ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-3.0/src/UseTheForce/doForces.F90
(Generate patch)

Comparing trunk/OOPSE-3.0/src/UseTheForce/doForces.F90 (file contents):
Revision 2085 by gezelter, Tue Mar 8 21:05:46 2005 UTC vs.
Revision 2284 by gezelter, Wed Sep 7 19:18:54 2005 UTC

# Line 45 | Line 45
45  
46   !! @author Charles F. Vardeman II
47   !! @author Matthew Meineke
48 < !! @version $Id: doForces.F90,v 1.11 2005-03-08 21:05:46 gezelter Exp $, $Date: 2005-03-08 21:05:46 $, $Name: not supported by cvs2svn $, $Revision: 1.11 $
48 > !! @version $Id: doForces.F90,v 1.37 2005-09-07 19:18:54 gezelter Exp $, $Date: 2005-09-07 19:18:54 $, $Name: not supported by cvs2svn $, $Revision: 1.37 $
49  
50  
51   module doForces
# Line 73 | Line 73 | module doForces
73  
74   #define __FORTRAN90
75   #include "UseTheForce/fSwitchingFunction.h"
76 + #include "UseTheForce/fCutoffPolicy.h"
77 + #include "UseTheForce/DarkSide/fInteractionMap.h"
78  
79 +
80    INTEGER, PARAMETER:: PREPAIR_LOOP = 1
81    INTEGER, PARAMETER:: PAIR_LOOP    = 2
82  
80  logical, save :: haveRlist = .false.
83    logical, save :: haveNeighborList = .false.
84    logical, save :: haveSIMvariables = .false.
83  logical, save :: havePropertyMap = .false.
85    logical, save :: haveSaneForceField = .false.
86 <  
86 >  logical, save :: haveInteractionHash = .false.
87 >  logical, save :: haveGtypeCutoffMap = .false.
88 >  logical, save :: haveRlist = .false.
89 >
90    logical, save :: FF_uses_DirectionalAtoms
87  logical, save :: FF_uses_LennardJones
88  logical, save :: FF_uses_Electrostatics
89  logical, save :: FF_uses_Charges
91    logical, save :: FF_uses_Dipoles
91  logical, save :: FF_uses_Quadrupoles
92  logical, save :: FF_uses_sticky
92    logical, save :: FF_uses_GayBerne
93    logical, save :: FF_uses_EAM
95  logical, save :: FF_uses_Shapes
96  logical, save :: FF_uses_FLARB
94    logical, save :: FF_uses_RF
95  
96    logical, save :: SIM_uses_DirectionalAtoms
100  logical, save :: SIM_uses_LennardJones
101  logical, save :: SIM_uses_Electrostatics
102  logical, save :: SIM_uses_Charges
103  logical, save :: SIM_uses_Dipoles
104  logical, save :: SIM_uses_Quadrupoles
105  logical, save :: SIM_uses_Sticky
106  logical, save :: SIM_uses_GayBerne
97    logical, save :: SIM_uses_EAM
108  logical, save :: SIM_uses_Shapes
109  logical, save :: SIM_uses_FLARB
98    logical, save :: SIM_uses_RF
99    logical, save :: SIM_requires_postpair_calc
100    logical, save :: SIM_requires_prepair_calc
101    logical, save :: SIM_uses_PBC
114  logical, save :: SIM_uses_molecular_cutoffs
102  
103 <  real(kind=dp), save :: rlist, rlistsq
103 >  integer, save :: corrMethod
104  
105    public :: init_FF
106 +  public :: setDefaultCutoffs
107    public :: do_force_loop
108 <  public :: setRlistDF
108 >  public :: createInteractionHash
109 >  public :: createGtypeCutoffMap
110 >  public :: getStickyCut
111 >  public :: getStickyPowerCut
112 >  public :: getGayBerneCut
113 >  public :: getEAMCut
114 >  public :: getShapeCut
115  
116   #ifdef PROFILE
117    public :: getforcetime
# Line 125 | Line 119 | module doForces
119    real :: forceTimeInitial, forceTimeFinal
120    integer :: nLoops
121   #endif
122 +  
123 +  !! Variables for cutoff mapping and interaction mapping
124 +  ! Bit hash to determine pair-pair interactions.
125 +  integer, dimension(:,:), allocatable :: InteractionHash
126 +  real(kind=dp), dimension(:), allocatable :: atypeMaxCutoff
127 +  real(kind=dp), dimension(:), allocatable :: groupMaxCutoff
128 +  integer, dimension(:), allocatable :: groupToGtype
129 +  real(kind=dp), dimension(:), allocatable :: gtypeMaxCutoff
130 +  type ::gtypeCutoffs
131 +     real(kind=dp) :: rcut
132 +     real(kind=dp) :: rcutsq
133 +     real(kind=dp) :: rlistsq
134 +  end type gtypeCutoffs
135 +  type(gtypeCutoffs), dimension(:,:), allocatable :: gtypeCutoffMap
136  
137 <  type :: Properties
138 <     logical :: is_Directional   = .false.
139 <     logical :: is_LennardJones  = .false.
132 <     logical :: is_Electrostatic = .false.
133 <     logical :: is_Charge        = .false.
134 <     logical :: is_Dipole        = .false.
135 <     logical :: is_Quadrupole    = .false.
136 <     logical :: is_Sticky        = .false.
137 <     logical :: is_GayBerne      = .false.
138 <     logical :: is_EAM           = .false.
139 <     logical :: is_Shape         = .false.
140 <     logical :: is_FLARB         = .false.
141 <  end type Properties
142 <
143 <  type(Properties), dimension(:),allocatable :: PropertyMap
144 <
137 >  integer, save :: cutoffPolicy = TRADITIONAL_CUTOFF_POLICY
138 >  real(kind=dp),save :: defaultRcut, defaultRsw, defaultRlist
139 >  
140   contains
141  
142 <  subroutine setRlistDF( this_rlist )
148 <    
149 <    real(kind=dp) :: this_rlist
150 <
151 <    rlist = this_rlist
152 <    rlistsq = rlist * rlist
153 <    
154 <    haveRlist = .true.
155 <
156 <  end subroutine setRlistDF    
157 <
158 <  subroutine createPropertyMap(status)
142 >  subroutine createInteractionHash(status)
143      integer :: nAtypes
144 <    integer :: status
144 >    integer, intent(out) :: status
145      integer :: i
146 <    logical :: thisProperty
147 <    real (kind=DP) :: thisDPproperty
146 >    integer :: j
147 >    integer :: iHash
148 >    !! Test Types
149 >    logical :: i_is_LJ
150 >    logical :: i_is_Elect
151 >    logical :: i_is_Sticky
152 >    logical :: i_is_StickyP
153 >    logical :: i_is_GB
154 >    logical :: i_is_EAM
155 >    logical :: i_is_Shape
156 >    logical :: j_is_LJ
157 >    logical :: j_is_Elect
158 >    logical :: j_is_Sticky
159 >    logical :: j_is_StickyP
160 >    logical :: j_is_GB
161 >    logical :: j_is_EAM
162 >    logical :: j_is_Shape
163 >    real(kind=dp) :: myRcut
164  
165 <    status = 0
165 >    status = 0  
166  
167 +    if (.not. associated(atypes)) then
168 +       call handleError("atype", "atypes was not present before call of createInteractionHash!")
169 +       status = -1
170 +       return
171 +    endif
172 +    
173      nAtypes = getSize(atypes)
174 <
174 >    
175      if (nAtypes == 0) then
176         status = -1
177         return
178      end if
179 <        
180 <    if (.not. allocated(PropertyMap)) then
181 <       allocate(PropertyMap(nAtypes))
179 >
180 >    if (.not. allocated(InteractionHash)) then
181 >       allocate(InteractionHash(nAtypes,nAtypes))
182      endif
183  
184 +    if (.not. allocated(atypeMaxCutoff)) then
185 +       allocate(atypeMaxCutoff(nAtypes))
186 +    endif
187 +        
188      do i = 1, nAtypes
189 <       call getElementProperty(atypes, i, "is_Directional", thisProperty)
190 <       PropertyMap(i)%is_Directional = thisProperty
189 >       call getElementProperty(atypes, i, "is_LennardJones", i_is_LJ)
190 >       call getElementProperty(atypes, i, "is_Electrostatic", i_is_Elect)
191 >       call getElementProperty(atypes, i, "is_Sticky", i_is_Sticky)
192 >       call getElementProperty(atypes, i, "is_StickyPower", i_is_StickyP)
193 >       call getElementProperty(atypes, i, "is_GayBerne", i_is_GB)
194 >       call getElementProperty(atypes, i, "is_EAM", i_is_EAM)
195 >       call getElementProperty(atypes, i, "is_Shape", i_is_Shape)
196  
197 <       call getElementProperty(atypes, i, "is_LennardJones", thisProperty)
183 <       PropertyMap(i)%is_LennardJones = thisProperty
184 <      
185 <       call getElementProperty(atypes, i, "is_Electrostatic", thisProperty)
186 <       PropertyMap(i)%is_Electrostatic = thisProperty
197 >       do j = i, nAtypes
198  
199 <       call getElementProperty(atypes, i, "is_Charge", thisProperty)
200 <       PropertyMap(i)%is_Charge = thisProperty
190 <      
191 <       call getElementProperty(atypes, i, "is_Dipole", thisProperty)
192 <       PropertyMap(i)%is_Dipole = thisProperty
199 >          iHash = 0
200 >          myRcut = 0.0_dp
201  
202 <       call getElementProperty(atypes, i, "is_Quadrupole", thisProperty)
203 <       PropertyMap(i)%is_Quadrupole = thisProperty
202 >          call getElementProperty(atypes, j, "is_LennardJones", j_is_LJ)
203 >          call getElementProperty(atypes, j, "is_Electrostatic", j_is_Elect)
204 >          call getElementProperty(atypes, j, "is_Sticky", j_is_Sticky)
205 >          call getElementProperty(atypes, j, "is_StickyPower", j_is_StickyP)
206 >          call getElementProperty(atypes, j, "is_GayBerne", j_is_GB)
207 >          call getElementProperty(atypes, j, "is_EAM", j_is_EAM)
208 >          call getElementProperty(atypes, j, "is_Shape", j_is_Shape)
209  
210 <       call getElementProperty(atypes, i, "is_Sticky", thisProperty)
211 <       PropertyMap(i)%is_Sticky = thisProperty
210 >          if (i_is_LJ .and. j_is_LJ) then
211 >             iHash = ior(iHash, LJ_PAIR)            
212 >          endif
213 >          
214 >          if (i_is_Elect .and. j_is_Elect) then
215 >             iHash = ior(iHash, ELECTROSTATIC_PAIR)
216 >          endif
217 >          
218 >          if (i_is_Sticky .and. j_is_Sticky) then
219 >             iHash = ior(iHash, STICKY_PAIR)
220 >          endif
221  
222 <       call getElementProperty(atypes, i, "is_GayBerne", thisProperty)
223 <       PropertyMap(i)%is_GayBerne = thisProperty
222 >          if (i_is_StickyP .and. j_is_StickyP) then
223 >             iHash = ior(iHash, STICKYPOWER_PAIR)
224 >          endif
225  
226 <       call getElementProperty(atypes, i, "is_EAM", thisProperty)
227 <       PropertyMap(i)%is_EAM = thisProperty
226 >          if (i_is_EAM .and. j_is_EAM) then
227 >             iHash = ior(iHash, EAM_PAIR)
228 >          endif
229  
230 <       call getElementProperty(atypes, i, "is_Shape", thisProperty)
231 <       PropertyMap(i)%is_Shape = thisProperty
230 >          if (i_is_GB .and. j_is_GB) iHash = ior(iHash, GAYBERNE_PAIR)
231 >          if (i_is_GB .and. j_is_LJ) iHash = ior(iHash, GAYBERNE_LJ)
232 >          if (i_is_LJ .and. j_is_GB) iHash = ior(iHash, GAYBERNE_LJ)
233  
234 <       call getElementProperty(atypes, i, "is_FLARB", thisProperty)
235 <       PropertyMap(i)%is_FLARB = thisProperty
234 >          if (i_is_Shape .and. j_is_Shape) iHash = ior(iHash, SHAPE_PAIR)
235 >          if (i_is_Shape .and. j_is_LJ) iHash = ior(iHash, SHAPE_LJ)
236 >          if (i_is_LJ .and. j_is_Shape) iHash = ior(iHash, SHAPE_LJ)
237 >
238 >
239 >          InteractionHash(i,j) = iHash
240 >          InteractionHash(j,i) = iHash
241 >
242 >       end do
243 >
244      end do
245  
246 <    havePropertyMap = .true.
246 >    haveInteractionHash = .true.
247 >  end subroutine createInteractionHash
248  
249 <  end subroutine createPropertyMap
249 >  subroutine createGtypeCutoffMap(stat)
250 >
251 >    integer, intent(out), optional :: stat
252 >    logical :: i_is_LJ
253 >    logical :: i_is_Elect
254 >    logical :: i_is_Sticky
255 >    logical :: i_is_StickyP
256 >    logical :: i_is_GB
257 >    logical :: i_is_EAM
258 >    logical :: i_is_Shape
259 >
260 >    integer :: myStatus, nAtypes,  i, j, istart, iend, jstart, jend
261 >    integer :: n_in_i, me_i, ia, g, atom1, nGroupTypes
262 >    real(kind=dp):: thisSigma, bigSigma, thisRcut, tol, skin
263 >    real(kind=dp) :: biggestAtypeCutoff
264 >
265 >    stat = 0
266 >    if (.not. haveInteractionHash) then
267 >       call createInteractionHash(myStatus)      
268 >       if (myStatus .ne. 0) then
269 >          write(default_error, *) 'createInteractionHash failed in doForces!'
270 >          stat = -1
271 >          return
272 >       endif
273 >    endif
274 >
275 >    nAtypes = getSize(atypes)
276 >    
277 >    do i = 1, nAtypes
278 >       if (SimHasAtype(i)) then    
279 >          call getElementProperty(atypes, i, "is_LennardJones", i_is_LJ)
280 >          call getElementProperty(atypes, i, "is_Electrostatic", i_is_Elect)
281 >          call getElementProperty(atypes, i, "is_Sticky", i_is_Sticky)
282 >          call getElementProperty(atypes, i, "is_StickyPower", i_is_StickyP)
283 >          call getElementProperty(atypes, i, "is_GayBerne", i_is_GB)
284 >          call getElementProperty(atypes, i, "is_EAM", i_is_EAM)
285 >          call getElementProperty(atypes, i, "is_Shape", i_is_Shape)
286 >          
287 >          atypeMaxCutoff(i) = 0.0_dp
288 >          if (i_is_LJ) then
289 >             thisRcut = getSigma(i) * 2.5_dp
290 >             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
291 >          endif
292 >          if (i_is_Elect) then
293 >             thisRcut = defaultRcut
294 >             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
295 >          endif
296 >          if (i_is_Sticky) then
297 >             thisRcut = getStickyCut(i)
298 >             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
299 >          endif
300 >          if (i_is_StickyP) then
301 >             thisRcut = getStickyPowerCut(i)
302 >             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
303 >          endif
304 >          if (i_is_GB) then
305 >             thisRcut = getGayBerneCut(i)
306 >             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
307 >          endif
308 >          if (i_is_EAM) then
309 >             thisRcut = getEAMCut(i)
310 >             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
311 >          endif
312 >          if (i_is_Shape) then
313 >             thisRcut = getShapeCut(i)
314 >             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
315 >          endif
316 >          
317 >          if (atypeMaxCutoff(i).gt.biggestAtypeCutoff) then
318 >             biggestAtypeCutoff = atypeMaxCutoff(i)
319 >          endif
320 >       endif
321 >    enddo
322 >  
323 >    nGroupTypes = 0
324 >    
325 >    istart = 1
326 > #ifdef IS_MPI
327 >    iend = nGroupsInRow
328 > #else
329 >    iend = nGroups
330 > #endif
331 >    
332 >    !! allocate the groupToGtype and gtypeMaxCutoff here.
333 >    if(.not.allocated(groupToGtype)) then
334 >       allocate(groupToGtype(iend))
335 >       allocate(groupMaxCutoff(iend))
336 >       allocate(gtypeMaxCutoff(iend))
337 >    endif
338 >    !! first we do a single loop over the cutoff groups to find the
339 >    !! largest cutoff for any atypes present in this group.  We also
340 >    !! create gtypes at this point.
341 >    
342 >    tol = 1.0d-6
343 >    
344 >    do i = istart, iend      
345 >       n_in_i = groupStartRow(i+1) - groupStartRow(i)
346 >       groupMaxCutoff(i) = 0.0_dp
347 >       do ia = groupStartRow(i), groupStartRow(i+1)-1
348 >          atom1 = groupListRow(ia)
349 > #ifdef IS_MPI
350 >          me_i = atid_row(atom1)
351 > #else
352 >          me_i = atid(atom1)
353 > #endif          
354 >          if (atypeMaxCutoff(me_i).gt.groupMaxCutoff(i)) then
355 >             groupMaxCutoff(i)=atypeMaxCutoff(me_i)
356 >          endif
357 >       enddo
358 >       if (nGroupTypes.eq.0) then
359 >          nGroupTypes = nGroupTypes + 1
360 >          gtypeMaxCutoff(nGroupTypes) = groupMaxCutoff(i)
361 >          groupToGtype(i) = nGroupTypes
362 >       else
363 >          do g = 1, nGroupTypes
364 >             if ( abs(groupMaxCutoff(i) - gtypeMaxCutoff(g)).gt.tol) then
365 >                nGroupTypes = nGroupTypes + 1
366 >                gtypeMaxCutoff(nGroupTypes) = groupMaxCutoff(i)
367 >                groupToGtype(i) = nGroupTypes
368 >             else
369 >                groupToGtype(i) = g
370 >             endif
371 >          enddo
372 >       endif
373 >    enddo
374 >    
375 >    !! allocate the gtypeCutoffMap here.
376 >    allocate(gtypeCutoffMap(nGroupTypes,nGroupTypes))
377 >    !! then we do a double loop over all the group TYPES to find the cutoff
378 >    !! map between groups of two types
379 >    
380 >    do i = 1, nGroupTypes
381 >       do j = 1, nGroupTypes
382 >      
383 >          select case(cutoffPolicy)
384 >          case(TRADITIONAL_CUTOFF_POLICY)
385 >             thisRcut = maxval(gtypeMaxCutoff)
386 >          case(MIX_CUTOFF_POLICY)
387 >             thisRcut = 0.5_dp * (gtypeMaxCutoff(i) + gtypeMaxCutoff(j))
388 >          case(MAX_CUTOFF_POLICY)
389 >             thisRcut = max(gtypeMaxCutoff(i), gtypeMaxCutoff(j))
390 >          case default
391 >             call handleError("createGtypeCutoffMap", "Unknown Cutoff Policy")
392 >             return
393 >          end select
394 >          gtypeCutoffMap(i,j)%rcut = thisRcut
395 >          gtypeCutoffMap(i,j)%rcutsq = thisRcut*thisRcut
396 >          skin = defaultRlist - defaultRcut
397 >          gtypeCutoffMap(i,j)%rlistsq = (thisRcut + skin)**2
398 >
399 >       enddo
400 >    enddo
401 >    
402 >    haveGtypeCutoffMap = .true.
403 >    
404 >  end subroutine createGtypeCutoffMap
405 >  
406 >  subroutine setDefaultCutoffs(defRcut, defRsw, defRlist, cutPolicy)
407 >    real(kind=dp),intent(in) :: defRcut, defRsw, defRlist
408 >    integer, intent(in) :: cutPolicy
409 >    
410 >    defaultRcut = defRcut
411 >    defaultRsw = defRsw
412 >    defaultRlist = defRlist
413 >    cutoffPolicy = cutPolicy
414 >  end subroutine setDefaultCutoffs
415 >  
416 >  subroutine setCutoffPolicy(cutPolicy)
417  
418 +     integer, intent(in) :: cutPolicy
419 +     cutoffPolicy = cutPolicy
420 +     call createGtypeCutoffMap()
421 +
422 +   end subroutine setCutoffPolicy
423 +    
424 +    
425    subroutine setSimVariables()
426      SIM_uses_DirectionalAtoms = SimUsesDirectionalAtoms()
219    SIM_uses_LennardJones = SimUsesLennardJones()
220    SIM_uses_Electrostatics = SimUsesElectrostatics()
221    SIM_uses_Charges = SimUsesCharges()
222    SIM_uses_Dipoles = SimUsesDipoles()
223    SIM_uses_Sticky = SimUsesSticky()
224    SIM_uses_GayBerne = SimUsesGayBerne()
427      SIM_uses_EAM = SimUsesEAM()
226    SIM_uses_Shapes = SimUsesShapes()
227    SIM_uses_FLARB = SimUsesFLARB()
428      SIM_uses_RF = SimUsesRF()
429      SIM_requires_postpair_calc = SimRequiresPostpairCalc()
430      SIM_requires_prepair_calc = SimRequiresPrepairCalc()
# Line 241 | Line 441 | contains
441      integer :: myStatus
442  
443      error = 0
244    
245    if (.not. havePropertyMap) then
444  
445 <       myStatus = 0
445 >    if (.not. haveInteractionHash) then      
446 >       myStatus = 0      
447 >       call createInteractionHash(myStatus)      
448 >       if (myStatus .ne. 0) then
449 >          write(default_error, *) 'createInteractionHash failed in doForces!'
450 >          error = -1
451 >          return
452 >       endif
453 >    endif
454  
455 <       call createPropertyMap(myStatus)
456 <
455 >    if (.not. haveGtypeCutoffMap) then        
456 >       myStatus = 0      
457 >       call createGtypeCutoffMap(myStatus)      
458         if (myStatus .ne. 0) then
459 <          write(default_error, *) 'createPropertyMap failed in doForces!'
459 >          write(default_error, *) 'createGtypeCutoffMap failed in doForces!'
460            error = -1
461            return
462         endif
# Line 259 | Line 466 | contains
466         call setSimVariables()
467      endif
468  
469 <    if (.not. haveRlist) then
470 <       write(default_error, *) 'rList has not been set in doForces!'
471 <       error = -1
472 <       return
473 <    endif
469 >  !  if (.not. haveRlist) then
470 >  !     write(default_error, *) 'rList has not been set in doForces!'
471 >  !     error = -1
472 >  !     return
473 >  !  endif
474  
475      if (.not. haveNeighborList) then
476         write(default_error, *) 'neighbor list has not been initialized in doForces!'
# Line 286 | Line 493 | contains
493   #endif
494      return
495    end subroutine doReadyCheck
289    
496  
291  subroutine init_FF(use_RF_c, thisStat)
497  
498 <    logical, intent(in) :: use_RF_c
498 >  subroutine init_FF(use_RF, use_UW, use_DW, thisStat)
499  
500 +    logical, intent(in) :: use_RF
501 +    logical, intent(in) :: use_UW
502 +    logical, intent(in) :: use_DW
503      integer, intent(out) :: thisStat  
504      integer :: my_status, nMatches
505 +    integer :: corrMethod
506      integer, pointer :: MatchList(:) => null()
507      real(kind=dp) :: rcut, rrf, rt, dielect
508  
# Line 301 | Line 510 | contains
510      thisStat = 0
511  
512      !! Fortran's version of a cast:
513 <    FF_uses_RF = use_RF_c
513 >    FF_uses_RF = use_RF
514 >
515 >    !! set the electrostatic correction method
516 >    if (use_UW) then
517 >       corrMethod = 1
518 >    elseif (use_DW) then
519 >       corrMethod = 2
520 >    else
521 >       corrMethod = 0
522 >    endif
523      
524      !! init_FF is called *after* all of the atom types have been
525      !! defined in atype_module using the new_atype subroutine.
526      !!
527      !! this will scan through the known atypes and figure out what
528      !! interactions are used by the force field.    
529 <  
529 >
530      FF_uses_DirectionalAtoms = .false.
313    FF_uses_LennardJones = .false.
314    FF_uses_Electrostatics = .false.
315    FF_uses_Charges = .false.    
531      FF_uses_Dipoles = .false.
317    FF_uses_Sticky = .false.
532      FF_uses_GayBerne = .false.
533      FF_uses_EAM = .false.
534 <    FF_uses_Shapes = .false.
321 <    FF_uses_FLARB = .false.
322 <    
534 >
535      call getMatchingElementList(atypes, "is_Directional", .true., &
536           nMatches, MatchList)
537      if (nMatches .gt. 0) FF_uses_DirectionalAtoms = .true.
326
327    call getMatchingElementList(atypes, "is_LennardJones", .true., &
328         nMatches, MatchList)
329    if (nMatches .gt. 0) FF_uses_LennardJones = .true.
330    
331    call getMatchingElementList(atypes, "is_Electrostatic", .true., &
332         nMatches, MatchList)
333    if (nMatches .gt. 0) then
334       FF_uses_Electrostatics = .true.
335    endif
538  
337    call getMatchingElementList(atypes, "is_Charge", .true., &
338         nMatches, MatchList)
339    if (nMatches .gt. 0) then
340       FF_uses_Charges = .true.  
341       FF_uses_Electrostatics = .true.
342    endif
343    
539      call getMatchingElementList(atypes, "is_Dipole", .true., &
540           nMatches, MatchList)
541 <    if (nMatches .gt. 0) then
347 <       FF_uses_Dipoles = .true.
348 <       FF_uses_Electrostatics = .true.
349 <       FF_uses_DirectionalAtoms = .true.
350 <    endif
351 <
352 <    call getMatchingElementList(atypes, "is_Quadrupole", .true., &
353 <         nMatches, MatchList)
354 <    if (nMatches .gt. 0) then
355 <       FF_uses_Quadrupoles = .true.
356 <       FF_uses_Electrostatics = .true.
357 <       FF_uses_DirectionalAtoms = .true.
358 <    endif
541 >    if (nMatches .gt. 0) FF_uses_Dipoles = .true.
542      
360    call getMatchingElementList(atypes, "is_Sticky", .true., nMatches, &
361         MatchList)
362    if (nMatches .gt. 0) then
363       FF_uses_Sticky = .true.
364       FF_uses_DirectionalAtoms = .true.
365    endif
366    
543      call getMatchingElementList(atypes, "is_GayBerne", .true., &
544           nMatches, MatchList)
545 <    if (nMatches .gt. 0) then
546 <       FF_uses_GayBerne = .true.
371 <       FF_uses_DirectionalAtoms = .true.
372 <    endif
373 <    
545 >    if (nMatches .gt. 0) FF_uses_GayBerne = .true.
546 >
547      call getMatchingElementList(atypes, "is_EAM", .true., nMatches, MatchList)
548      if (nMatches .gt. 0) FF_uses_EAM = .true.
376    
377    call getMatchingElementList(atypes, "is_Shape", .true., &
378         nMatches, MatchList)
379    if (nMatches .gt. 0) then
380       FF_uses_Shapes = .true.
381       FF_uses_DirectionalAtoms = .true.
382    endif
549  
384    call getMatchingElementList(atypes, "is_FLARB", .true., &
385         nMatches, MatchList)
386    if (nMatches .gt. 0) FF_uses_FLARB = .true.
550  
388    !! Assume sanity (for the sake of argument)
551      haveSaneForceField = .true.
552 <    
552 >
553      !! check to make sure the FF_uses_RF setting makes sense
554 <    
555 <    if (FF_uses_dipoles) then
554 >
555 >    if (FF_uses_Dipoles) then
556         if (FF_uses_RF) then
557            dielect = getDielect()
558            call initialize_rf(dielect)
# Line 402 | Line 564 | contains
564            haveSaneForceField = .false.
565            return
566         endif
567 <    endif
567 >    endif
568  
407    !sticky module does not contain check_sticky_FF anymore
408    !if (FF_uses_sticky) then
409    !   call check_sticky_FF(my_status)
410    !   if (my_status /= 0) then
411    !      thisStat = -1
412    !      haveSaneForceField = .false.
413    !      return
414    !   end if
415    !endif
416
569      if (FF_uses_EAM) then
570 <         call init_EAM_FF(my_status)
570 >       call init_EAM_FF(my_status)
571         if (my_status /= 0) then
572            write(default_error, *) "init_EAM_FF returned a bad status"
573            thisStat = -1
# Line 433 | Line 585 | contains
585         endif
586      endif
587  
436    if (FF_uses_GayBerne .and. FF_uses_LennardJones) then
437    endif
438    
588      if (.not. haveNeighborList) then
589         !! Create neighbor lists
590         call expandNeighborList(nLocal, my_status)
# Line 445 | Line 594 | contains
594            return
595         endif
596         haveNeighborList = .true.
597 <    endif    
598 <    
597 >    endif
598 >
599    end subroutine init_FF
451  
600  
601 +
602    !! Does force loop over i,j pairs. Calls do_pair to calculates forces.
603    !------------------------------------------------------------->
604    subroutine do_force_loop(q, q_group, A, eFrame, f, t, tau, pot, &
# Line 499 | Line 648 | contains
648      integer :: localError
649      integer :: propPack_i, propPack_j
650      integer :: loopStart, loopEnd, loop
651 <
651 >    integer :: iHash
652      real(kind=dp) :: listSkin = 1.0  
653 <    
653 >
654      !! initialize local variables  
655 <    
655 >
656   #ifdef IS_MPI
657      pot_local = 0.0_dp
658      nAtomsInRow   = getNatomsInRow(plan_atom_row)
# Line 513 | Line 662 | contains
662   #else
663      natoms = nlocal
664   #endif
665 <    
665 >
666      call doReadyCheck(localError)
667      if ( localError .ne. 0 ) then
668         call handleError("do_force_loop", "Not Initialized")
# Line 521 | Line 670 | contains
670         return
671      end if
672      call zero_work_arrays()
673 <        
673 >
674      do_pot = do_pot_c
675      do_stress = do_stress_c
676 <    
676 >
677      ! Gather all information needed by all force loops:
678 <    
678 >
679   #ifdef IS_MPI    
680 <    
680 >
681      call gather(q, q_Row, plan_atom_row_3d)
682      call gather(q, q_Col, plan_atom_col_3d)
683  
684      call gather(q_group, q_group_Row, plan_group_row_3d)
685      call gather(q_group, q_group_Col, plan_group_col_3d)
686 <        
686 >
687      if (FF_UsesDirectionalAtoms() .and. SIM_uses_DirectionalAtoms) then
688         call gather(eFrame, eFrame_Row, plan_atom_row_rotation)
689         call gather(eFrame, eFrame_Col, plan_atom_col_rotation)
690 <      
690 >
691         call gather(A, A_Row, plan_atom_row_rotation)
692         call gather(A, A_Col, plan_atom_col_rotation)
693      endif
694 <    
694 >
695   #endif
696 <    
696 >
697      !! Begin force loop timing:
698   #ifdef PROFILE
699      call cpu_time(forceTimeInitial)
700      nloops = nloops + 1
701   #endif
702 <    
702 >
703      loopEnd = PAIR_LOOP
704      if (FF_RequiresPrepairCalc() .and. SIM_requires_prepair_calc) then
705         loopStart = PREPAIR_LOOP
# Line 565 | Line 714 | contains
714         if (loop .eq. loopStart) then
715   #ifdef IS_MPI
716            call checkNeighborList(nGroupsInRow, q_group_row, listSkin, &
717 <             update_nlist)
717 >               update_nlist)
718   #else
719            call checkNeighborList(nGroups, q_group, listSkin, &
720 <             update_nlist)
720 >               update_nlist)
721   #endif
722         endif
723 <      
723 >
724         if (update_nlist) then
725            !! save current configuration and construct neighbor list
726   #ifdef IS_MPI
# Line 582 | Line 731 | contains
731            neighborListSize = size(list)
732            nlist = 0
733         endif
734 <      
734 >
735         istart = 1
736   #ifdef IS_MPI
737         iend = nGroupsInRow
# Line 592 | Line 741 | contains
741         outer: do i = istart, iend
742  
743            if (update_nlist) point(i) = nlist + 1
744 <          
744 >
745            n_in_i = groupStartRow(i+1) - groupStartRow(i)
746 <          
746 >
747            if (update_nlist) then
748   #ifdef IS_MPI
749               jstart = 1
# Line 609 | Line 758 | contains
758               ! make sure group i has neighbors
759               if (jstart .gt. jend) cycle outer
760            endif
761 <          
761 >
762            do jnab = jstart, jend
763               if (update_nlist) then
764                  j = jnab
# Line 618 | Line 767 | contains
767               endif
768  
769   #ifdef IS_MPI
770 +             me_j = atid_col(j)
771               call get_interatomic_vector(q_group_Row(:,i), &
772                    q_group_Col(:,j), d_grp, rgrpsq)
773   #else
774 +             me_j = atid(j)
775               call get_interatomic_vector(q_group(:,i), &
776                    q_group(:,j), d_grp, rgrpsq)
777   #endif
778  
779 <             if (rgrpsq < rlistsq) then
779 >             if (rgrpsq < gtypeCutoffMap(groupToGtype(i),groupToGtype(j))%rListsq) then
780                  if (update_nlist) then
781                     nlist = nlist + 1
782 <                  
782 >
783                     if (nlist > neighborListSize) then
784   #ifdef IS_MPI                
785                        call expandNeighborList(nGroupsInRow, listerror)
# Line 642 | Line 793 | contains
793                        end if
794                        neighborListSize = size(list)
795                     endif
796 <                  
796 >
797                     list(nlist) = j
798                  endif
799 <                
799 >
800                  if (loop .eq. PAIR_LOOP) then
801                     vij = 0.0d0
802                     fij(1:3) = 0.0d0
803                  endif
804 <                
804 >
805                  call get_switch(rgrpsq, sw, dswdr, rgrp, group_switch, &
806                       in_switching_region)
807 <                
807 >
808                  n_in_j = groupStartCol(j+1) - groupStartCol(j)
809 <                
809 >
810                  do ia = groupStartRow(i), groupStartRow(i+1)-1
811 <                  
811 >
812                     atom1 = groupListRow(ia)
813 <                  
813 >
814                     inner: do jb = groupStartCol(j), groupStartCol(j+1)-1
815 <                      
815 >
816                        atom2 = groupListCol(jb)
817 <                      
817 >
818                        if (skipThisPair(atom1, atom2)) cycle inner
819  
820                        if ((n_in_i .eq. 1).and.(n_in_j .eq. 1)) then
# Line 705 | Line 856 | contains
856                        endif
857                     enddo inner
858                  enddo
859 <                
859 >
860                  if (loop .eq. PAIR_LOOP) then
861                     if (in_switching_region) then
862                        swderiv = vij*dswdr/rgrp
863                        fij(1) = fij(1) + swderiv*d_grp(1)
864                        fij(2) = fij(2) + swderiv*d_grp(2)
865                        fij(3) = fij(3) + swderiv*d_grp(3)
866 <                      
866 >
867                        do ia=groupStartRow(i), groupStartRow(i+1)-1
868                           atom1=groupListRow(ia)
869                           mf = mfactRow(atom1)
# Line 726 | Line 877 | contains
877                           f(3,atom1) = f(3,atom1) + swderiv*d_grp(3)*mf
878   #endif
879                        enddo
880 <                      
880 >
881                        do jb=groupStartCol(j), groupStartCol(j+1)-1
882                           atom2=groupListCol(jb)
883                           mf = mfactCol(atom2)
# Line 741 | Line 892 | contains
892   #endif
893                        enddo
894                     endif
895 <                  
895 >
896                     if (do_stress) call add_stress_tensor(d_grp, fij)
897                  endif
898               end if
899            enddo
900         enddo outer
901 <      
901 >
902         if (update_nlist) then
903   #ifdef IS_MPI
904            point(nGroupsInRow + 1) = nlist + 1
# Line 761 | Line 912 | contains
912               update_nlist = .false.                              
913            endif
914         endif
915 <            
915 >
916         if (loop .eq. PREPAIR_LOOP) then
917            call do_preforce(nlocal, pot)
918         endif
919 <      
919 >
920      enddo
921 <    
921 >
922      !! Do timing
923   #ifdef PROFILE
924      call cpu_time(forceTimeFinal)
925      forceTime = forceTime + forceTimeFinal - forceTimeInitial
926   #endif    
927 <    
927 >
928   #ifdef IS_MPI
929      !!distribute forces
930 <    
930 >
931      f_temp = 0.0_dp
932      call scatter(f_Row,f_temp,plan_atom_row_3d)
933      do i = 1,nlocal
934         f(1:3,i) = f(1:3,i) + f_temp(1:3,i)
935      end do
936 <    
936 >
937      f_temp = 0.0_dp
938      call scatter(f_Col,f_temp,plan_atom_col_3d)
939      do i = 1,nlocal
940         f(1:3,i) = f(1:3,i) + f_temp(1:3,i)
941      end do
942 <    
942 >
943      if (FF_UsesDirectionalAtoms() .and. SIM_uses_DirectionalAtoms) then
944         t_temp = 0.0_dp
945         call scatter(t_Row,t_temp,plan_atom_row_3d)
# Line 797 | Line 948 | contains
948         end do
949         t_temp = 0.0_dp
950         call scatter(t_Col,t_temp,plan_atom_col_3d)
951 <      
951 >
952         do i = 1,nlocal
953            t(1:3,i) = t(1:3,i) + t_temp(1:3,i)
954         end do
955      endif
956 <    
956 >
957      if (do_pot) then
958         ! scatter/gather pot_row into the members of my column
959         call scatter(pot_Row, pot_Temp, plan_atom_row)
960 <      
960 >
961         ! scatter/gather pot_local into all other procs
962         ! add resultant to get total pot
963         do i = 1, nlocal
964            pot_local = pot_local + pot_Temp(i)
965         enddo
966 <      
966 >
967         pot_Temp = 0.0_DP
968 <      
968 >
969         call scatter(pot_Col, pot_Temp, plan_atom_col)
970         do i = 1, nlocal
971            pot_local = pot_local + pot_Temp(i)
972         enddo
973 <      
973 >
974      endif
975   #endif
976 <    
976 >
977      if (FF_RequiresPostpairCalc() .and. SIM_requires_postpair_calc) then
978 <      
978 >
979         if (FF_uses_RF .and. SIM_uses_RF) then
980 <          
980 >
981   #ifdef IS_MPI
982            call scatter(rf_Row,rf,plan_atom_row_3d)
983            call scatter(rf_Col,rf_Temp,plan_atom_col_3d)
# Line 834 | Line 985 | contains
985               rf(1:3,i) = rf(1:3,i) + rf_Temp(1:3,i)
986            end do
987   #endif
988 <          
988 >
989            do i = 1, nLocal
990 <            
990 >
991               rfpot = 0.0_DP
992   #ifdef IS_MPI
993               me_i = atid_row(i)
994   #else
995               me_i = atid(i)
996   #endif
997 +             iHash = InteractionHash(me_i,me_j)
998              
999 <             if (PropertyMap(me_i)%is_Dipole) then
1000 <                
999 >             if ( iand(iHash, ELECTROSTATIC_PAIR).ne.0 ) then
1000 >
1001                  mu_i = getDipoleMoment(me_i)
1002 <                
1002 >
1003                  !! The reaction field needs to include a self contribution
1004                  !! to the field:
1005                  call accumulate_self_rf(i, mu_i, eFrame)
# Line 858 | Line 1010 | contains
1010                  pot_local = pot_local + rfpot
1011   #else
1012                  pot = pot + rfpot
1013 <      
1013 >
1014   #endif
1015 <             endif            
1015 >             endif
1016            enddo
1017         endif
1018      endif
1019 <    
1020 <    
1019 >
1020 >
1021   #ifdef IS_MPI
1022 <    
1022 >
1023      if (do_pot) then
1024         pot = pot + pot_local
1025         !! we assume the c code will do the allreduce to get the total potential
1026         !! we could do it right here if we needed to...
1027      endif
1028 <    
1028 >
1029      if (do_stress) then
1030         call mpi_allreduce(tau_Temp, tau, 9,mpi_double_precision,mpi_sum, &
1031              mpi_comm_world,mpi_err)
1032         call mpi_allreduce(virial_Temp, virial,1,mpi_double_precision,mpi_sum, &
1033              mpi_comm_world,mpi_err)
1034      endif
1035 <    
1035 >
1036   #else
1037 <    
1037 >
1038      if (do_stress) then
1039         tau = tau_Temp
1040         virial = virial_Temp
1041      endif
1042 <    
1042 >
1043   #endif
1044 <      
1044 >
1045    end subroutine do_force_loop
1046 <  
1046 >
1047    subroutine do_pair(i, j, rijsq, d, sw, do_pot, &
1048         eFrame, A, f, t, pot, vpair, fpair)
1049  
# Line 908 | Line 1060 | contains
1060      real ( kind = dp ), intent(inout) :: rijsq
1061      real ( kind = dp )                :: r
1062      real ( kind = dp ), intent(inout) :: d(3)
1063 +    real ( kind = dp ) :: ebalance
1064      integer :: me_i, me_j
1065  
1066 +    integer :: iHash
1067 +
1068      r = sqrt(rijsq)
1069      vpair = 0.0d0
1070      fpair(1:3) = 0.0d0
# Line 922 | Line 1077 | contains
1077      me_j = atid(j)
1078   #endif
1079  
1080 < !    write(*,*) i, j, me_i, me_j
1081 <    
1082 <    if (FF_uses_LennardJones .and. SIM_uses_LennardJones) then
1083 <      
929 <       if ( PropertyMap(me_i)%is_LennardJones .and. &
930 <            PropertyMap(me_j)%is_LennardJones ) then
931 <          call do_lj_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, do_pot)
932 <       endif
933 <      
1080 >    iHash = InteractionHash(me_i, me_j)
1081 >
1082 >    if ( iand(iHash, LJ_PAIR).ne.0 ) then
1083 >       call do_lj_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, do_pot)
1084      endif
935    
936    if (FF_uses_Electrostatics .and. SIM_uses_Electrostatics) then
937      
938       if (PropertyMap(me_i)%is_Electrostatic .and. &
939            PropertyMap(me_j)%is_Electrostatic) then
940          call doElectrostaticPair(i, j, d, r, rijsq, sw, vpair, fpair, &
941               pot, eFrame, f, t, do_pot)
942       endif
943      
944       if (FF_uses_dipoles .and. SIM_uses_dipoles) then      
945          if ( PropertyMap(me_i)%is_Dipole .and. &
946               PropertyMap(me_j)%is_Dipole) then
947             if (FF_uses_RF .and. SIM_uses_RF) then
948                call accumulate_rf(i, j, r, eFrame, sw)
949                call rf_correct_forces(i, j, d, r, eFrame, sw, f, fpair)
950             endif
951          endif
952       endif
953    endif
1085  
1086 +    if ( iand(iHash, ELECTROSTATIC_PAIR).ne.0 ) then
1087 +       call doElectrostaticPair(i, j, d, r, rijsq, sw, vpair, fpair, &
1088 +            pot, eFrame, f, t, do_pot, corrMethod)
1089  
1090 <    if (FF_uses_Sticky .and. SIM_uses_sticky) then
1090 >       if (FF_uses_RF .and. SIM_uses_RF) then
1091  
1092 <       if ( PropertyMap(me_i)%is_Sticky .and. PropertyMap(me_j)%is_Sticky) then
1093 <          call do_sticky_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1094 <               pot, A, f, t, do_pot)
1092 >          ! CHECK ME (RF needs to know about all electrostatic types)
1093 >          call accumulate_rf(i, j, r, eFrame, sw)
1094 >          call rf_correct_forces(i, j, d, r, eFrame, sw, f, fpair)
1095         endif
1096 <      
1096 >
1097      endif
1098  
1099 +    if ( iand(iHash, STICKY_PAIR).ne.0 ) then
1100 +       call do_sticky_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1101 +            pot, A, f, t, do_pot)
1102 +    endif
1103  
1104 <    if (FF_uses_GayBerne .and. SIM_uses_GayBerne) then
1105 <      
1106 <       if ( PropertyMap(me_i)%is_GayBerne .and. &
969 <            PropertyMap(me_j)%is_GayBerne) then
970 <          call do_gb_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
971 <               pot, A, f, t, do_pot)
972 <       endif
973 <      
1104 >    if ( iand(iHash, STICKYPOWER_PAIR).ne.0 ) then
1105 >       call do_sticky_power_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1106 >            pot, A, f, t, do_pot)
1107      endif
1108 +
1109 +    if ( iand(iHash, GAYBERNE_PAIR).ne.0 ) then
1110 +       call do_gb_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1111 +            pot, A, f, t, do_pot)
1112 +    endif
1113      
1114 <    if (FF_uses_EAM .and. SIM_uses_EAM) then
1115 <      
1116 <       if ( PropertyMap(me_i)%is_EAM .and. PropertyMap(me_j)%is_EAM) then
979 <          call do_eam_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, &
980 <               do_pot)
981 <       endif
982 <      
1114 >    if ( iand(iHash, GAYBERNE_LJ).ne.0 ) then
1115 > !      call do_gblj_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1116 > !           pot, A, f, t, do_pot)
1117      endif
1118  
1119 +    if ( iand(iHash, EAM_PAIR).ne.0 ) then      
1120 +       call do_eam_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, &
1121 +            do_pot)
1122 +    endif
1123  
1124 < !    write(*,*) PropertyMap(me_i)%is_Shape,PropertyMap(me_j)%is_Shape
1124 >    if ( iand(iHash, SHAPE_PAIR).ne.0 ) then      
1125 >       call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1126 >            pot, A, f, t, do_pot)
1127 >    endif
1128  
1129 <    if (FF_uses_Shapes .and. SIM_uses_Shapes) then
1130 <       if ( PropertyMap(me_i)%is_Shape .and. &
1131 <            PropertyMap(me_j)%is_Shape ) then
991 <          call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
992 <               pot, A, f, t, do_pot)
993 <       endif
994 <      
1129 >    if ( iand(iHash, SHAPE_LJ).ne.0 ) then      
1130 >       call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1131 >            pot, A, f, t, do_pot)
1132      endif
1133      
1134    end subroutine do_pair
# Line 999 | Line 1136 | contains
1136    subroutine do_prepair(i, j, rijsq, d, sw, rcijsq, dc, &
1137         do_pot, do_stress, eFrame, A, f, t, pot)
1138  
1139 <   real( kind = dp ) :: pot, sw
1140 <   real( kind = dp ), dimension(9,nLocal) :: eFrame
1141 <   real (kind=dp), dimension(9,nLocal) :: A
1142 <   real (kind=dp), dimension(3,nLocal) :: f
1143 <   real (kind=dp), dimension(3,nLocal) :: t
1007 <  
1008 <   logical, intent(inout) :: do_pot, do_stress
1009 <   integer, intent(in) :: i, j
1010 <   real ( kind = dp ), intent(inout)    :: rijsq, rcijsq
1011 <   real ( kind = dp )                :: r, rc
1012 <   real ( kind = dp ), intent(inout) :: d(3), dc(3)
1013 <  
1014 <   logical :: is_EAM_i, is_EAM_j
1015 <  
1016 <   integer :: me_i, me_j
1017 <  
1139 >    real( kind = dp ) :: pot, sw
1140 >    real( kind = dp ), dimension(9,nLocal) :: eFrame
1141 >    real (kind=dp), dimension(9,nLocal) :: A
1142 >    real (kind=dp), dimension(3,nLocal) :: f
1143 >    real (kind=dp), dimension(3,nLocal) :: t
1144  
1145 <    r = sqrt(rijsq)
1146 <    if (SIM_uses_molecular_cutoffs) then
1147 <       rc = sqrt(rcijsq)
1148 <    else
1149 <       rc = r
1024 <    endif
1025 <  
1145 >    logical, intent(inout) :: do_pot, do_stress
1146 >    integer, intent(in) :: i, j
1147 >    real ( kind = dp ), intent(inout)    :: rijsq, rcijsq
1148 >    real ( kind = dp )                :: r, rc
1149 >    real ( kind = dp ), intent(inout) :: d(3), dc(3)
1150  
1151 +    integer :: me_i, me_j, iHash
1152 +
1153   #ifdef IS_MPI  
1154 <   me_i = atid_row(i)
1155 <   me_j = atid_col(j)  
1154 >    me_i = atid_row(i)
1155 >    me_j = atid_col(j)  
1156   #else  
1157 <   me_i = atid(i)
1158 <   me_j = atid(j)  
1157 >    me_i = atid(i)
1158 >    me_j = atid(j)  
1159   #endif
1034  
1035   if (FF_uses_EAM .and. SIM_uses_EAM) then
1036      
1037      if (PropertyMap(me_i)%is_EAM .and. PropertyMap(me_j)%is_EAM) &
1038           call calc_EAM_prepair_rho(i, j, d, r, rijsq )
1039      
1040   endif
1041  
1042 end subroutine do_prepair
1043
1044
1045 subroutine do_preforce(nlocal,pot)
1046   integer :: nlocal
1047   real( kind = dp ) :: pot
1048  
1049   if (FF_uses_EAM .and. SIM_uses_EAM) then
1050      call calc_EAM_preforce_Frho(nlocal,pot)
1051   endif
1052  
1053  
1054 end subroutine do_preforce
1055
1056
1057 subroutine get_interatomic_vector(q_i, q_j, d, r_sq)
1058  
1059   real (kind = dp), dimension(3) :: q_i
1060   real (kind = dp), dimension(3) :: q_j
1061   real ( kind = dp ), intent(out) :: r_sq
1062   real( kind = dp ) :: d(3), scaled(3)
1063   integer i
1064  
1065   d(1:3) = q_j(1:3) - q_i(1:3)
1066  
1067   ! Wrap back into periodic box if necessary
1068   if ( SIM_uses_PBC ) then
1069      
1070      if( .not.boxIsOrthorhombic ) then
1071         ! calc the scaled coordinates.
1072        
1073         scaled = matmul(HmatInv, d)
1074        
1075         ! wrap the scaled coordinates
1076        
1077         scaled = scaled  - anint(scaled)
1078        
1079        
1080         ! calc the wrapped real coordinates from the wrapped scaled
1081         ! coordinates
1082        
1083         d = matmul(Hmat,scaled)
1084        
1085      else
1086         ! calc the scaled coordinates.
1087        
1088         do i = 1, 3
1089            scaled(i) = d(i) * HmatInv(i,i)
1090            
1091            ! wrap the scaled coordinates
1092            
1093            scaled(i) = scaled(i) - anint(scaled(i))
1094            
1095            ! calc the wrapped real coordinates from the wrapped scaled
1096            ! coordinates
1097            
1098            d(i) = scaled(i)*Hmat(i,i)
1099         enddo
1100      endif
1101      
1102   endif
1103  
1104   r_sq = dot_product(d,d)
1105  
1106 end subroutine get_interatomic_vector
1107
1108 subroutine zero_work_arrays()
1109  
1110 #ifdef IS_MPI
1111  
1112   q_Row = 0.0_dp
1113   q_Col = 0.0_dp
1160  
1161 <   q_group_Row = 0.0_dp
1162 <   q_group_Col = 0.0_dp  
1163 <  
1164 <   eFrame_Row = 0.0_dp
1165 <   eFrame_Col = 0.0_dp
1166 <  
1167 <   A_Row = 0.0_dp
1168 <   A_Col = 0.0_dp
1169 <  
1170 <   f_Row = 0.0_dp
1171 <   f_Col = 0.0_dp
1172 <   f_Temp = 0.0_dp
1173 <  
1174 <   t_Row = 0.0_dp
1175 <   t_Col = 0.0_dp
1176 <   t_Temp = 0.0_dp
1177 <  
1178 <   pot_Row = 0.0_dp
1179 <   pot_Col = 0.0_dp
1180 <   pot_Temp = 0.0_dp
1181 <  
1182 <   rf_Row = 0.0_dp
1183 <   rf_Col = 0.0_dp
1184 <   rf_Temp = 0.0_dp
1185 <  
1186 < #endif
1187 <
1188 <   if (FF_uses_EAM .and. SIM_uses_EAM) then
1189 <      call clean_EAM()
1190 <   endif
1191 <  
1192 <   rf = 0.0_dp
1193 <   tau_Temp = 0.0_dp
1194 <   virial_Temp = 0.0_dp
1195 < end subroutine zero_work_arrays
1196 <
1197 < function skipThisPair(atom1, atom2) result(skip_it)
1198 <   integer, intent(in) :: atom1
1199 <   integer, intent(in), optional :: atom2
1200 <   logical :: skip_it
1201 <   integer :: unique_id_1, unique_id_2
1202 <   integer :: me_i,me_j
1203 <   integer :: i
1204 <  
1205 <   skip_it = .false.
1206 <  
1207 <   !! there are a number of reasons to skip a pair or a particle
1208 <   !! mostly we do this to exclude atoms who are involved in short
1209 <   !! range interactions (bonds, bends, torsions), but we also need
1210 <   !! to exclude some overcounted interactions that result from
1211 <   !! the parallel decomposition
1212 <  
1213 < #ifdef IS_MPI
1214 <   !! in MPI, we have to look up the unique IDs for each atom
1215 <   unique_id_1 = AtomRowToGlobal(atom1)
1216 < #else
1217 <   !! in the normal loop, the atom numbers are unique
1218 <   unique_id_1 = atom1
1219 < #endif
1220 <  
1221 <   !! We were called with only one atom, so just check the global exclude
1222 <   !! list for this atom
1223 <   if (.not. present(atom2)) then
1224 <      do i = 1, nExcludes_global
1225 <         if (excludesGlobal(i) == unique_id_1) then
1226 <            skip_it = .true.
1227 <            return
1228 <         end if
1229 <      end do
1230 <      return
1231 <   end if
1232 <  
1233 < #ifdef IS_MPI
1234 <   unique_id_2 = AtomColToGlobal(atom2)
1189 < #else
1190 <   unique_id_2 = atom2
1191 < #endif
1192 <  
1161 >    iHash = InteractionHash(me_i, me_j)
1162 >
1163 >    if ( iand(iHash, EAM_PAIR).ne.0 ) then      
1164 >            call calc_EAM_prepair_rho(i, j, d, r, rijsq )
1165 >    endif
1166 >    
1167 >  end subroutine do_prepair
1168 >
1169 >
1170 >  subroutine do_preforce(nlocal,pot)
1171 >    integer :: nlocal
1172 >    real( kind = dp ) :: pot
1173 >
1174 >    if (FF_uses_EAM .and. SIM_uses_EAM) then
1175 >       call calc_EAM_preforce_Frho(nlocal,pot)
1176 >    endif
1177 >
1178 >
1179 >  end subroutine do_preforce
1180 >
1181 >
1182 >  subroutine get_interatomic_vector(q_i, q_j, d, r_sq)
1183 >
1184 >    real (kind = dp), dimension(3) :: q_i
1185 >    real (kind = dp), dimension(3) :: q_j
1186 >    real ( kind = dp ), intent(out) :: r_sq
1187 >    real( kind = dp ) :: d(3), scaled(3)
1188 >    integer i
1189 >
1190 >    d(1:3) = q_j(1:3) - q_i(1:3)
1191 >
1192 >    ! Wrap back into periodic box if necessary
1193 >    if ( SIM_uses_PBC ) then
1194 >
1195 >       if( .not.boxIsOrthorhombic ) then
1196 >          ! calc the scaled coordinates.
1197 >
1198 >          scaled = matmul(HmatInv, d)
1199 >
1200 >          ! wrap the scaled coordinates
1201 >
1202 >          scaled = scaled  - anint(scaled)
1203 >
1204 >
1205 >          ! calc the wrapped real coordinates from the wrapped scaled
1206 >          ! coordinates
1207 >
1208 >          d = matmul(Hmat,scaled)
1209 >
1210 >       else
1211 >          ! calc the scaled coordinates.
1212 >
1213 >          do i = 1, 3
1214 >             scaled(i) = d(i) * HmatInv(i,i)
1215 >
1216 >             ! wrap the scaled coordinates
1217 >
1218 >             scaled(i) = scaled(i) - anint(scaled(i))
1219 >
1220 >             ! calc the wrapped real coordinates from the wrapped scaled
1221 >             ! coordinates
1222 >
1223 >             d(i) = scaled(i)*Hmat(i,i)
1224 >          enddo
1225 >       endif
1226 >
1227 >    endif
1228 >
1229 >    r_sq = dot_product(d,d)
1230 >
1231 >  end subroutine get_interatomic_vector
1232 >
1233 >  subroutine zero_work_arrays()
1234 >
1235   #ifdef IS_MPI
1236 <   !! this situation should only arise in MPI simulations
1237 <   if (unique_id_1 == unique_id_2) then
1238 <      skip_it = .true.
1239 <      return
1240 <   end if
1241 <  
1242 <   !! this prevents us from doing the pair on multiple processors
1243 <   if (unique_id_1 < unique_id_2) then
1244 <      if (mod(unique_id_1 + unique_id_2,2) == 0) then
1245 <         skip_it = .true.
1246 <         return
1247 <      endif
1248 <   else                
1249 <      if (mod(unique_id_1 + unique_id_2,2) == 1) then
1250 <         skip_it = .true.
1251 <         return
1252 <      endif
1253 <   endif
1236 >
1237 >    q_Row = 0.0_dp
1238 >    q_Col = 0.0_dp
1239 >
1240 >    q_group_Row = 0.0_dp
1241 >    q_group_Col = 0.0_dp  
1242 >
1243 >    eFrame_Row = 0.0_dp
1244 >    eFrame_Col = 0.0_dp
1245 >
1246 >    A_Row = 0.0_dp
1247 >    A_Col = 0.0_dp
1248 >
1249 >    f_Row = 0.0_dp
1250 >    f_Col = 0.0_dp
1251 >    f_Temp = 0.0_dp
1252 >
1253 >    t_Row = 0.0_dp
1254 >    t_Col = 0.0_dp
1255 >    t_Temp = 0.0_dp
1256 >
1257 >    pot_Row = 0.0_dp
1258 >    pot_Col = 0.0_dp
1259 >    pot_Temp = 0.0_dp
1260 >
1261 >    rf_Row = 0.0_dp
1262 >    rf_Col = 0.0_dp
1263 >    rf_Temp = 0.0_dp
1264 >
1265   #endif
1266 <  
1267 <   !! the rest of these situations can happen in all simulations:
1268 <   do i = 1, nExcludes_global      
1269 <      if ((excludesGlobal(i) == unique_id_1) .or. &
1270 <           (excludesGlobal(i) == unique_id_2)) then
1271 <         skip_it = .true.
1272 <         return
1273 <      endif
1274 <   enddo
1275 <  
1276 <   do i = 1, nSkipsForAtom(atom1)
1277 <      if (skipsForAtom(atom1, i) .eq. unique_id_2) then
1278 <         skip_it = .true.
1279 <         return
1280 <      endif
1281 <   end do
1282 <  
1283 <   return
1284 < end function skipThisPair
1285 <
1286 < function FF_UsesDirectionalAtoms() result(doesit)
1287 <   logical :: doesit
1288 <   doesit = FF_uses_DirectionalAtoms .or. FF_uses_Dipoles .or. &
1289 <        FF_uses_Quadrupoles .or. FF_uses_Sticky .or. &
1290 <        FF_uses_GayBerne .or. FF_uses_Shapes
1291 < end function FF_UsesDirectionalAtoms
1292 <
1293 < function FF_RequiresPrepairCalc() result(doesit)
1294 <   logical :: doesit
1295 <   doesit = FF_uses_EAM
1296 < end function FF_RequiresPrepairCalc
1297 <
1298 < function FF_RequiresPostpairCalc() result(doesit)
1299 <   logical :: doesit
1300 <   doesit = FF_uses_RF
1301 < end function FF_RequiresPostpairCalc
1302 <
1266 >
1267 >    if (FF_uses_EAM .and. SIM_uses_EAM) then
1268 >       call clean_EAM()
1269 >    endif
1270 >
1271 >    rf = 0.0_dp
1272 >    tau_Temp = 0.0_dp
1273 >    virial_Temp = 0.0_dp
1274 >  end subroutine zero_work_arrays
1275 >
1276 >  function skipThisPair(atom1, atom2) result(skip_it)
1277 >    integer, intent(in) :: atom1
1278 >    integer, intent(in), optional :: atom2
1279 >    logical :: skip_it
1280 >    integer :: unique_id_1, unique_id_2
1281 >    integer :: me_i,me_j
1282 >    integer :: i
1283 >
1284 >    skip_it = .false.
1285 >
1286 >    !! there are a number of reasons to skip a pair or a particle
1287 >    !! mostly we do this to exclude atoms who are involved in short
1288 >    !! range interactions (bonds, bends, torsions), but we also need
1289 >    !! to exclude some overcounted interactions that result from
1290 >    !! the parallel decomposition
1291 >
1292 > #ifdef IS_MPI
1293 >    !! in MPI, we have to look up the unique IDs for each atom
1294 >    unique_id_1 = AtomRowToGlobal(atom1)
1295 > #else
1296 >    !! in the normal loop, the atom numbers are unique
1297 >    unique_id_1 = atom1
1298 > #endif
1299 >
1300 >    !! We were called with only one atom, so just check the global exclude
1301 >    !! list for this atom
1302 >    if (.not. present(atom2)) then
1303 >       do i = 1, nExcludes_global
1304 >          if (excludesGlobal(i) == unique_id_1) then
1305 >             skip_it = .true.
1306 >             return
1307 >          end if
1308 >       end do
1309 >       return
1310 >    end if
1311 >
1312 > #ifdef IS_MPI
1313 >    unique_id_2 = AtomColToGlobal(atom2)
1314 > #else
1315 >    unique_id_2 = atom2
1316 > #endif
1317 >
1318 > #ifdef IS_MPI
1319 >    !! this situation should only arise in MPI simulations
1320 >    if (unique_id_1 == unique_id_2) then
1321 >       skip_it = .true.
1322 >       return
1323 >    end if
1324 >
1325 >    !! this prevents us from doing the pair on multiple processors
1326 >    if (unique_id_1 < unique_id_2) then
1327 >       if (mod(unique_id_1 + unique_id_2,2) == 0) then
1328 >          skip_it = .true.
1329 >          return
1330 >       endif
1331 >    else                
1332 >       if (mod(unique_id_1 + unique_id_2,2) == 1) then
1333 >          skip_it = .true.
1334 >          return
1335 >       endif
1336 >    endif
1337 > #endif
1338 >
1339 >    !! the rest of these situations can happen in all simulations:
1340 >    do i = 1, nExcludes_global      
1341 >       if ((excludesGlobal(i) == unique_id_1) .or. &
1342 >            (excludesGlobal(i) == unique_id_2)) then
1343 >          skip_it = .true.
1344 >          return
1345 >       endif
1346 >    enddo
1347 >
1348 >    do i = 1, nSkipsForAtom(atom1)
1349 >       if (skipsForAtom(atom1, i) .eq. unique_id_2) then
1350 >          skip_it = .true.
1351 >          return
1352 >       endif
1353 >    end do
1354 >
1355 >    return
1356 >  end function skipThisPair
1357 >
1358 >  function FF_UsesDirectionalAtoms() result(doesit)
1359 >    logical :: doesit
1360 >    doesit = FF_uses_DirectionalAtoms
1361 >  end function FF_UsesDirectionalAtoms
1362 >
1363 >  function FF_RequiresPrepairCalc() result(doesit)
1364 >    logical :: doesit
1365 >    doesit = FF_uses_EAM
1366 >  end function FF_RequiresPrepairCalc
1367 >
1368 >  function FF_RequiresPostpairCalc() result(doesit)
1369 >    logical :: doesit
1370 >    doesit = FF_uses_RF
1371 >  end function FF_RequiresPostpairCalc
1372 >
1373   #ifdef PROFILE
1374 < function getforcetime() result(totalforcetime)
1375 <   real(kind=dp) :: totalforcetime
1376 <   totalforcetime = forcetime
1377 < end function getforcetime
1374 >  function getforcetime() result(totalforcetime)
1375 >    real(kind=dp) :: totalforcetime
1376 >    totalforcetime = forcetime
1377 >  end function getforcetime
1378   #endif
1256
1257 !! This cleans componets of force arrays belonging only to fortran
1379  
1380 < subroutine add_stress_tensor(dpair, fpair)
1381 <  
1382 <   real( kind = dp ), dimension(3), intent(in) :: dpair, fpair
1383 <  
1384 <   ! because the d vector is the rj - ri vector, and
1385 <   ! because fx, fy, fz are the force on atom i, we need a
1386 <   ! negative sign here:  
1387 <  
1388 <   tau_Temp(1) = tau_Temp(1) - dpair(1) * fpair(1)
1389 <   tau_Temp(2) = tau_Temp(2) - dpair(1) * fpair(2)
1390 <   tau_Temp(3) = tau_Temp(3) - dpair(1) * fpair(3)
1391 <   tau_Temp(4) = tau_Temp(4) - dpair(2) * fpair(1)
1392 <   tau_Temp(5) = tau_Temp(5) - dpair(2) * fpair(2)
1393 <   tau_Temp(6) = tau_Temp(6) - dpair(2) * fpair(3)
1394 <   tau_Temp(7) = tau_Temp(7) - dpair(3) * fpair(1)
1395 <   tau_Temp(8) = tau_Temp(8) - dpair(3) * fpair(2)
1396 <   tau_Temp(9) = tau_Temp(9) - dpair(3) * fpair(3)
1397 <  
1398 <   virial_Temp = virial_Temp + &
1399 <        (tau_Temp(1) + tau_Temp(5) + tau_Temp(9))
1400 <  
1401 < end subroutine add_stress_tensor
1402 <
1380 >  !! This cleans componets of force arrays belonging only to fortran
1381 >
1382 >  subroutine add_stress_tensor(dpair, fpair)
1383 >
1384 >    real( kind = dp ), dimension(3), intent(in) :: dpair, fpair
1385 >
1386 >    ! because the d vector is the rj - ri vector, and
1387 >    ! because fx, fy, fz are the force on atom i, we need a
1388 >    ! negative sign here:  
1389 >
1390 >    tau_Temp(1) = tau_Temp(1) - dpair(1) * fpair(1)
1391 >    tau_Temp(2) = tau_Temp(2) - dpair(1) * fpair(2)
1392 >    tau_Temp(3) = tau_Temp(3) - dpair(1) * fpair(3)
1393 >    tau_Temp(4) = tau_Temp(4) - dpair(2) * fpair(1)
1394 >    tau_Temp(5) = tau_Temp(5) - dpair(2) * fpair(2)
1395 >    tau_Temp(6) = tau_Temp(6) - dpair(2) * fpair(3)
1396 >    tau_Temp(7) = tau_Temp(7) - dpair(3) * fpair(1)
1397 >    tau_Temp(8) = tau_Temp(8) - dpair(3) * fpair(2)
1398 >    tau_Temp(9) = tau_Temp(9) - dpair(3) * fpair(3)
1399 >
1400 >    virial_Temp = virial_Temp + &
1401 >         (tau_Temp(1) + tau_Temp(5) + tau_Temp(9))
1402 >
1403 >  end subroutine add_stress_tensor
1404 >
1405   end module doForces

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines