &
978         eFrame, A, f, t, pot, vpair, fpair)
979  
# Line 908 | Line 990 | contains
990      real ( kind = dp ), intent(inout) :: rijsq
991      real ( kind = dp )                :: r
992      real ( kind = dp ), intent(inout) :: d(3)
993 +    real ( kind = dp ) :: ebalance
994      integer :: me_i, me_j
995  
996 +    integer :: iHash
997 +
998      r = sqrt(rijsq)
999      vpair = 0.0d0
1000      fpair(1:3) = 0.0d0
# Line 922 | Line 1007 | contains
1007      me_j = atid(j)
1008   #endif
1009  
1010 < !    write(*,*) i, j, me_i, me_j
1011 <    
1012 <    if (FF_uses_LennardJones .and. SIM_uses_LennardJones) then
1013 <      
929 <       if ( PropertyMap(me_i)%is_LennardJones .and. &
930 <            PropertyMap(me_j)%is_LennardJones ) then
931 <          call do_lj_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, do_pot)
932 <       endif
933 <      
1010 >    iHash = InteractionHash(me_i, me_j)
1011 >
1012 >    if ( iand(iHash, LJ_PAIR).ne.0 ) then
1013 >       call do_lj_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, do_pot)
1014      endif
1015 <    
1016 <    if (FF_uses_Electrostatics .and. SIM_uses_Electrostatics) then
1017 <      
1018 <       if (PropertyMap(me_i)%is_Electrostatic .and. &
939 <            PropertyMap(me_j)%is_Electrostatic) then
940 <          call doElectrostaticPair(i, j, d, r, rijsq, sw, vpair, fpair, &
941 <               pot, eFrame, f, t, do_pot)
942 <       endif
943 <      
944 <       if (FF_uses_dipoles .and. SIM_uses_dipoles) then      
945 <          if ( PropertyMap(me_i)%is_Dipole .and. &
946 <               PropertyMap(me_j)%is_Dipole) then
947 <             if (FF_uses_RF .and. SIM_uses_RF) then
948 <                call accumulate_rf(i, j, r, eFrame, sw)
949 <                call rf_correct_forces(i, j, d, r, eFrame, sw, f, fpair)
950 <             endif
951 <          endif
952 <       endif
953 <    endif
1015 >
1016 >    if ( iand(iHash, ELECTROSTATIC_PAIR).ne.0 ) then
1017 >       call doElectrostaticPair(i, j, d, r, rijsq, sw, vpair, fpair, &
1018 >            pot, eFrame, f, t, do_pot)
1019  
1020 +       if (FF_uses_RF .and. SIM_uses_RF) then
1021  
1022 <    if (FF_uses_Sticky .and. SIM_uses_sticky) then
1023 <
1024 <       if ( PropertyMap(me_i)%is_Sticky .and. PropertyMap(me_j)%is_Sticky) then
959 <          call do_sticky_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
960 <               pot, A, f, t, do_pot)
1022 >          ! CHECK ME (RF needs to know about all electrostatic types)
1023 >          call accumulate_rf(i, j, r, eFrame, sw)
1024 >          call rf_correct_forces(i, j, d, r, eFrame, sw, f, fpair)
1025         endif
1026 <      
1026 >
1027      endif
1028  
1029 +    if ( iand(iHash, STICKY_PAIR).ne.0 ) then
1030 +       call do_sticky_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1031 +            pot, A, f, t, do_pot)
1032 +    endif
1033  
1034 <    if (FF_uses_GayBerne .and. SIM_uses_GayBerne) then
1035 <      
1036 <       if ( PropertyMap(me_i)%is_GayBerne .and. &
969 <            PropertyMap(me_j)%is_GayBerne) then
970 <          call do_gb_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
971 <               pot, A, f, t, do_pot)
972 <       endif
973 <      
1034 >    if ( iand(iHash, STICKYPOWER_PAIR).ne.0 ) then
1035 >       call do_sticky_power_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1036 >            pot, A, f, t, do_pot)
1037      endif
1038 +
1039 +    if ( iand(iHash, GAYBERNE_PAIR).ne.0 ) then
1040 +       call do_gb_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1041 +            pot, A, f, t, do_pot)
1042 +    endif
1043      
1044 <    if (FF_uses_EAM .and. SIM_uses_EAM) then
1045 <      
1046 <       if ( PropertyMap(me_i)%is_EAM .and. PropertyMap(me_j)%is_EAM) then
979 <          call do_eam_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, &
980 <               do_pot)
981 <       endif
982 <      
1044 >    if ( iand(iHash, GAYBERNE_LJ).ne.0 ) then
1045 > !      call do_gblj_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1046 > !           pot, A, f, t, do_pot)
1047      endif
1048  
1049 +    if ( iand(iHash, EAM_PAIR).ne.0 ) then      
1050 +       call do_eam_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, &
1051 +            do_pot)
1052 +    endif
1053  
1054 < !    write(*,*) PropertyMap(me_i)%is_Shape,PropertyMap(me_j)%is_Shape
1054 >    if ( iand(iHash, SHAPE_PAIR).ne.0 ) then      
1055 >       call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1056 >            pot, A, f, t, do_pot)
1057 >    endif
1058  
1059 <    if (FF_uses_Shapes .and. SIM_uses_Shapes) then
1060 <       if ( PropertyMap(me_i)%is_Shape .and. &
1061 <            PropertyMap(me_j)%is_Shape ) then
991 <          call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
992 <               pot, A, f, t, do_pot)
993 <       endif
994 <      
1059 >    if ( iand(iHash, SHAPE_LJ).ne.0 ) then      
1060 >       call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1061 >            pot, A, f, t, do_pot)
1062      endif
1063      
1064    end subroutine do_pair
# Line 999 | Line 1066 | contains
1066    subroutine do_prepair(i, j, rijsq, d, sw, rcijsq, dc, &
1067         do_pot, do_stress, eFrame, A, f, t, pot)
1068  
1069 <   real( kind = dp ) :: pot, sw
1070 <   real( kind = dp ), dimension(9,nLocal) :: eFrame
1071 <   real (kind=dp), dimension(9,nLocal) :: A
1072 <   real (kind=dp), dimension(3,nLocal) :: f
1073 <   real (kind=dp), dimension(3,nLocal) :: t
1007 <  
1008 <   logical, intent(inout) :: do_pot, do_stress
1009 <   integer, intent(in) :: i, j
1010 <   real ( kind = dp ), intent(inout)    :: rijsq, rcijsq
1011 <   real ( kind = dp )                :: r, rc
1012 <   real ( kind = dp ), intent(inout) :: d(3), dc(3)
1013 <  
1014 <   logical :: is_EAM_i, is_EAM_j
1015 <  
1016 <   integer :: me_i, me_j
1017 <  
1069 >    real( kind = dp ) :: pot, sw
1070 >    real( kind = dp ), dimension(9,nLocal) :: eFrame
1071 >    real (kind=dp), dimension(9,nLocal) :: A
1072 >    real (kind=dp), dimension(3,nLocal) :: f
1073 >    real (kind=dp), dimension(3,nLocal) :: t
1074  
1075 <    r = sqrt(rijsq)
1076 <    if (SIM_uses_molecular_cutoffs) then
1077 <       rc = sqrt(rcijsq)
1078 <    else
1079 <       rc = r
1024 <    endif
1025 <  
1075 >    logical, intent(inout) :: do_pot, do_stress
1076 >    integer, intent(in) :: i, j
1077 >    real ( kind = dp ), intent(inout)    :: rijsq, rcijsq
1078 >    real ( kind = dp )                :: r, rc
1079 >    real ( kind = dp ), intent(inout) :: d(3), dc(3)
1080  
1081 +    integer :: me_i, me_j, iHash
1082 +
1083   #ifdef IS_MPI  
1084 <   me_i = atid_row(i)
1085 <   me_j = atid_col(j)  
1084 >    me_i = atid_row(i)
1085 >    me_j = atid_col(j)  
1086   #else  
1087 <   me_i = atid(i)
1088 <   me_j = atid(j)  
1087 >    me_i = atid(i)
1088 >    me_j = atid(j)  
1089   #endif
1090 <  
1091 <   if (FF_uses_EAM .and. SIM_uses_EAM) then
1092 <      
1093 <      if (PropertyMap(me_i)%is_EAM .and. PropertyMap(me_j)%is_EAM) &
1094 <           call calc_EAM_prepair_rho(i, j, d, r, rijsq )
1095 <      
1096 <   endif
1097 <  
1098 < end subroutine do_prepair
1099 <
1100 <
1101 < subroutine do_preforce(nlocal,pot)
1102 <   integer :: nlocal
1103 <   real( kind = dp ) :: pot
1104 <  
1105 <   if (FF_uses_EAM .and. SIM_uses_EAM) then
1106 <      call calc_EAM_preforce_Frho(nlocal,pot)
1107 <   endif
1108 <  
1109 <  
1110 < end subroutine do_preforce
1111 <
1112 <
1113 < subroutine get_interatomic_vector(q_i, q_j, d, r_sq)
1114 <  
1115 <   real (kind = dp), dimension(3) :: q_i
1116 <   real (kind = dp), dimension(3) :: q_j
1117 <   real ( kind = dp ), intent(out) :: r_sq
1118 <   real( kind = dp ) :: d(3), scaled(3)
1119 <   integer i
1120 <  
1121 <   d(1:3) = q_j(1:3) - q_i(1:3)
1122 <  
1123 <   ! Wrap back into periodic box if necessary
1124 <   if ( SIM_uses_PBC ) then
1125 <      
1126 <      if( .not.boxIsOrthorhombic ) then
1127 <         ! calc the scaled coordinates.
1128 <        
1129 <         scaled = matmul(HmatInv, d)
1130 <        
1131 <         ! wrap the scaled coordinates
1132 <        
1133 <         scaled = scaled  - anint(scaled)
1134 <        
1135 <        
1136 <         ! calc the wrapped real coordinates from the wrapped scaled
1137 <         ! coordinates
1138 <        
1139 <         d = matmul(Hmat,scaled)
1140 <        
1141 <      else
1142 <         ! calc the scaled coordinates.
1143 <        
1144 <         do i = 1, 3
1145 <            scaled(i) = d(i) * HmatInv(i,i)
1146 <            
1147 <            ! wrap the scaled coordinates
1148 <            
1149 <            scaled(i) = scaled(i) - anint(scaled(i))
1150 <            
1151 <            ! calc the wrapped real coordinates from the wrapped scaled
1152 <            ! coordinates
1153 <            
1154 <            d(i) = scaled(i)*Hmat(i,i)
1155 <         enddo
1156 <      endif
1157 <      
1158 <   endif
1159 <  
1160 <   r_sq = dot_product(d,d)
1161 <  
1162 < end subroutine get_interatomic_vector
1163 <
1164 < subroutine zero_work_arrays()
1109 <  
1090 >
1091 >    iHash = InteractionHash(me_i, me_j)
1092 >
1093 >    if ( iand(iHash, EAM_PAIR).ne.0 ) then      
1094 >            call calc_EAM_prepair_rho(i, j, d, r, rijsq )
1095 >    endif
1096 >    
1097 >  end subroutine do_prepair
1098 >
1099 >
1100 >  subroutine do_preforce(nlocal,pot)
1101 >    integer :: nlocal
1102 >    real( kind = dp ) :: pot
1103 >
1104 >    if (FF_uses_EAM .and. SIM_uses_EAM) then
1105 >       call calc_EAM_preforce_Frho(nlocal,pot)
1106 >    endif
1107 >
1108 >
1109 >  end subroutine do_preforce
1110 >
1111 >
1112 >  subroutine get_interatomic_vector(q_i, q_j, d, r_sq)
1113 >
1114 >    real (kind = dp), dimension(3) :: q_i
1115 >    real (kind = dp), dimension(3) :: q_j
1116 >    real ( kind = dp ), intent(out) :: r_sq
1117 >    real( kind = dp ) :: d(3), scaled(3)
1118 >    integer i
1119 >
1120 >    d(1:3) = q_j(1:3) - q_i(1:3)
1121 >
1122 >    ! Wrap back into periodic box if necessary
1123 >    if ( SIM_uses_PBC ) then
1124 >
1125 >       if( .not.boxIsOrthorhombic ) then
1126 >          ! calc the scaled coordinates.
1127 >
1128 >          scaled = matmul(HmatInv, d)
1129 >
1130 >          ! wrap the scaled coordinates
1131 >
1132 >          scaled = scaled  - anint(scaled)
1133 >
1134 >
1135 >          ! calc the wrapped real coordinates from the wrapped scaled
1136 >          ! coordinates
1137 >
1138 >          d = matmul(Hmat,scaled)
1139 >
1140 >       else
1141 >          ! calc the scaled coordinates.
1142 >
1143 >          do i = 1, 3
1144 >             scaled(i) = d(i) * HmatInv(i,i)
1145 >
1146 >             ! wrap the scaled coordinates
1147 >
1148 >             scaled(i) = scaled(i) - anint(scaled(i))
1149 >
1150 >             ! calc the wrapped real coordinates from the wrapped scaled
1151 >             ! coordinates
1152 >
1153 >             d(i) = scaled(i)*Hmat(i,i)
1154 >          enddo
1155 >       endif
1156 >
1157 >    endif
1158 >
1159 >    r_sq = dot_product(d,d)
1160 >
1161 >  end subroutine get_interatomic_vector
1162 >
1163 >  subroutine zero_work_arrays()
1164 >
1165   #ifdef IS_MPI
1111  
1112   q_Row = 0.0_dp
1113   q_Col = 0.0_dp
1166  
1167 <   q_group_Row = 0.0_dp
1168 <   q_group_Col = 0.0_dp  
1169 <  
1170 <   eFrame_Row = 0.0_dp
1171 <   eFrame_Col = 0.0_dp
1172 <  
1173 <   A_Row = 0.0_dp
1174 <   A_Col = 0.0_dp
1175 <  
1176 <   f_Row = 0.0_dp
1177 <   f_Col = 0.0_dp
1178 <   f_Temp = 0.0_dp
1179 <  
1180 <   t_Row = 0.0_dp
1181 <   t_Col = 0.0_dp
1182 <   t_Temp = 0.0_dp
1183 <  
1184 <   pot_Row = 0.0_dp
1185 <   pot_Col = 0.0_dp
1186 <   pot_Temp = 0.0_dp
1187 <  
1188 <   rf_Row = 0.0_dp
1189 <   rf_Col = 0.0_dp
1190 <   rf_Temp = 0.0_dp
1191 <  
1167 >    q_Row = 0.0_dp
1168 >    q_Col = 0.0_dp
1169 >
1170 >    q_group_Row = 0.0_dp
1171 >    q_group_Col = 0.0_dp  
1172 >
1173 >    eFrame_Row = 0.0_dp
1174 >    eFrame_Col = 0.0_dp
1175 >
1176 >    A_Row = 0.0_dp
1177 >    A_Col = 0.0_dp
1178 >
1179 >    f_Row = 0.0_dp
1180 >    f_Col = 0.0_dp
1181 >    f_Temp = 0.0_dp
1182 >
1183 >    t_Row = 0.0_dp
1184 >    t_Col = 0.0_dp
1185 >    t_Temp = 0.0_dp
1186 >
1187 >    pot_Row = 0.0_dp
1188 >    pot_Col = 0.0_dp
1189 >    pot_Temp = 0.0_dp
1190 >
1191 >    rf_Row = 0.0_dp
1192 >    rf_Col = 0.0_dp
1193 >    rf_Temp = 0.0_dp
1194 >
1195   #endif
1196 <
1197 <   if (FF_uses_EAM .and. SIM_uses_EAM) then
1198 <      call clean_EAM()
1199 <   endif
1200 <  
1201 <   rf = 0.0_dp
1202 <   tau_Temp = 0.0_dp
1203 <   virial_Temp = 0.0_dp
1204 < end subroutine zero_work_arrays
1205 <
1206 < function skipThisPair(atom1, atom2) result(skip_it)
1207 <   integer, intent(in) :: atom1
1208 <   integer, intent(in), optional :: atom2
1209 <   logical :: skip_it
1210 <   integer :: unique_id_1, unique_id_2
1211 <   integer :: me_i,me_j
1212 <   integer :: i
1213 <  
1214 <   skip_it = .false.
1215 <  
1216 <   !! there are a number of reasons to skip a pair or a particle
1217 <   !! mostly we do this to exclude atoms who are involved in short
1218 <   !! range interactions (bonds, bends, torsions), but we also need
1219 <   !! to exclude some overcounted interactions that result from
1220 <   !! the parallel decomposition
1221 <  
1196 >
1197 >    if (FF_uses_EAM .and. SIM_uses_EAM) then
1198 >       call clean_EAM()
1199 >    endif
1200 >
1201 >    rf = 0.0_dp
1202 >    tau_Temp = 0.0_dp
1203 >    virial_Temp = 0.0_dp
1204 >  end subroutine zero_work_arrays
1205 >
1206 >  function skipThisPair(atom1, atom2) result(skip_it)
1207 >    integer, intent(in) :: atom1
1208 >    integer, intent(in), optional :: atom2
1209 >    logical :: skip_it
1210 >    integer :: unique_id_1, unique_id_2
1211 >    integer :: me_i,me_j
1212 >    integer :: i
1213 >
1214 >    skip_it = .false.
1215 >
1216 >    !! there are a number of reasons to skip a pair or a particle
1217 >    !! mostly we do this to exclude atoms who are involved in short
1218 >    !! range interactions (bonds, bends, torsions), but we also need
1219 >    !! to exclude some overcounted interactions that result from
1220 >    !! the parallel decomposition
1221 >
1222   #ifdef IS_MPI
1223 <   !! in MPI, we have to look up the unique IDs for each atom
1224 <   unique_id_1 = AtomRowToGlobal(atom1)
1223 >    !! in MPI, we have to look up the unique IDs for each atom
1224 >    unique_id_1 = AtomRowToGlobal(atom1)
1225   #else
1226 <   !! in the normal loop, the atom numbers are unique
1227 <   unique_id_1 = atom1
1226 >    !! in the normal loop, the atom numbers are unique
1227 >    unique_id_1 = atom1
1228   #endif
1229 <  
1230 <   !! We were called with only one atom, so just check the global exclude
1231 <   !! list for this atom
1232 <   if (.not. present(atom2)) then
1233 <      do i = 1, nExcludes_global
1234 <         if (excludesGlobal(i) == unique_id_1) then
1235 <            skip_it = .true.
1236 <            return
1237 <         end if
1238 <      end do
1239 <      return
1240 <   end if
1241 <  
1229 >
1230 >    !! We were called with only one atom, so just check the global exclude
1231 >    !! list for this atom
1232 >    if (.not. present(atom2)) then
1233 >       do i = 1, nExcludes_global
1234 >          if (excludesGlobal(i) == unique_id_1) then
1235 >             skip_it = .true.
1236 >             return
1237 >          end if
1238 >       end do
1239 >       return
1240 >    end if
1241 >
1242   #ifdef IS_MPI
1243 <   unique_id_2 = AtomColToGlobal(atom2)
1243 >    unique_id_2 = AtomColToGlobal(atom2)
1244   #else
1245 <   unique_id_2 = atom2
1245 >    unique_id_2 = atom2
1246   #endif
1247 <  
1247 >
1248   #ifdef IS_MPI
1249 <   !! this situation should only arise in MPI simulations
1250 <   if (unique_id_1 == unique_id_2) then
1251 <      skip_it = .true.
1252 <      return
1253 <   end if
1254 <  
1255 <   !! this prevents us from doing the pair on multiple processors
1256 <   if (unique_id_1 < unique_id_2) then
1257 <      if (mod(unique_id_1 + unique_id_2,2) == 0) then
1258 <         skip_it = .true.
1259 <         return
1260 <      endif
1261 <   else                
1262 <      if (mod(unique_id_1 + unique_id_2,2) == 1) then
1263 <         skip_it = .true.
1264 <         return
1265 <      endif
1266 <   endif
1249 >    !! this situation should only arise in MPI simulations
1250 >    if (unique_id_1 == unique_id_2) then
1251 >       skip_it = .true.
1252 >       return
1253 >    end if
1254 >
1255 >    !! this prevents us from doing the pair on multiple processors
1256 >    if (unique_id_1 < unique_id_2) then
1257 >       if (mod(unique_id_1 + unique_id_2,2) == 0) then
1258 >          skip_it = .true.
1259 >          return
1260 >       endif
1261 >    else                
1262 >       if (mod(unique_id_1 + unique_id_2,2) == 1) then
1263 >          skip_it = .true.
1264 >          return
1265 >       endif
1266 >    endif
1267   #endif
1268 <  
1269 <   !! the rest of these situations can happen in all simulations:
1270 <   do i = 1, nExcludes_global      
1271 <      if ((excludesGlobal(i) == unique_id_1) .or. &
1272 <           (excludesGlobal(i) == unique_id_2)) then
1273 <         skip_it = .true.
1274 <         return
1275 <      endif
1276 <   enddo
1277 <  
1278 <   do i = 1, nSkipsForAtom(atom1)
1279 <      if (skipsForAtom(atom1, i) .eq. unique_id_2) then
1280 <         skip_it = .true.
1281 <         return
1282 <      endif
1283 <   end do
1284 <  
1285 <   return
1286 < end function skipThisPair
1287 <
1288 < function FF_UsesDirectionalAtoms() result(doesit)
1289 <   logical :: doesit
1290 <   doesit = FF_uses_DirectionalAtoms .or. FF_uses_Dipoles .or. &
1291 <        FF_uses_Quadrupoles .or. FF_uses_Sticky .or. &
1292 <        FF_uses_GayBerne .or. FF_uses_Shapes
1293 < end function FF_UsesDirectionalAtoms
1294 <
1295 < function FF_RequiresPrepairCalc() result(doesit)
1296 <   logical :: doesit
1297 <   doesit = FF_uses_EAM
1298 < end function FF_RequiresPrepairCalc
1299 <
1300 < function FF_RequiresPostpairCalc() result(doesit)
1301 <   logical :: doesit
1302 <   doesit = FF_uses_RF
1248 < end function FF_RequiresPostpairCalc
1249 <
1268 >
1269 >    !! the rest of these situations can happen in all simulations:
1270 >    do i = 1, nExcludes_global      
1271 >       if ((excludesGlobal(i) == unique_id_1) .or. &
1272 >            (excludesGlobal(i) == unique_id_2)) then
1273 >          skip_it = .true.
1274 >          return
1275 >       endif
1276 >    enddo
1277 >
1278 >    do i = 1, nSkipsForAtom(atom1)
1279 >       if (skipsForAtom(atom1, i) .eq. unique_id_2) then
1280 >          skip_it = .true.
1281 >          return
1282 >       endif
1283 >    end do
1284 >
1285 >    return
1286 >  end function skipThisPair
1287 >
1288 >  function FF_UsesDirectionalAtoms() result(doesit)
1289 >    logical :: doesit
1290 >    doesit = FF_uses_DirectionalAtoms
1291 >  end function FF_UsesDirectionalAtoms
1292 >
1293 >  function FF_RequiresPrepairCalc() result(doesit)
1294 >    logical :: doesit
1295 >    doesit = FF_uses_EAM
1296 >  end function FF_RequiresPrepairCalc
1297 >
1298 >  function FF_RequiresPostpairCalc() result(doesit)
1299 >    logical :: doesit
1300 >    doesit = FF_uses_RF
1301 >  end function FF_RequiresPostpairCalc
1302 >
1303   #ifdef PROFILE
1304 < function getforcetime() result(totalforcetime)
1305 <   real(kind=dp) :: totalforcetime
1306 <   totalforcetime = forcetime
1307 < end function getforcetime
1304 >  function getforcetime() result(totalforcetime)
1305 >    real(kind=dp) :: totalforcetime
1306 >    totalforcetime = forcetime
1307 >  end function getforcetime
1308   #endif
1256
1257 !! This cleans componets of force arrays belonging only to fortran
1309  
1310 < subroutine add_stress_tensor(dpair, fpair)
1311 <  
1312 <   real( kind = dp ), dimension(3), intent(in) :: dpair, fpair
1313 <  
1314 <   ! because the d vector is the rj - ri vector, and
1315 <   ! because fx, fy, fz are the force on atom i, we need a
1316 <   ! negative sign here:  
1317 <  
1318 <   tau_Temp(1) = tau_Temp(1) - dpair(1) * fpair(1)
1319 <   tau_Temp(2) = tau_Temp(2) - dpair(1) * fpair(2)
1320 <   tau_Temp(3) = tau_Temp(3) - dpair(1) * fpair(3)
1321 <   tau_Temp(4) = tau_Temp(4) - dpair(2) * fpair(1)
1322 <   tau_Temp(5) = tau_Temp(5) - dpair(2) * fpair(2)
1323 <   tau_Temp(6) = tau_Temp(6) - dpair(2) * fpair(3)
1324 <   tau_Temp(7) = tau_Temp(7) - dpair(3) * fpair(1)
1325 <   tau_Temp(8) = tau_Temp(8) - dpair(3) * fpair(2)
1326 <   tau_Temp(9) = tau_Temp(9) - dpair(3) * fpair(3)
1327 <  
1328 <   virial_Temp = virial_Temp + &
1329 <        (tau_Temp(1) + tau_Temp(5) + tau_Temp(9))
1330 <  
1331 < end subroutine add_stress_tensor
1332 <
1310 >  !! This cleans componets of force arrays belonging only to fortran
1311 >
1312 >  subroutine add_stress_tensor(dpair, fpair)
1313 >
1314 >    real( kind = dp ), dimension(3), intent(in) :: dpair, fpair
1315 >
1316 >    ! because the d vector is the rj - ri vector, and
1317 >    ! because fx, fy, fz are the force on atom i, we need a
1318 >    ! negative sign here:  
1319 >
1320 >    tau_Temp(1) = tau_Temp(1) - dpair(1) * fpair(1)
1321 >    tau_Temp(2) = tau_Temp(2) - dpair(1) * fpair(2)
1322 >    tau_Temp(3) = tau_Temp(3) - dpair(1) * fpair(3)
1323 >    tau_Temp(4) = tau_Temp(4) - dpair(2) * fpair(1)
1324 >    tau_Temp(5) = tau_Temp(5) - dpair(2) * fpair(2)
1325 >    tau_Temp(6) = tau_Temp(6) - dpair(2) * fpair(3)
1326 >    tau_Temp(7) = tau_Temp(7) - dpair(3) * fpair(1)
1327 >    tau_Temp(8) = tau_Temp(8) - dpair(3) * fpair(2)
1328 >    tau_Temp(9) = tau_Temp(9) - dpair(3) * fpair(3)
1329 >
1330 >    virial_Temp = virial_Temp + &
1331 >         (tau_Temp(1) + tau_Temp(5) + tau_Temp(9))
1332 >
1333 >  end subroutine add_stress_tensor
1334 >
1335   end module doForces

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines