ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-3.0/src/UseTheForce/doForces.F90
(Generate patch)

Comparing trunk/OOPSE-3.0/src/UseTheForce/doForces.F90 (file contents):
Revision 2085 by gezelter, Tue Mar 8 21:05:46 2005 UTC vs.
Revision 2286 by gezelter, Wed Sep 7 22:08:39 2005 UTC

# Line 45 | Line 45
45  
46   !! @author Charles F. Vardeman II
47   !! @author Matthew Meineke
48 < !! @version $Id: doForces.F90,v 1.11 2005-03-08 21:05:46 gezelter Exp $, $Date: 2005-03-08 21:05:46 $, $Name: not supported by cvs2svn $, $Revision: 1.11 $
48 > !! @version $Id: doForces.F90,v 1.39 2005-09-07 22:08:39 gezelter Exp $, $Date: 2005-09-07 22:08:39 $, $Name: not supported by cvs2svn $, $Revision: 1.39 $
49  
50  
51   module doForces
# Line 73 | Line 73 | module doForces
73  
74   #define __FORTRAN90
75   #include "UseTheForce/fSwitchingFunction.h"
76 + #include "UseTheForce/fCutoffPolicy.h"
77 + #include "UseTheForce/DarkSide/fInteractionMap.h"
78  
79 +
80    INTEGER, PARAMETER:: PREPAIR_LOOP = 1
81    INTEGER, PARAMETER:: PAIR_LOOP    = 2
82  
80  logical, save :: haveRlist = .false.
83    logical, save :: haveNeighborList = .false.
84    logical, save :: haveSIMvariables = .false.
83  logical, save :: havePropertyMap = .false.
85    logical, save :: haveSaneForceField = .false.
86 <  
86 >  logical, save :: haveInteractionHash = .false.
87 >  logical, save :: haveGtypeCutoffMap = .false.
88 >  logical, save :: haveRlist = .false.
89 >
90    logical, save :: FF_uses_DirectionalAtoms
87  logical, save :: FF_uses_LennardJones
88  logical, save :: FF_uses_Electrostatics
89  logical, save :: FF_uses_Charges
91    logical, save :: FF_uses_Dipoles
91  logical, save :: FF_uses_Quadrupoles
92  logical, save :: FF_uses_sticky
92    logical, save :: FF_uses_GayBerne
93    logical, save :: FF_uses_EAM
95  logical, save :: FF_uses_Shapes
96  logical, save :: FF_uses_FLARB
94    logical, save :: FF_uses_RF
95  
96    logical, save :: SIM_uses_DirectionalAtoms
100  logical, save :: SIM_uses_LennardJones
101  logical, save :: SIM_uses_Electrostatics
102  logical, save :: SIM_uses_Charges
103  logical, save :: SIM_uses_Dipoles
104  logical, save :: SIM_uses_Quadrupoles
105  logical, save :: SIM_uses_Sticky
106  logical, save :: SIM_uses_GayBerne
97    logical, save :: SIM_uses_EAM
108  logical, save :: SIM_uses_Shapes
109  logical, save :: SIM_uses_FLARB
98    logical, save :: SIM_uses_RF
99    logical, save :: SIM_requires_postpair_calc
100    logical, save :: SIM_requires_prepair_calc
101    logical, save :: SIM_uses_PBC
114  logical, save :: SIM_uses_molecular_cutoffs
102  
103 <  real(kind=dp), save :: rlist, rlistsq
103 >  integer, save :: corrMethod
104  
105    public :: init_FF
106 +  public :: setDefaultCutoffs
107    public :: do_force_loop
108 <  public :: setRlistDF
108 >  public :: createInteractionHash
109 >  public :: createGtypeCutoffMap
110 >  public :: getStickyCut
111 >  public :: getStickyPowerCut
112 >  public :: getGayBerneCut
113 >  public :: getEAMCut
114 >  public :: getShapeCut
115  
116   #ifdef PROFILE
117    public :: getforcetime
# Line 125 | Line 119 | module doForces
119    real :: forceTimeInitial, forceTimeFinal
120    integer :: nLoops
121   #endif
122 +  
123 +  !! Variables for cutoff mapping and interaction mapping
124 +  ! Bit hash to determine pair-pair interactions.
125 +  integer, dimension(:,:), allocatable :: InteractionHash
126 +  real(kind=dp), dimension(:), allocatable :: atypeMaxCutoff
127 +  real(kind=dp), dimension(:), allocatable :: groupMaxCutoff
128 +  integer, dimension(:), allocatable :: groupToGtype
129 +  real(kind=dp), dimension(:), allocatable :: gtypeMaxCutoff
130 +  type ::gtypeCutoffs
131 +     real(kind=dp) :: rcut
132 +     real(kind=dp) :: rcutsq
133 +     real(kind=dp) :: rlistsq
134 +  end type gtypeCutoffs
135 +  type(gtypeCutoffs), dimension(:,:), allocatable :: gtypeCutoffMap
136  
137 <  type :: Properties
138 <     logical :: is_Directional   = .false.
139 <     logical :: is_LennardJones  = .false.
132 <     logical :: is_Electrostatic = .false.
133 <     logical :: is_Charge        = .false.
134 <     logical :: is_Dipole        = .false.
135 <     logical :: is_Quadrupole    = .false.
136 <     logical :: is_Sticky        = .false.
137 <     logical :: is_GayBerne      = .false.
138 <     logical :: is_EAM           = .false.
139 <     logical :: is_Shape         = .false.
140 <     logical :: is_FLARB         = .false.
141 <  end type Properties
142 <
143 <  type(Properties), dimension(:),allocatable :: PropertyMap
144 <
137 >  integer, save :: cutoffPolicy = TRADITIONAL_CUTOFF_POLICY
138 >  real(kind=dp),save :: defaultRcut, defaultRsw, defaultRlist
139 >  
140   contains
141  
142 <  subroutine setRlistDF( this_rlist )
148 <    
149 <    real(kind=dp) :: this_rlist
150 <
151 <    rlist = this_rlist
152 <    rlistsq = rlist * rlist
153 <    
154 <    haveRlist = .true.
155 <
156 <  end subroutine setRlistDF    
157 <
158 <  subroutine createPropertyMap(status)
142 >  subroutine createInteractionHash(status)
143      integer :: nAtypes
144 <    integer :: status
144 >    integer, intent(out) :: status
145      integer :: i
146 <    logical :: thisProperty
147 <    real (kind=DP) :: thisDPproperty
146 >    integer :: j
147 >    integer :: iHash
148 >    !! Test Types
149 >    logical :: i_is_LJ
150 >    logical :: i_is_Elect
151 >    logical :: i_is_Sticky
152 >    logical :: i_is_StickyP
153 >    logical :: i_is_GB
154 >    logical :: i_is_EAM
155 >    logical :: i_is_Shape
156 >    logical :: j_is_LJ
157 >    logical :: j_is_Elect
158 >    logical :: j_is_Sticky
159 >    logical :: j_is_StickyP
160 >    logical :: j_is_GB
161 >    logical :: j_is_EAM
162 >    logical :: j_is_Shape
163 >    real(kind=dp) :: myRcut
164  
165 <    status = 0
165 >    status = 0  
166  
167 +    if (.not. associated(atypes)) then
168 +       call handleError("atype", "atypes was not present before call of createInteractionHash!")
169 +       status = -1
170 +       return
171 +    endif
172 +    
173      nAtypes = getSize(atypes)
174 <
174 >    
175      if (nAtypes == 0) then
176         status = -1
177         return
178      end if
179 <        
180 <    if (.not. allocated(PropertyMap)) then
181 <       allocate(PropertyMap(nAtypes))
179 >
180 >    if (.not. allocated(InteractionHash)) then
181 >       allocate(InteractionHash(nAtypes,nAtypes))
182      endif
183  
184 +    if (.not. allocated(atypeMaxCutoff)) then
185 +       allocate(atypeMaxCutoff(nAtypes))
186 +    endif
187 +        
188      do i = 1, nAtypes
189 <       call getElementProperty(atypes, i, "is_Directional", thisProperty)
190 <       PropertyMap(i)%is_Directional = thisProperty
189 >       call getElementProperty(atypes, i, "is_LennardJones", i_is_LJ)
190 >       call getElementProperty(atypes, i, "is_Electrostatic", i_is_Elect)
191 >       call getElementProperty(atypes, i, "is_Sticky", i_is_Sticky)
192 >       call getElementProperty(atypes, i, "is_StickyPower", i_is_StickyP)
193 >       call getElementProperty(atypes, i, "is_GayBerne", i_is_GB)
194 >       call getElementProperty(atypes, i, "is_EAM", i_is_EAM)
195 >       call getElementProperty(atypes, i, "is_Shape", i_is_Shape)
196  
197 <       call getElementProperty(atypes, i, "is_LennardJones", thisProperty)
183 <       PropertyMap(i)%is_LennardJones = thisProperty
184 <      
185 <       call getElementProperty(atypes, i, "is_Electrostatic", thisProperty)
186 <       PropertyMap(i)%is_Electrostatic = thisProperty
197 >       do j = i, nAtypes
198  
199 <       call getElementProperty(atypes, i, "is_Charge", thisProperty)
200 <       PropertyMap(i)%is_Charge = thisProperty
190 <      
191 <       call getElementProperty(atypes, i, "is_Dipole", thisProperty)
192 <       PropertyMap(i)%is_Dipole = thisProperty
199 >          iHash = 0
200 >          myRcut = 0.0_dp
201  
202 <       call getElementProperty(atypes, i, "is_Quadrupole", thisProperty)
203 <       PropertyMap(i)%is_Quadrupole = thisProperty
202 >          call getElementProperty(atypes, j, "is_LennardJones", j_is_LJ)
203 >          call getElementProperty(atypes, j, "is_Electrostatic", j_is_Elect)
204 >          call getElementProperty(atypes, j, "is_Sticky", j_is_Sticky)
205 >          call getElementProperty(atypes, j, "is_StickyPower", j_is_StickyP)
206 >          call getElementProperty(atypes, j, "is_GayBerne", j_is_GB)
207 >          call getElementProperty(atypes, j, "is_EAM", j_is_EAM)
208 >          call getElementProperty(atypes, j, "is_Shape", j_is_Shape)
209  
210 <       call getElementProperty(atypes, i, "is_Sticky", thisProperty)
211 <       PropertyMap(i)%is_Sticky = thisProperty
210 >          if (i_is_LJ .and. j_is_LJ) then
211 >             iHash = ior(iHash, LJ_PAIR)            
212 >          endif
213 >          
214 >          if (i_is_Elect .and. j_is_Elect) then
215 >             iHash = ior(iHash, ELECTROSTATIC_PAIR)
216 >          endif
217 >          
218 >          if (i_is_Sticky .and. j_is_Sticky) then
219 >             iHash = ior(iHash, STICKY_PAIR)
220 >          endif
221  
222 <       call getElementProperty(atypes, i, "is_GayBerne", thisProperty)
223 <       PropertyMap(i)%is_GayBerne = thisProperty
222 >          if (i_is_StickyP .and. j_is_StickyP) then
223 >             iHash = ior(iHash, STICKYPOWER_PAIR)
224 >          endif
225  
226 <       call getElementProperty(atypes, i, "is_EAM", thisProperty)
227 <       PropertyMap(i)%is_EAM = thisProperty
226 >          if (i_is_EAM .and. j_is_EAM) then
227 >             iHash = ior(iHash, EAM_PAIR)
228 >          endif
229  
230 <       call getElementProperty(atypes, i, "is_Shape", thisProperty)
231 <       PropertyMap(i)%is_Shape = thisProperty
230 >          if (i_is_GB .and. j_is_GB) iHash = ior(iHash, GAYBERNE_PAIR)
231 >          if (i_is_GB .and. j_is_LJ) iHash = ior(iHash, GAYBERNE_LJ)
232 >          if (i_is_LJ .and. j_is_GB) iHash = ior(iHash, GAYBERNE_LJ)
233  
234 <       call getElementProperty(atypes, i, "is_FLARB", thisProperty)
235 <       PropertyMap(i)%is_FLARB = thisProperty
234 >          if (i_is_Shape .and. j_is_Shape) iHash = ior(iHash, SHAPE_PAIR)
235 >          if (i_is_Shape .and. j_is_LJ) iHash = ior(iHash, SHAPE_LJ)
236 >          if (i_is_LJ .and. j_is_Shape) iHash = ior(iHash, SHAPE_LJ)
237 >
238 >
239 >          InteractionHash(i,j) = iHash
240 >          InteractionHash(j,i) = iHash
241 >
242 >       end do
243 >
244      end do
245  
246 <    havePropertyMap = .true.
246 >    haveInteractionHash = .true.
247 >  end subroutine createInteractionHash
248  
249 <  end subroutine createPropertyMap
249 >  subroutine createGtypeCutoffMap(stat)
250 >
251 >    integer, intent(out), optional :: stat
252 >    logical :: i_is_LJ
253 >    logical :: i_is_Elect
254 >    logical :: i_is_Sticky
255 >    logical :: i_is_StickyP
256 >    logical :: i_is_GB
257 >    logical :: i_is_EAM
258 >    logical :: i_is_Shape
259 >    logical :: GtypeFound
260 >
261 >    integer :: myStatus, nAtypes,  i, j, istart, iend, jstart, jend
262 >    integer :: n_in_i, me_i, ia, g, atom1, nGroupTypes
263 >    real(kind=dp):: thisSigma, bigSigma, thisRcut, tol, skin
264 >    real(kind=dp) :: biggestAtypeCutoff
265 >
266 >    stat = 0
267 >    if (.not. haveInteractionHash) then
268 >       call createInteractionHash(myStatus)      
269 >       if (myStatus .ne. 0) then
270 >          write(default_error, *) 'createInteractionHash failed in doForces!'
271 >          stat = -1
272 >          return
273 >       endif
274 >    endif
275 >
276 >    nAtypes = getSize(atypes)
277 >    
278 >    do i = 1, nAtypes
279 >       if (SimHasAtype(i)) then    
280 >          call getElementProperty(atypes, i, "is_LennardJones", i_is_LJ)
281 >          call getElementProperty(atypes, i, "is_Electrostatic", i_is_Elect)
282 >          call getElementProperty(atypes, i, "is_Sticky", i_is_Sticky)
283 >          call getElementProperty(atypes, i, "is_StickyPower", i_is_StickyP)
284 >          call getElementProperty(atypes, i, "is_GayBerne", i_is_GB)
285 >          call getElementProperty(atypes, i, "is_EAM", i_is_EAM)
286 >          call getElementProperty(atypes, i, "is_Shape", i_is_Shape)
287 >          
288 >          atypeMaxCutoff(i) = 0.0_dp
289 >          if (i_is_LJ) then
290 >             thisRcut = getSigma(i) * 2.5_dp
291 >             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
292 >          endif
293 >          if (i_is_Elect) then
294 >             thisRcut = defaultRcut
295 >             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
296 >          endif
297 >          if (i_is_Sticky) then
298 >             thisRcut = getStickyCut(i)
299 >             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
300 >          endif
301 >          if (i_is_StickyP) then
302 >             thisRcut = getStickyPowerCut(i)
303 >             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
304 >          endif
305 >          if (i_is_GB) then
306 >             thisRcut = getGayBerneCut(i)
307 >             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
308 >          endif
309 >          if (i_is_EAM) then
310 >             thisRcut = getEAMCut(i)
311 >             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
312 >          endif
313 >          if (i_is_Shape) then
314 >             thisRcut = getShapeCut(i)
315 >             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
316 >          endif
317 >          
318 >          if (atypeMaxCutoff(i).gt.biggestAtypeCutoff) then
319 >             biggestAtypeCutoff = atypeMaxCutoff(i)
320 >          endif
321 >       endif
322 >    enddo
323 >  
324 >    nGroupTypes = 0
325 >    
326 >    istart = 1
327 > #ifdef IS_MPI
328 >    iend = nGroupsInRow
329 > #else
330 >    iend = nGroups
331 > #endif
332 >    
333 >    !! allocate the groupToGtype and gtypeMaxCutoff here.
334 >    if(.not.allocated(groupToGtype)) then
335 >       allocate(groupToGtype(iend))
336 >       allocate(groupMaxCutoff(iend))
337 >       allocate(gtypeMaxCutoff(iend))
338 >    endif
339 >    !! first we do a single loop over the cutoff groups to find the
340 >    !! largest cutoff for any atypes present in this group.  We also
341 >    !! create gtypes at this point.
342 >    
343 >    tol = 1.0d-6
344 >    
345 >    do i = istart, iend      
346 >       n_in_i = groupStartRow(i+1) - groupStartRow(i)
347 >       groupMaxCutoff(i) = 0.0_dp
348 >       do ia = groupStartRow(i), groupStartRow(i+1)-1
349 >          atom1 = groupListRow(ia)
350 > #ifdef IS_MPI
351 >          me_i = atid_row(atom1)
352 > #else
353 >          me_i = atid(atom1)
354 > #endif          
355 >          if (atypeMaxCutoff(me_i).gt.groupMaxCutoff(i)) then
356 >             groupMaxCutoff(i)=atypeMaxCutoff(me_i)
357 >          endif          
358 >       enddo
359 >
360 >       if (nGroupTypes.eq.0) then
361 >          nGroupTypes = nGroupTypes + 1
362 >          gtypeMaxCutoff(nGroupTypes) = groupMaxCutoff(i)
363 >          groupToGtype(i) = nGroupTypes
364 >       else
365 >          GtypeFound = .false.
366 >          do g = 1, nGroupTypes
367 >             if ( abs(groupMaxCutoff(i) - gtypeMaxCutoff(g)).lt.tol) then
368 >                groupToGtype(i) = g
369 >                GtypeFound = .true.
370 >             endif
371 >          enddo
372 >          if (.not.GtypeFound) then            
373 >             nGroupTypes = nGroupTypes + 1
374 >             gtypeMaxCutoff(nGroupTypes) = groupMaxCutoff(i)
375 >             groupToGtype(i) = nGroupTypes
376 >          endif
377 >       endif
378 >    enddo    
379 >
380 >    !! allocate the gtypeCutoffMap here.
381 >    allocate(gtypeCutoffMap(nGroupTypes,nGroupTypes))
382 >    !! then we do a double loop over all the group TYPES to find the cutoff
383 >    !! map between groups of two types
384 >    
385 >    do i = 1, nGroupTypes
386 >       do j = 1, nGroupTypes
387 >      
388 >          select case(cutoffPolicy)
389 >          case(TRADITIONAL_CUTOFF_POLICY)
390 >             thisRcut = maxval(gtypeMaxCutoff)
391 >          case(MIX_CUTOFF_POLICY)
392 >             thisRcut = 0.5_dp * (gtypeMaxCutoff(i) + gtypeMaxCutoff(j))
393 >          case(MAX_CUTOFF_POLICY)
394 >             thisRcut = max(gtypeMaxCutoff(i), gtypeMaxCutoff(j))
395 >          case default
396 >             call handleError("createGtypeCutoffMap", "Unknown Cutoff Policy")
397 >             return
398 >          end select
399 >          gtypeCutoffMap(i,j)%rcut = thisRcut
400 >          gtypeCutoffMap(i,j)%rcutsq = thisRcut*thisRcut
401 >          skin = defaultRlist - defaultRcut
402 >          gtypeCutoffMap(i,j)%rlistsq = (thisRcut + skin)**2
403 >
404 >       enddo
405 >    enddo
406 >    
407 >    haveGtypeCutoffMap = .true.
408 >    
409 >  end subroutine createGtypeCutoffMap
410 >  
411 >  subroutine setDefaultCutoffs(defRcut, defRsw, defRlist, cutPolicy)
412 >    real(kind=dp),intent(in) :: defRcut, defRsw, defRlist
413 >    integer, intent(in) :: cutPolicy
414 >    
415 >    defaultRcut = defRcut
416 >    defaultRsw = defRsw
417 >    defaultRlist = defRlist
418 >    cutoffPolicy = cutPolicy
419 >  end subroutine setDefaultCutoffs
420 >  
421 >  subroutine setCutoffPolicy(cutPolicy)
422  
423 +     integer, intent(in) :: cutPolicy
424 +     cutoffPolicy = cutPolicy
425 +     call createGtypeCutoffMap()
426 +
427 +   end subroutine setCutoffPolicy
428 +    
429 +    
430    subroutine setSimVariables()
431      SIM_uses_DirectionalAtoms = SimUsesDirectionalAtoms()
219    SIM_uses_LennardJones = SimUsesLennardJones()
220    SIM_uses_Electrostatics = SimUsesElectrostatics()
221    SIM_uses_Charges = SimUsesCharges()
222    SIM_uses_Dipoles = SimUsesDipoles()
223    SIM_uses_Sticky = SimUsesSticky()
224    SIM_uses_GayBerne = SimUsesGayBerne()
432      SIM_uses_EAM = SimUsesEAM()
226    SIM_uses_Shapes = SimUsesShapes()
227    SIM_uses_FLARB = SimUsesFLARB()
433      SIM_uses_RF = SimUsesRF()
434      SIM_requires_postpair_calc = SimRequiresPostpairCalc()
435      SIM_requires_prepair_calc = SimRequiresPrepairCalc()
# Line 241 | Line 446 | contains
446      integer :: myStatus
447  
448      error = 0
244    
245    if (.not. havePropertyMap) then
449  
450 <       myStatus = 0
450 >    if (.not. haveInteractionHash) then      
451 >       myStatus = 0      
452 >       call createInteractionHash(myStatus)      
453 >       if (myStatus .ne. 0) then
454 >          write(default_error, *) 'createInteractionHash failed in doForces!'
455 >          error = -1
456 >          return
457 >       endif
458 >    endif
459  
460 <       call createPropertyMap(myStatus)
461 <
460 >    if (.not. haveGtypeCutoffMap) then        
461 >       myStatus = 0      
462 >       call createGtypeCutoffMap(myStatus)      
463         if (myStatus .ne. 0) then
464 <          write(default_error, *) 'createPropertyMap failed in doForces!'
464 >          write(default_error, *) 'createGtypeCutoffMap failed in doForces!'
465            error = -1
466            return
467         endif
# Line 259 | Line 471 | contains
471         call setSimVariables()
472      endif
473  
474 <    if (.not. haveRlist) then
475 <       write(default_error, *) 'rList has not been set in doForces!'
476 <       error = -1
477 <       return
478 <    endif
474 >  !  if (.not. haveRlist) then
475 >  !     write(default_error, *) 'rList has not been set in doForces!'
476 >  !     error = -1
477 >  !     return
478 >  !  endif
479  
480      if (.not. haveNeighborList) then
481         write(default_error, *) 'neighbor list has not been initialized in doForces!'
# Line 286 | Line 498 | contains
498   #endif
499      return
500    end subroutine doReadyCheck
289    
501  
291  subroutine init_FF(use_RF_c, thisStat)
502  
503 <    logical, intent(in) :: use_RF_c
503 >  subroutine init_FF(use_RF, use_UW, use_DW, thisStat)
504  
505 +    logical, intent(in) :: use_RF
506 +    logical, intent(in) :: use_UW
507 +    logical, intent(in) :: use_DW
508      integer, intent(out) :: thisStat  
509      integer :: my_status, nMatches
510 +    integer :: corrMethod
511      integer, pointer :: MatchList(:) => null()
512      real(kind=dp) :: rcut, rrf, rt, dielect
513  
# Line 301 | Line 515 | contains
515      thisStat = 0
516  
517      !! Fortran's version of a cast:
518 <    FF_uses_RF = use_RF_c
518 >    FF_uses_RF = use_RF
519 >
520 >    !! set the electrostatic correction method
521 >    if (use_UW) then
522 >       corrMethod = 1
523 >    elseif (use_DW) then
524 >       corrMethod = 2
525 >    else
526 >       corrMethod = 0
527 >    endif
528      
529      !! init_FF is called *after* all of the atom types have been
530      !! defined in atype_module using the new_atype subroutine.
531      !!
532      !! this will scan through the known atypes and figure out what
533      !! interactions are used by the force field.    
534 <  
534 >
535      FF_uses_DirectionalAtoms = .false.
313    FF_uses_LennardJones = .false.
314    FF_uses_Electrostatics = .false.
315    FF_uses_Charges = .false.    
536      FF_uses_Dipoles = .false.
317    FF_uses_Sticky = .false.
537      FF_uses_GayBerne = .false.
538      FF_uses_EAM = .false.
539 <    FF_uses_Shapes = .false.
321 <    FF_uses_FLARB = .false.
322 <    
539 >
540      call getMatchingElementList(atypes, "is_Directional", .true., &
541           nMatches, MatchList)
542      if (nMatches .gt. 0) FF_uses_DirectionalAtoms = .true.
543  
327    call getMatchingElementList(atypes, "is_LennardJones", .true., &
328         nMatches, MatchList)
329    if (nMatches .gt. 0) FF_uses_LennardJones = .true.
330    
331    call getMatchingElementList(atypes, "is_Electrostatic", .true., &
332         nMatches, MatchList)
333    if (nMatches .gt. 0) then
334       FF_uses_Electrostatics = .true.
335    endif
336
337    call getMatchingElementList(atypes, "is_Charge", .true., &
338         nMatches, MatchList)
339    if (nMatches .gt. 0) then
340       FF_uses_Charges = .true.  
341       FF_uses_Electrostatics = .true.
342    endif
343    
544      call getMatchingElementList(atypes, "is_Dipole", .true., &
545           nMatches, MatchList)
546 <    if (nMatches .gt. 0) then
347 <       FF_uses_Dipoles = .true.
348 <       FF_uses_Electrostatics = .true.
349 <       FF_uses_DirectionalAtoms = .true.
350 <    endif
351 <
352 <    call getMatchingElementList(atypes, "is_Quadrupole", .true., &
353 <         nMatches, MatchList)
354 <    if (nMatches .gt. 0) then
355 <       FF_uses_Quadrupoles = .true.
356 <       FF_uses_Electrostatics = .true.
357 <       FF_uses_DirectionalAtoms = .true.
358 <    endif
546 >    if (nMatches .gt. 0) FF_uses_Dipoles = .true.
547      
360    call getMatchingElementList(atypes, "is_Sticky", .true., nMatches, &
361         MatchList)
362    if (nMatches .gt. 0) then
363       FF_uses_Sticky = .true.
364       FF_uses_DirectionalAtoms = .true.
365    endif
366    
548      call getMatchingElementList(atypes, "is_GayBerne", .true., &
549           nMatches, MatchList)
550 <    if (nMatches .gt. 0) then
551 <       FF_uses_GayBerne = .true.
371 <       FF_uses_DirectionalAtoms = .true.
372 <    endif
373 <    
550 >    if (nMatches .gt. 0) FF_uses_GayBerne = .true.
551 >
552      call getMatchingElementList(atypes, "is_EAM", .true., nMatches, MatchList)
553      if (nMatches .gt. 0) FF_uses_EAM = .true.
376    
377    call getMatchingElementList(atypes, "is_Shape", .true., &
378         nMatches, MatchList)
379    if (nMatches .gt. 0) then
380       FF_uses_Shapes = .true.
381       FF_uses_DirectionalAtoms = .true.
382    endif
554  
384    call getMatchingElementList(atypes, "is_FLARB", .true., &
385         nMatches, MatchList)
386    if (nMatches .gt. 0) FF_uses_FLARB = .true.
555  
388    !! Assume sanity (for the sake of argument)
556      haveSaneForceField = .true.
557 <    
557 >
558      !! check to make sure the FF_uses_RF setting makes sense
559 <    
560 <    if (FF_uses_dipoles) then
559 >
560 >    if (FF_uses_Dipoles) then
561         if (FF_uses_RF) then
562            dielect = getDielect()
563            call initialize_rf(dielect)
# Line 402 | Line 569 | contains
569            haveSaneForceField = .false.
570            return
571         endif
572 <    endif
572 >    endif
573  
407    !sticky module does not contain check_sticky_FF anymore
408    !if (FF_uses_sticky) then
409    !   call check_sticky_FF(my_status)
410    !   if (my_status /= 0) then
411    !      thisStat = -1
412    !      haveSaneForceField = .false.
413    !      return
414    !   end if
415    !endif
416
574      if (FF_uses_EAM) then
575 <         call init_EAM_FF(my_status)
575 >       call init_EAM_FF(my_status)
576         if (my_status /= 0) then
577            write(default_error, *) "init_EAM_FF returned a bad status"
578            thisStat = -1
# Line 433 | Line 590 | contains
590         endif
591      endif
592  
436    if (FF_uses_GayBerne .and. FF_uses_LennardJones) then
437    endif
438    
593      if (.not. haveNeighborList) then
594         !! Create neighbor lists
595         call expandNeighborList(nLocal, my_status)
# Line 445 | Line 599 | contains
599            return
600         endif
601         haveNeighborList = .true.
602 <    endif    
603 <    
602 >    endif
603 >
604    end subroutine init_FF
451  
605  
606 +
607    !! Does force loop over i,j pairs. Calls do_pair to calculates forces.
608    !------------------------------------------------------------->
609    subroutine do_force_loop(q, q_group, A, eFrame, f, t, tau, pot, &
# Line 499 | Line 653 | contains
653      integer :: localError
654      integer :: propPack_i, propPack_j
655      integer :: loopStart, loopEnd, loop
656 <
656 >    integer :: iHash
657      real(kind=dp) :: listSkin = 1.0  
658 <    
658 >
659      !! initialize local variables  
660 <    
660 >
661   #ifdef IS_MPI
662      pot_local = 0.0_dp
663      nAtomsInRow   = getNatomsInRow(plan_atom_row)
# Line 513 | Line 667 | contains
667   #else
668      natoms = nlocal
669   #endif
670 <    
670 >
671      call doReadyCheck(localError)
672      if ( localError .ne. 0 ) then
673         call handleError("do_force_loop", "Not Initialized")
# Line 521 | Line 675 | contains
675         return
676      end if
677      call zero_work_arrays()
678 <        
678 >
679      do_pot = do_pot_c
680      do_stress = do_stress_c
681 <    
681 >
682      ! Gather all information needed by all force loops:
683 <    
683 >
684   #ifdef IS_MPI    
685 <    
685 >
686      call gather(q, q_Row, plan_atom_row_3d)
687      call gather(q, q_Col, plan_atom_col_3d)
688  
689      call gather(q_group, q_group_Row, plan_group_row_3d)
690      call gather(q_group, q_group_Col, plan_group_col_3d)
691 <        
691 >
692      if (FF_UsesDirectionalAtoms() .and. SIM_uses_DirectionalAtoms) then
693         call gather(eFrame, eFrame_Row, plan_atom_row_rotation)
694         call gather(eFrame, eFrame_Col, plan_atom_col_rotation)
695 <      
695 >
696         call gather(A, A_Row, plan_atom_row_rotation)
697         call gather(A, A_Col, plan_atom_col_rotation)
698      endif
699 <    
699 >
700   #endif
701 <    
701 >
702      !! Begin force loop timing:
703   #ifdef PROFILE
704      call cpu_time(forceTimeInitial)
705      nloops = nloops + 1
706   #endif
707 <    
707 >
708      loopEnd = PAIR_LOOP
709      if (FF_RequiresPrepairCalc() .and. SIM_requires_prepair_calc) then
710         loopStart = PREPAIR_LOOP
# Line 565 | Line 719 | contains
719         if (loop .eq. loopStart) then
720   #ifdef IS_MPI
721            call checkNeighborList(nGroupsInRow, q_group_row, listSkin, &
722 <             update_nlist)
722 >               update_nlist)
723   #else
724            call checkNeighborList(nGroups, q_group, listSkin, &
725 <             update_nlist)
725 >               update_nlist)
726   #endif
727         endif
728 <      
728 >
729         if (update_nlist) then
730            !! save current configuration and construct neighbor list
731   #ifdef IS_MPI
# Line 582 | Line 736 | contains
736            neighborListSize = size(list)
737            nlist = 0
738         endif
739 <      
739 >
740         istart = 1
741   #ifdef IS_MPI
742         iend = nGroupsInRow
# Line 592 | Line 746 | contains
746         outer: do i = istart, iend
747  
748            if (update_nlist) point(i) = nlist + 1
749 <          
749 >
750            n_in_i = groupStartRow(i+1) - groupStartRow(i)
751 <          
751 >
752            if (update_nlist) then
753   #ifdef IS_MPI
754               jstart = 1
# Line 609 | Line 763 | contains
763               ! make sure group i has neighbors
764               if (jstart .gt. jend) cycle outer
765            endif
766 <          
766 >
767            do jnab = jstart, jend
768               if (update_nlist) then
769                  j = jnab
# Line 618 | Line 772 | contains
772               endif
773  
774   #ifdef IS_MPI
775 +             me_j = atid_col(j)
776               call get_interatomic_vector(q_group_Row(:,i), &
777                    q_group_Col(:,j), d_grp, rgrpsq)
778   #else
779 +             me_j = atid(j)
780               call get_interatomic_vector(q_group(:,i), &
781                    q_group(:,j), d_grp, rgrpsq)
782   #endif
783  
784 <             if (rgrpsq < rlistsq) then
784 >             if (rgrpsq < gtypeCutoffMap(groupToGtype(i),groupToGtype(j))%rListsq) then
785                  if (update_nlist) then
786                     nlist = nlist + 1
787 <                  
787 >
788                     if (nlist > neighborListSize) then
789   #ifdef IS_MPI                
790                        call expandNeighborList(nGroupsInRow, listerror)
# Line 642 | Line 798 | contains
798                        end if
799                        neighborListSize = size(list)
800                     endif
801 <                  
801 >
802                     list(nlist) = j
803                  endif
804 <                
804 >
805                  if (loop .eq. PAIR_LOOP) then
806                     vij = 0.0d0
807                     fij(1:3) = 0.0d0
808                  endif
809 <                
809 >
810                  call get_switch(rgrpsq, sw, dswdr, rgrp, group_switch, &
811                       in_switching_region)
812 <                
812 >
813                  n_in_j = groupStartCol(j+1) - groupStartCol(j)
814 <                
814 >
815                  do ia = groupStartRow(i), groupStartRow(i+1)-1
816 <                  
816 >
817                     atom1 = groupListRow(ia)
818 <                  
818 >
819                     inner: do jb = groupStartCol(j), groupStartCol(j+1)-1
820 <                      
820 >
821                        atom2 = groupListCol(jb)
822 <                      
822 >
823                        if (skipThisPair(atom1, atom2)) cycle inner
824  
825                        if ((n_in_i .eq. 1).and.(n_in_j .eq. 1)) then
# Line 705 | Line 861 | contains
861                        endif
862                     enddo inner
863                  enddo
864 <                
864 >
865                  if (loop .eq. PAIR_LOOP) then
866                     if (in_switching_region) then
867                        swderiv = vij*dswdr/rgrp
868                        fij(1) = fij(1) + swderiv*d_grp(1)
869                        fij(2) = fij(2) + swderiv*d_grp(2)
870                        fij(3) = fij(3) + swderiv*d_grp(3)
871 <                      
871 >
872                        do ia=groupStartRow(i), groupStartRow(i+1)-1
873                           atom1=groupListRow(ia)
874                           mf = mfactRow(atom1)
# Line 726 | Line 882 | contains
882                           f(3,atom1) = f(3,atom1) + swderiv*d_grp(3)*mf
883   #endif
884                        enddo
885 <                      
885 >
886                        do jb=groupStartCol(j), groupStartCol(j+1)-1
887                           atom2=groupListCol(jb)
888                           mf = mfactCol(atom2)
# Line 741 | Line 897 | contains
897   #endif
898                        enddo
899                     endif
900 <                  
900 >
901                     if (do_stress) call add_stress_tensor(d_grp, fij)
902                  endif
903               end if
904            enddo
905         enddo outer
906 <      
906 >
907         if (update_nlist) then
908   #ifdef IS_MPI
909            point(nGroupsInRow + 1) = nlist + 1
# Line 761 | Line 917 | contains
917               update_nlist = .false.                              
918            endif
919         endif
920 <            
920 >
921         if (loop .eq. PREPAIR_LOOP) then
922            call do_preforce(nlocal, pot)
923         endif
924 <      
924 >
925      enddo
926 <    
926 >
927      !! Do timing
928   #ifdef PROFILE
929      call cpu_time(forceTimeFinal)
930      forceTime = forceTime + forceTimeFinal - forceTimeInitial
931   #endif    
932 <    
932 >
933   #ifdef IS_MPI
934      !!distribute forces
935 <    
935 >
936      f_temp = 0.0_dp
937      call scatter(f_Row,f_temp,plan_atom_row_3d)
938      do i = 1,nlocal
939         f(1:3,i) = f(1:3,i) + f_temp(1:3,i)
940      end do
941 <    
941 >
942      f_temp = 0.0_dp
943      call scatter(f_Col,f_temp,plan_atom_col_3d)
944      do i = 1,nlocal
945         f(1:3,i) = f(1:3,i) + f_temp(1:3,i)
946      end do
947 <    
947 >
948      if (FF_UsesDirectionalAtoms() .and. SIM_uses_DirectionalAtoms) then
949         t_temp = 0.0_dp
950         call scatter(t_Row,t_temp,plan_atom_row_3d)
# Line 797 | Line 953 | contains
953         end do
954         t_temp = 0.0_dp
955         call scatter(t_Col,t_temp,plan_atom_col_3d)
956 <      
956 >
957         do i = 1,nlocal
958            t(1:3,i) = t(1:3,i) + t_temp(1:3,i)
959         end do
960      endif
961 <    
961 >
962      if (do_pot) then
963         ! scatter/gather pot_row into the members of my column
964         call scatter(pot_Row, pot_Temp, plan_atom_row)
965 <      
965 >
966         ! scatter/gather pot_local into all other procs
967         ! add resultant to get total pot
968         do i = 1, nlocal
969            pot_local = pot_local + pot_Temp(i)
970         enddo
971 <      
971 >
972         pot_Temp = 0.0_DP
973 <      
973 >
974         call scatter(pot_Col, pot_Temp, plan_atom_col)
975         do i = 1, nlocal
976            pot_local = pot_local + pot_Temp(i)
977         enddo
978 <      
978 >
979      endif
980   #endif
981 <    
981 >
982      if (FF_RequiresPostpairCalc() .and. SIM_requires_postpair_calc) then
983 <      
983 >
984         if (FF_uses_RF .and. SIM_uses_RF) then
985 <          
985 >
986   #ifdef IS_MPI
987            call scatter(rf_Row,rf,plan_atom_row_3d)
988            call scatter(rf_Col,rf_Temp,plan_atom_col_3d)
# Line 834 | Line 990 | contains
990               rf(1:3,i) = rf(1:3,i) + rf_Temp(1:3,i)
991            end do
992   #endif
993 <          
993 >
994            do i = 1, nLocal
995 <            
995 >
996               rfpot = 0.0_DP
997   #ifdef IS_MPI
998               me_i = atid_row(i)
999   #else
1000               me_i = atid(i)
1001   #endif
1002 +             iHash = InteractionHash(me_i,me_j)
1003              
1004 <             if (PropertyMap(me_i)%is_Dipole) then
1005 <                
1004 >             if ( iand(iHash, ELECTROSTATIC_PAIR).ne.0 ) then
1005 >
1006                  mu_i = getDipoleMoment(me_i)
1007 <                
1007 >
1008                  !! The reaction field needs to include a self contribution
1009                  !! to the field:
1010                  call accumulate_self_rf(i, mu_i, eFrame)
# Line 858 | Line 1015 | contains
1015                  pot_local = pot_local + rfpot
1016   #else
1017                  pot = pot + rfpot
1018 <      
1018 >
1019   #endif
1020 <             endif            
1020 >             endif
1021            enddo
1022         endif
1023      endif
1024 <    
1025 <    
1024 >
1025 >
1026   #ifdef IS_MPI
1027 <    
1027 >
1028      if (do_pot) then
1029         pot = pot + pot_local
1030         !! we assume the c code will do the allreduce to get the total potential
1031         !! we could do it right here if we needed to...
1032      endif
1033 <    
1033 >
1034      if (do_stress) then
1035         call mpi_allreduce(tau_Temp, tau, 9,mpi_double_precision,mpi_sum, &
1036              mpi_comm_world,mpi_err)
1037         call mpi_allreduce(virial_Temp, virial,1,mpi_double_precision,mpi_sum, &
1038              mpi_comm_world,mpi_err)
1039      endif
1040 <    
1040 >
1041   #else
1042 <    
1042 >
1043      if (do_stress) then
1044         tau = tau_Temp
1045         virial = virial_Temp
1046      endif
1047 <    
1047 >
1048   #endif
1049 <      
1049 >
1050    end subroutine do_force_loop
1051 <  
1051 >
1052    subroutine do_pair(i, j, rijsq, d, sw, do_pot, &
1053         eFrame, A, f, t, pot, vpair, fpair)
1054  
# Line 908 | Line 1065 | contains
1065      real ( kind = dp ), intent(inout) :: rijsq
1066      real ( kind = dp )                :: r
1067      real ( kind = dp ), intent(inout) :: d(3)
1068 +    real ( kind = dp ) :: ebalance
1069      integer :: me_i, me_j
1070  
1071 +    integer :: iHash
1072 +
1073      r = sqrt(rijsq)
1074      vpair = 0.0d0
1075      fpair(1:3) = 0.0d0
# Line 922 | Line 1082 | contains
1082      me_j = atid(j)
1083   #endif
1084  
1085 < !    write(*,*) i, j, me_i, me_j
1086 <    
1087 <    if (FF_uses_LennardJones .and. SIM_uses_LennardJones) then
1088 <      
929 <       if ( PropertyMap(me_i)%is_LennardJones .and. &
930 <            PropertyMap(me_j)%is_LennardJones ) then
931 <          call do_lj_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, do_pot)
932 <       endif
933 <      
1085 >    iHash = InteractionHash(me_i, me_j)
1086 >
1087 >    if ( iand(iHash, LJ_PAIR).ne.0 ) then
1088 >       call do_lj_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, do_pot)
1089      endif
935    
936    if (FF_uses_Electrostatics .and. SIM_uses_Electrostatics) then
937      
938       if (PropertyMap(me_i)%is_Electrostatic .and. &
939            PropertyMap(me_j)%is_Electrostatic) then
940          call doElectrostaticPair(i, j, d, r, rijsq, sw, vpair, fpair, &
941               pot, eFrame, f, t, do_pot)
942       endif
943      
944       if (FF_uses_dipoles .and. SIM_uses_dipoles) then      
945          if ( PropertyMap(me_i)%is_Dipole .and. &
946               PropertyMap(me_j)%is_Dipole) then
947             if (FF_uses_RF .and. SIM_uses_RF) then
948                call accumulate_rf(i, j, r, eFrame, sw)
949                call rf_correct_forces(i, j, d, r, eFrame, sw, f, fpair)
950             endif
951          endif
952       endif
953    endif
1090  
1091 +    if ( iand(iHash, ELECTROSTATIC_PAIR).ne.0 ) then
1092 +       call doElectrostaticPair(i, j, d, r, rijsq, sw, vpair, fpair, &
1093 +            pot, eFrame, f, t, do_pot, corrMethod)
1094  
1095 <    if (FF_uses_Sticky .and. SIM_uses_sticky) then
1095 >       if (FF_uses_RF .and. SIM_uses_RF) then
1096  
1097 <       if ( PropertyMap(me_i)%is_Sticky .and. PropertyMap(me_j)%is_Sticky) then
1098 <          call do_sticky_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1099 <               pot, A, f, t, do_pot)
1097 >          ! CHECK ME (RF needs to know about all electrostatic types)
1098 >          call accumulate_rf(i, j, r, eFrame, sw)
1099 >          call rf_correct_forces(i, j, d, r, eFrame, sw, f, fpair)
1100         endif
1101 <      
1101 >
1102      endif
1103  
1104 +    if ( iand(iHash, STICKY_PAIR).ne.0 ) then
1105 +       call do_sticky_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1106 +            pot, A, f, t, do_pot)
1107 +    endif
1108  
1109 <    if (FF_uses_GayBerne .and. SIM_uses_GayBerne) then
1110 <      
1111 <       if ( PropertyMap(me_i)%is_GayBerne .and. &
969 <            PropertyMap(me_j)%is_GayBerne) then
970 <          call do_gb_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
971 <               pot, A, f, t, do_pot)
972 <       endif
973 <      
1109 >    if ( iand(iHash, STICKYPOWER_PAIR).ne.0 ) then
1110 >       call do_sticky_power_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1111 >            pot, A, f, t, do_pot)
1112      endif
1113 +
1114 +    if ( iand(iHash, GAYBERNE_PAIR).ne.0 ) then
1115 +       call do_gb_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1116 +            pot, A, f, t, do_pot)
1117 +    endif
1118      
1119 <    if (FF_uses_EAM .and. SIM_uses_EAM) then
1120 <      
1121 <       if ( PropertyMap(me_i)%is_EAM .and. PropertyMap(me_j)%is_EAM) then
979 <          call do_eam_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, &
980 <               do_pot)
981 <       endif
982 <      
1119 >    if ( iand(iHash, GAYBERNE_LJ).ne.0 ) then
1120 > !      call do_gblj_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1121 > !           pot, A, f, t, do_pot)
1122      endif
1123  
1124 +    if ( iand(iHash, EAM_PAIR).ne.0 ) then      
1125 +       call do_eam_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, &
1126 +            do_pot)
1127 +    endif
1128  
1129 < !    write(*,*) PropertyMap(me_i)%is_Shape,PropertyMap(me_j)%is_Shape
1129 >    if ( iand(iHash, SHAPE_PAIR).ne.0 ) then      
1130 >       call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1131 >            pot, A, f, t, do_pot)
1132 >    endif
1133  
1134 <    if (FF_uses_Shapes .and. SIM_uses_Shapes) then
1135 <       if ( PropertyMap(me_i)%is_Shape .and. &
1136 <            PropertyMap(me_j)%is_Shape ) then
991 <          call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
992 <               pot, A, f, t, do_pot)
993 <       endif
994 <      
1134 >    if ( iand(iHash, SHAPE_LJ).ne.0 ) then      
1135 >       call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1136 >            pot, A, f, t, do_pot)
1137      endif
1138      
1139    end subroutine do_pair
# Line 999 | Line 1141 | contains
1141    subroutine do_prepair(i, j, rijsq, d, sw, rcijsq, dc, &
1142         do_pot, do_stress, eFrame, A, f, t, pot)
1143  
1144 <   real( kind = dp ) :: pot, sw
1145 <   real( kind = dp ), dimension(9,nLocal) :: eFrame
1146 <   real (kind=dp), dimension(9,nLocal) :: A
1147 <   real (kind=dp), dimension(3,nLocal) :: f
1148 <   real (kind=dp), dimension(3,nLocal) :: t
1007 <  
1008 <   logical, intent(inout) :: do_pot, do_stress
1009 <   integer, intent(in) :: i, j
1010 <   real ( kind = dp ), intent(inout)    :: rijsq, rcijsq
1011 <   real ( kind = dp )                :: r, rc
1012 <   real ( kind = dp ), intent(inout) :: d(3), dc(3)
1013 <  
1014 <   logical :: is_EAM_i, is_EAM_j
1015 <  
1016 <   integer :: me_i, me_j
1017 <  
1144 >    real( kind = dp ) :: pot, sw
1145 >    real( kind = dp ), dimension(9,nLocal) :: eFrame
1146 >    real (kind=dp), dimension(9,nLocal) :: A
1147 >    real (kind=dp), dimension(3,nLocal) :: f
1148 >    real (kind=dp), dimension(3,nLocal) :: t
1149  
1150 <    r = sqrt(rijsq)
1151 <    if (SIM_uses_molecular_cutoffs) then
1152 <       rc = sqrt(rcijsq)
1153 <    else
1154 <       rc = r
1024 <    endif
1025 <  
1150 >    logical, intent(inout) :: do_pot, do_stress
1151 >    integer, intent(in) :: i, j
1152 >    real ( kind = dp ), intent(inout)    :: rijsq, rcijsq
1153 >    real ( kind = dp )                :: r, rc
1154 >    real ( kind = dp ), intent(inout) :: d(3), dc(3)
1155  
1156 +    integer :: me_i, me_j, iHash
1157 +
1158   #ifdef IS_MPI  
1159 <   me_i = atid_row(i)
1160 <   me_j = atid_col(j)  
1159 >    me_i = atid_row(i)
1160 >    me_j = atid_col(j)  
1161   #else  
1162 <   me_i = atid(i)
1163 <   me_j = atid(j)  
1162 >    me_i = atid(i)
1163 >    me_j = atid(j)  
1164   #endif
1034  
1035   if (FF_uses_EAM .and. SIM_uses_EAM) then
1036      
1037      if (PropertyMap(me_i)%is_EAM .and. PropertyMap(me_j)%is_EAM) &
1038           call calc_EAM_prepair_rho(i, j, d, r, rijsq )
1039      
1040   endif
1041  
1042 end subroutine do_prepair
1043
1044
1045 subroutine do_preforce(nlocal,pot)
1046   integer :: nlocal
1047   real( kind = dp ) :: pot
1048  
1049   if (FF_uses_EAM .and. SIM_uses_EAM) then
1050      call calc_EAM_preforce_Frho(nlocal,pot)
1051   endif
1052  
1053  
1054 end subroutine do_preforce
1055
1056
1057 subroutine get_interatomic_vector(q_i, q_j, d, r_sq)
1058  
1059   real (kind = dp), dimension(3) :: q_i
1060   real (kind = dp), dimension(3) :: q_j
1061   real ( kind = dp ), intent(out) :: r_sq
1062   real( kind = dp ) :: d(3), scaled(3)
1063   integer i
1064  
1065   d(1:3) = q_j(1:3) - q_i(1:3)
1066  
1067   ! Wrap back into periodic box if necessary
1068   if ( SIM_uses_PBC ) then
1069      
1070      if( .not.boxIsOrthorhombic ) then
1071         ! calc the scaled coordinates.
1072        
1073         scaled = matmul(HmatInv, d)
1074        
1075         ! wrap the scaled coordinates
1076        
1077         scaled = scaled  - anint(scaled)
1078        
1079        
1080         ! calc the wrapped real coordinates from the wrapped scaled
1081         ! coordinates
1082        
1083         d = matmul(Hmat,scaled)
1084        
1085      else
1086         ! calc the scaled coordinates.
1087        
1088         do i = 1, 3
1089            scaled(i) = d(i) * HmatInv(i,i)
1090            
1091            ! wrap the scaled coordinates
1092            
1093            scaled(i) = scaled(i) - anint(scaled(i))
1094            
1095            ! calc the wrapped real coordinates from the wrapped scaled
1096            ! coordinates
1097            
1098            d(i) = scaled(i)*Hmat(i,i)
1099         enddo
1100      endif
1101      
1102   endif
1103  
1104   r_sq = dot_product(d,d)
1105  
1106 end subroutine get_interatomic_vector
1107
1108 subroutine zero_work_arrays()
1109  
1110 #ifdef IS_MPI
1111  
1112   q_Row = 0.0_dp
1113   q_Col = 0.0_dp
1165  
1166 <   q_group_Row = 0.0_dp
1167 <   q_group_Col = 0.0_dp  
1168 <  
1169 <   eFrame_Row = 0.0_dp
1170 <   eFrame_Col = 0.0_dp
1171 <  
1172 <   A_Row = 0.0_dp
1173 <   A_Col = 0.0_dp
1174 <  
1175 <   f_Row = 0.0_dp
1176 <   f_Col = 0.0_dp
1177 <   f_Temp = 0.0_dp
1178 <  
1179 <   t_Row = 0.0_dp
1180 <   t_Col = 0.0_dp
1181 <   t_Temp = 0.0_dp
1182 <  
1183 <   pot_Row = 0.0_dp
1184 <   pot_Col = 0.0_dp
1185 <   pot_Temp = 0.0_dp
1186 <  
1187 <   rf_Row = 0.0_dp
1188 <   rf_Col = 0.0_dp
1189 <   rf_Temp = 0.0_dp
1190 <  
1191 < #endif
1192 <
1193 <   if (FF_uses_EAM .and. SIM_uses_EAM) then
1194 <      call clean_EAM()
1195 <   endif
1196 <  
1197 <   rf = 0.0_dp
1198 <   tau_Temp = 0.0_dp
1199 <   virial_Temp = 0.0_dp
1200 < end subroutine zero_work_arrays
1201 <
1202 < function skipThisPair(atom1, atom2) result(skip_it)
1203 <   integer, intent(in) :: atom1
1204 <   integer, intent(in), optional :: atom2
1205 <   logical :: skip_it
1206 <   integer :: unique_id_1, unique_id_2
1207 <   integer :: me_i,me_j
1208 <   integer :: i
1209 <  
1210 <   skip_it = .false.
1211 <  
1212 <   !! there are a number of reasons to skip a pair or a particle
1213 <   !! mostly we do this to exclude atoms who are involved in short
1214 <   !! range interactions (bonds, bends, torsions), but we also need
1215 <   !! to exclude some overcounted interactions that result from
1216 <   !! the parallel decomposition
1217 <  
1218 < #ifdef IS_MPI
1219 <   !! in MPI, we have to look up the unique IDs for each atom
1220 <   unique_id_1 = AtomRowToGlobal(atom1)
1221 < #else
1222 <   !! in the normal loop, the atom numbers are unique
1223 <   unique_id_1 = atom1
1224 < #endif
1225 <  
1226 <   !! We were called with only one atom, so just check the global exclude
1227 <   !! list for this atom
1228 <   if (.not. present(atom2)) then
1229 <      do i = 1, nExcludes_global
1230 <         if (excludesGlobal(i) == unique_id_1) then
1231 <            skip_it = .true.
1232 <            return
1233 <         end if
1234 <      end do
1235 <      return
1236 <   end if
1237 <  
1238 < #ifdef IS_MPI
1239 <   unique_id_2 = AtomColToGlobal(atom2)
1189 < #else
1190 <   unique_id_2 = atom2
1191 < #endif
1192 <  
1166 >    iHash = InteractionHash(me_i, me_j)
1167 >
1168 >    if ( iand(iHash, EAM_PAIR).ne.0 ) then      
1169 >            call calc_EAM_prepair_rho(i, j, d, r, rijsq )
1170 >    endif
1171 >    
1172 >  end subroutine do_prepair
1173 >
1174 >
1175 >  subroutine do_preforce(nlocal,pot)
1176 >    integer :: nlocal
1177 >    real( kind = dp ) :: pot
1178 >
1179 >    if (FF_uses_EAM .and. SIM_uses_EAM) then
1180 >       call calc_EAM_preforce_Frho(nlocal,pot)
1181 >    endif
1182 >
1183 >
1184 >  end subroutine do_preforce
1185 >
1186 >
1187 >  subroutine get_interatomic_vector(q_i, q_j, d, r_sq)
1188 >
1189 >    real (kind = dp), dimension(3) :: q_i
1190 >    real (kind = dp), dimension(3) :: q_j
1191 >    real ( kind = dp ), intent(out) :: r_sq
1192 >    real( kind = dp ) :: d(3), scaled(3)
1193 >    integer i
1194 >
1195 >    d(1:3) = q_j(1:3) - q_i(1:3)
1196 >
1197 >    ! Wrap back into periodic box if necessary
1198 >    if ( SIM_uses_PBC ) then
1199 >
1200 >       if( .not.boxIsOrthorhombic ) then
1201 >          ! calc the scaled coordinates.
1202 >
1203 >          scaled = matmul(HmatInv, d)
1204 >
1205 >          ! wrap the scaled coordinates
1206 >
1207 >          scaled = scaled  - anint(scaled)
1208 >
1209 >
1210 >          ! calc the wrapped real coordinates from the wrapped scaled
1211 >          ! coordinates
1212 >
1213 >          d = matmul(Hmat,scaled)
1214 >
1215 >       else
1216 >          ! calc the scaled coordinates.
1217 >
1218 >          do i = 1, 3
1219 >             scaled(i) = d(i) * HmatInv(i,i)
1220 >
1221 >             ! wrap the scaled coordinates
1222 >
1223 >             scaled(i) = scaled(i) - anint(scaled(i))
1224 >
1225 >             ! calc the wrapped real coordinates from the wrapped scaled
1226 >             ! coordinates
1227 >
1228 >             d(i) = scaled(i)*Hmat(i,i)
1229 >          enddo
1230 >       endif
1231 >
1232 >    endif
1233 >
1234 >    r_sq = dot_product(d,d)
1235 >
1236 >  end subroutine get_interatomic_vector
1237 >
1238 >  subroutine zero_work_arrays()
1239 >
1240   #ifdef IS_MPI
1241 <   !! this situation should only arise in MPI simulations
1242 <   if (unique_id_1 == unique_id_2) then
1243 <      skip_it = .true.
1244 <      return
1245 <   end if
1246 <  
1247 <   !! this prevents us from doing the pair on multiple processors
1248 <   if (unique_id_1 < unique_id_2) then
1249 <      if (mod(unique_id_1 + unique_id_2,2) == 0) then
1250 <         skip_it = .true.
1251 <         return
1252 <      endif
1253 <   else                
1254 <      if (mod(unique_id_1 + unique_id_2,2) == 1) then
1255 <         skip_it = .true.
1256 <         return
1257 <      endif
1258 <   endif
1241 >
1242 >    q_Row = 0.0_dp
1243 >    q_Col = 0.0_dp
1244 >
1245 >    q_group_Row = 0.0_dp
1246 >    q_group_Col = 0.0_dp  
1247 >
1248 >    eFrame_Row = 0.0_dp
1249 >    eFrame_Col = 0.0_dp
1250 >
1251 >    A_Row = 0.0_dp
1252 >    A_Col = 0.0_dp
1253 >
1254 >    f_Row = 0.0_dp
1255 >    f_Col = 0.0_dp
1256 >    f_Temp = 0.0_dp
1257 >
1258 >    t_Row = 0.0_dp
1259 >    t_Col = 0.0_dp
1260 >    t_Temp = 0.0_dp
1261 >
1262 >    pot_Row = 0.0_dp
1263 >    pot_Col = 0.0_dp
1264 >    pot_Temp = 0.0_dp
1265 >
1266 >    rf_Row = 0.0_dp
1267 >    rf_Col = 0.0_dp
1268 >    rf_Temp = 0.0_dp
1269 >
1270   #endif
1271 <  
1272 <   !! the rest of these situations can happen in all simulations:
1273 <   do i = 1, nExcludes_global      
1274 <      if ((excludesGlobal(i) == unique_id_1) .or. &
1275 <           (excludesGlobal(i) == unique_id_2)) then
1276 <         skip_it = .true.
1277 <         return
1278 <      endif
1279 <   enddo
1280 <  
1281 <   do i = 1, nSkipsForAtom(atom1)
1282 <      if (skipsForAtom(atom1, i) .eq. unique_id_2) then
1283 <         skip_it = .true.
1284 <         return
1285 <      endif
1286 <   end do
1287 <  
1288 <   return
1289 < end function skipThisPair
1290 <
1291 < function FF_UsesDirectionalAtoms() result(doesit)
1292 <   logical :: doesit
1293 <   doesit = FF_uses_DirectionalAtoms .or. FF_uses_Dipoles .or. &
1294 <        FF_uses_Quadrupoles .or. FF_uses_Sticky .or. &
1295 <        FF_uses_GayBerne .or. FF_uses_Shapes
1296 < end function FF_UsesDirectionalAtoms
1297 <
1298 < function FF_RequiresPrepairCalc() result(doesit)
1299 <   logical :: doesit
1300 <   doesit = FF_uses_EAM
1301 < end function FF_RequiresPrepairCalc
1302 <
1303 < function FF_RequiresPostpairCalc() result(doesit)
1304 <   logical :: doesit
1305 <   doesit = FF_uses_RF
1306 < end function FF_RequiresPostpairCalc
1307 <
1271 >
1272 >    if (FF_uses_EAM .and. SIM_uses_EAM) then
1273 >       call clean_EAM()
1274 >    endif
1275 >
1276 >    rf = 0.0_dp
1277 >    tau_Temp = 0.0_dp
1278 >    virial_Temp = 0.0_dp
1279 >  end subroutine zero_work_arrays
1280 >
1281 >  function skipThisPair(atom1, atom2) result(skip_it)
1282 >    integer, intent(in) :: atom1
1283 >    integer, intent(in), optional :: atom2
1284 >    logical :: skip_it
1285 >    integer :: unique_id_1, unique_id_2
1286 >    integer :: me_i,me_j
1287 >    integer :: i
1288 >
1289 >    skip_it = .false.
1290 >
1291 >    !! there are a number of reasons to skip a pair or a particle
1292 >    !! mostly we do this to exclude atoms who are involved in short
1293 >    !! range interactions (bonds, bends, torsions), but we also need
1294 >    !! to exclude some overcounted interactions that result from
1295 >    !! the parallel decomposition
1296 >
1297 > #ifdef IS_MPI
1298 >    !! in MPI, we have to look up the unique IDs for each atom
1299 >    unique_id_1 = AtomRowToGlobal(atom1)
1300 > #else
1301 >    !! in the normal loop, the atom numbers are unique
1302 >    unique_id_1 = atom1
1303 > #endif
1304 >
1305 >    !! We were called with only one atom, so just check the global exclude
1306 >    !! list for this atom
1307 >    if (.not. present(atom2)) then
1308 >       do i = 1, nExcludes_global
1309 >          if (excludesGlobal(i) == unique_id_1) then
1310 >             skip_it = .true.
1311 >             return
1312 >          end if
1313 >       end do
1314 >       return
1315 >    end if
1316 >
1317 > #ifdef IS_MPI
1318 >    unique_id_2 = AtomColToGlobal(atom2)
1319 > #else
1320 >    unique_id_2 = atom2
1321 > #endif
1322 >
1323 > #ifdef IS_MPI
1324 >    !! this situation should only arise in MPI simulations
1325 >    if (unique_id_1 == unique_id_2) then
1326 >       skip_it = .true.
1327 >       return
1328 >    end if
1329 >
1330 >    !! this prevents us from doing the pair on multiple processors
1331 >    if (unique_id_1 < unique_id_2) then
1332 >       if (mod(unique_id_1 + unique_id_2,2) == 0) then
1333 >          skip_it = .true.
1334 >          return
1335 >       endif
1336 >    else                
1337 >       if (mod(unique_id_1 + unique_id_2,2) == 1) then
1338 >          skip_it = .true.
1339 >          return
1340 >       endif
1341 >    endif
1342 > #endif
1343 >
1344 >    !! the rest of these situations can happen in all simulations:
1345 >    do i = 1, nExcludes_global      
1346 >       if ((excludesGlobal(i) == unique_id_1) .or. &
1347 >            (excludesGlobal(i) == unique_id_2)) then
1348 >          skip_it = .true.
1349 >          return
1350 >       endif
1351 >    enddo
1352 >
1353 >    do i = 1, nSkipsForAtom(atom1)
1354 >       if (skipsForAtom(atom1, i) .eq. unique_id_2) then
1355 >          skip_it = .true.
1356 >          return
1357 >       endif
1358 >    end do
1359 >
1360 >    return
1361 >  end function skipThisPair
1362 >
1363 >  function FF_UsesDirectionalAtoms() result(doesit)
1364 >    logical :: doesit
1365 >    doesit = FF_uses_DirectionalAtoms
1366 >  end function FF_UsesDirectionalAtoms
1367 >
1368 >  function FF_RequiresPrepairCalc() result(doesit)
1369 >    logical :: doesit
1370 >    doesit = FF_uses_EAM
1371 >  end function FF_RequiresPrepairCalc
1372 >
1373 >  function FF_RequiresPostpairCalc() result(doesit)
1374 >    logical :: doesit
1375 >    doesit = FF_uses_RF
1376 >  end function FF_RequiresPostpairCalc
1377 >
1378   #ifdef PROFILE
1379 < function getforcetime() result(totalforcetime)
1380 <   real(kind=dp) :: totalforcetime
1381 <   totalforcetime = forcetime
1382 < end function getforcetime
1379 >  function getforcetime() result(totalforcetime)
1380 >    real(kind=dp) :: totalforcetime
1381 >    totalforcetime = forcetime
1382 >  end function getforcetime
1383   #endif
1256
1257 !! This cleans componets of force arrays belonging only to fortran
1384  
1385 < subroutine add_stress_tensor(dpair, fpair)
1386 <  
1387 <   real( kind = dp ), dimension(3), intent(in) :: dpair, fpair
1388 <  
1389 <   ! because the d vector is the rj - ri vector, and
1390 <   ! because fx, fy, fz are the force on atom i, we need a
1391 <   ! negative sign here:  
1392 <  
1393 <   tau_Temp(1) = tau_Temp(1) - dpair(1) * fpair(1)
1394 <   tau_Temp(2) = tau_Temp(2) - dpair(1) * fpair(2)
1395 <   tau_Temp(3) = tau_Temp(3) - dpair(1) * fpair(3)
1396 <   tau_Temp(4) = tau_Temp(4) - dpair(2) * fpair(1)
1397 <   tau_Temp(5) = tau_Temp(5) - dpair(2) * fpair(2)
1398 <   tau_Temp(6) = tau_Temp(6) - dpair(2) * fpair(3)
1399 <   tau_Temp(7) = tau_Temp(7) - dpair(3) * fpair(1)
1400 <   tau_Temp(8) = tau_Temp(8) - dpair(3) * fpair(2)
1401 <   tau_Temp(9) = tau_Temp(9) - dpair(3) * fpair(3)
1402 <  
1403 <   virial_Temp = virial_Temp + &
1404 <        (tau_Temp(1) + tau_Temp(5) + tau_Temp(9))
1405 <  
1406 < end subroutine add_stress_tensor
1407 <
1385 >  !! This cleans componets of force arrays belonging only to fortran
1386 >
1387 >  subroutine add_stress_tensor(dpair, fpair)
1388 >
1389 >    real( kind = dp ), dimension(3), intent(in) :: dpair, fpair
1390 >
1391 >    ! because the d vector is the rj - ri vector, and
1392 >    ! because fx, fy, fz are the force on atom i, we need a
1393 >    ! negative sign here:  
1394 >
1395 >    tau_Temp(1) = tau_Temp(1) - dpair(1) * fpair(1)
1396 >    tau_Temp(2) = tau_Temp(2) - dpair(1) * fpair(2)
1397 >    tau_Temp(3) = tau_Temp(3) - dpair(1) * fpair(3)
1398 >    tau_Temp(4) = tau_Temp(4) - dpair(2) * fpair(1)
1399 >    tau_Temp(5) = tau_Temp(5) - dpair(2) * fpair(2)
1400 >    tau_Temp(6) = tau_Temp(6) - dpair(2) * fpair(3)
1401 >    tau_Temp(7) = tau_Temp(7) - dpair(3) * fpair(1)
1402 >    tau_Temp(8) = tau_Temp(8) - dpair(3) * fpair(2)
1403 >    tau_Temp(9) = tau_Temp(9) - dpair(3) * fpair(3)
1404 >
1405 >    virial_Temp = virial_Temp + &
1406 >         (tau_Temp(1) + tau_Temp(5) + tau_Temp(9))
1407 >
1408 >  end subroutine add_stress_tensor
1409 >
1410   end module doForces

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines