ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-3.0/src/UseTheForce/doForces.F90
(Generate patch)

Comparing trunk/OOPSE-3.0/src/UseTheForce/doForces.F90 (file contents):
Revision 2085 by gezelter, Tue Mar 8 21:05:46 2005 UTC vs.
Revision 2317 by chrisfen, Wed Sep 21 17:20:14 2005 UTC

# Line 45 | Line 45
45  
46   !! @author Charles F. Vardeman II
47   !! @author Matthew Meineke
48 < !! @version $Id: doForces.F90,v 1.11 2005-03-08 21:05:46 gezelter Exp $, $Date: 2005-03-08 21:05:46 $, $Name: not supported by cvs2svn $, $Revision: 1.11 $
48 > !! @version $Id: doForces.F90,v 1.48 2005-09-21 17:20:10 chrisfen Exp $, $Date: 2005-09-21 17:20:10 $, $Name: not supported by cvs2svn $, $Revision: 1.48 $
49  
50  
51   module doForces
# Line 58 | Line 58 | module doForces
58    use lj
59    use sticky
60    use electrostatic_module
61 <  use reaction_field
61 >  use reaction_field_module
62    use gb_pair
63    use shapes
64    use vector_class
# Line 73 | Line 73 | module doForces
73  
74   #define __FORTRAN90
75   #include "UseTheForce/fSwitchingFunction.h"
76 + #include "UseTheForce/fCutoffPolicy.h"
77 + #include "UseTheForce/DarkSide/fInteractionMap.h"
78 + #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
79  
80 +
81    INTEGER, PARAMETER:: PREPAIR_LOOP = 1
82    INTEGER, PARAMETER:: PAIR_LOOP    = 2
83  
80  logical, save :: haveRlist = .false.
84    logical, save :: haveNeighborList = .false.
85    logical, save :: haveSIMvariables = .false.
83  logical, save :: havePropertyMap = .false.
86    logical, save :: haveSaneForceField = .false.
87 <  
87 >  logical, save :: haveInteractionHash = .false.
88 >  logical, save :: haveGtypeCutoffMap = .false.
89 >  logical, save :: haveDefaultCutoffs = .false.
90 >  logical, save :: haveRlist = .false.
91 >
92    logical, save :: FF_uses_DirectionalAtoms
87  logical, save :: FF_uses_LennardJones
88  logical, save :: FF_uses_Electrostatics
89  logical, save :: FF_uses_Charges
93    logical, save :: FF_uses_Dipoles
91  logical, save :: FF_uses_Quadrupoles
92  logical, save :: FF_uses_sticky
94    logical, save :: FF_uses_GayBerne
95    logical, save :: FF_uses_EAM
95  logical, save :: FF_uses_Shapes
96  logical, save :: FF_uses_FLARB
97  logical, save :: FF_uses_RF
96  
97    logical, save :: SIM_uses_DirectionalAtoms
100  logical, save :: SIM_uses_LennardJones
101  logical, save :: SIM_uses_Electrostatics
102  logical, save :: SIM_uses_Charges
103  logical, save :: SIM_uses_Dipoles
104  logical, save :: SIM_uses_Quadrupoles
105  logical, save :: SIM_uses_Sticky
106  logical, save :: SIM_uses_GayBerne
98    logical, save :: SIM_uses_EAM
108  logical, save :: SIM_uses_Shapes
109  logical, save :: SIM_uses_FLARB
110  logical, save :: SIM_uses_RF
99    logical, save :: SIM_requires_postpair_calc
100    logical, save :: SIM_requires_prepair_calc
101    logical, save :: SIM_uses_PBC
114  logical, save :: SIM_uses_molecular_cutoffs
102  
103 <  real(kind=dp), save :: rlist, rlistsq
103 >  integer, save :: electrostaticSummationMethod
104  
105    public :: init_FF
106 +  public :: setDefaultCutoffs
107    public :: do_force_loop
108 <  public :: setRlistDF
108 >  public :: createInteractionHash
109 >  public :: createGtypeCutoffMap
110 >  public :: getStickyCut
111 >  public :: getStickyPowerCut
112 >  public :: getGayBerneCut
113 >  public :: getEAMCut
114 >  public :: getShapeCut
115  
116   #ifdef PROFILE
117    public :: getforcetime
# Line 125 | Line 119 | module doForces
119    real :: forceTimeInitial, forceTimeFinal
120    integer :: nLoops
121   #endif
122 +  
123 +  !! Variables for cutoff mapping and interaction mapping
124 +  ! Bit hash to determine pair-pair interactions.
125 +  integer, dimension(:,:), allocatable :: InteractionHash
126 +  real(kind=dp), dimension(:), allocatable :: atypeMaxCutoff
127 +  real(kind=dp), dimension(:), allocatable :: groupMaxCutoff
128 +  integer, dimension(:), allocatable :: groupToGtype
129 +  real(kind=dp), dimension(:), allocatable :: gtypeMaxCutoff
130 +  type ::gtypeCutoffs
131 +     real(kind=dp) :: rcut
132 +     real(kind=dp) :: rcutsq
133 +     real(kind=dp) :: rlistsq
134 +  end type gtypeCutoffs
135 +  type(gtypeCutoffs), dimension(:,:), allocatable :: gtypeCutoffMap
136  
137 <  type :: Properties
138 <     logical :: is_Directional   = .false.
139 <     logical :: is_LennardJones  = .false.
132 <     logical :: is_Electrostatic = .false.
133 <     logical :: is_Charge        = .false.
134 <     logical :: is_Dipole        = .false.
135 <     logical :: is_Quadrupole    = .false.
136 <     logical :: is_Sticky        = .false.
137 <     logical :: is_GayBerne      = .false.
138 <     logical :: is_EAM           = .false.
139 <     logical :: is_Shape         = .false.
140 <     logical :: is_FLARB         = .false.
141 <  end type Properties
142 <
143 <  type(Properties), dimension(:),allocatable :: PropertyMap
144 <
137 >  integer, save :: cutoffPolicy = TRADITIONAL_CUTOFF_POLICY
138 >  real(kind=dp),save :: defaultRcut, defaultRsw, defaultRlist
139 >  
140   contains
141  
142 <  subroutine setRlistDF( this_rlist )
148 <    
149 <    real(kind=dp) :: this_rlist
150 <
151 <    rlist = this_rlist
152 <    rlistsq = rlist * rlist
153 <    
154 <    haveRlist = .true.
155 <
156 <  end subroutine setRlistDF    
157 <
158 <  subroutine createPropertyMap(status)
142 >  subroutine createInteractionHash(status)
143      integer :: nAtypes
144 <    integer :: status
144 >    integer, intent(out) :: status
145      integer :: i
146 <    logical :: thisProperty
147 <    real (kind=DP) :: thisDPproperty
146 >    integer :: j
147 >    integer :: iHash
148 >    !! Test Types
149 >    logical :: i_is_LJ
150 >    logical :: i_is_Elect
151 >    logical :: i_is_Sticky
152 >    logical :: i_is_StickyP
153 >    logical :: i_is_GB
154 >    logical :: i_is_EAM
155 >    logical :: i_is_Shape
156 >    logical :: j_is_LJ
157 >    logical :: j_is_Elect
158 >    logical :: j_is_Sticky
159 >    logical :: j_is_StickyP
160 >    logical :: j_is_GB
161 >    logical :: j_is_EAM
162 >    logical :: j_is_Shape
163 >    real(kind=dp) :: myRcut
164  
165 <    status = 0
165 >    status = 0  
166  
167 +    if (.not. associated(atypes)) then
168 +       call handleError("atype", "atypes was not present before call of createInteractionHash!")
169 +       status = -1
170 +       return
171 +    endif
172 +    
173      nAtypes = getSize(atypes)
174 <
174 >    
175      if (nAtypes == 0) then
176         status = -1
177         return
178      end if
179 <        
180 <    if (.not. allocated(PropertyMap)) then
181 <       allocate(PropertyMap(nAtypes))
179 >
180 >    if (.not. allocated(InteractionHash)) then
181 >       allocate(InteractionHash(nAtypes,nAtypes))
182      endif
183  
184 +    if (.not. allocated(atypeMaxCutoff)) then
185 +       allocate(atypeMaxCutoff(nAtypes))
186 +    endif
187 +        
188      do i = 1, nAtypes
189 <       call getElementProperty(atypes, i, "is_Directional", thisProperty)
190 <       PropertyMap(i)%is_Directional = thisProperty
189 >       call getElementProperty(atypes, i, "is_LennardJones", i_is_LJ)
190 >       call getElementProperty(atypes, i, "is_Electrostatic", i_is_Elect)
191 >       call getElementProperty(atypes, i, "is_Sticky", i_is_Sticky)
192 >       call getElementProperty(atypes, i, "is_StickyPower", i_is_StickyP)
193 >       call getElementProperty(atypes, i, "is_GayBerne", i_is_GB)
194 >       call getElementProperty(atypes, i, "is_EAM", i_is_EAM)
195 >       call getElementProperty(atypes, i, "is_Shape", i_is_Shape)
196  
197 <       call getElementProperty(atypes, i, "is_LennardJones", thisProperty)
183 <       PropertyMap(i)%is_LennardJones = thisProperty
184 <      
185 <       call getElementProperty(atypes, i, "is_Electrostatic", thisProperty)
186 <       PropertyMap(i)%is_Electrostatic = thisProperty
197 >       do j = i, nAtypes
198  
199 <       call getElementProperty(atypes, i, "is_Charge", thisProperty)
200 <       PropertyMap(i)%is_Charge = thisProperty
190 <      
191 <       call getElementProperty(atypes, i, "is_Dipole", thisProperty)
192 <       PropertyMap(i)%is_Dipole = thisProperty
199 >          iHash = 0
200 >          myRcut = 0.0_dp
201  
202 <       call getElementProperty(atypes, i, "is_Quadrupole", thisProperty)
203 <       PropertyMap(i)%is_Quadrupole = thisProperty
202 >          call getElementProperty(atypes, j, "is_LennardJones", j_is_LJ)
203 >          call getElementProperty(atypes, j, "is_Electrostatic", j_is_Elect)
204 >          call getElementProperty(atypes, j, "is_Sticky", j_is_Sticky)
205 >          call getElementProperty(atypes, j, "is_StickyPower", j_is_StickyP)
206 >          call getElementProperty(atypes, j, "is_GayBerne", j_is_GB)
207 >          call getElementProperty(atypes, j, "is_EAM", j_is_EAM)
208 >          call getElementProperty(atypes, j, "is_Shape", j_is_Shape)
209  
210 <       call getElementProperty(atypes, i, "is_Sticky", thisProperty)
211 <       PropertyMap(i)%is_Sticky = thisProperty
210 >          if (i_is_LJ .and. j_is_LJ) then
211 >             iHash = ior(iHash, LJ_PAIR)            
212 >          endif
213 >          
214 >          if (i_is_Elect .and. j_is_Elect) then
215 >             iHash = ior(iHash, ELECTROSTATIC_PAIR)
216 >          endif
217 >          
218 >          if (i_is_Sticky .and. j_is_Sticky) then
219 >             iHash = ior(iHash, STICKY_PAIR)
220 >          endif
221  
222 <       call getElementProperty(atypes, i, "is_GayBerne", thisProperty)
223 <       PropertyMap(i)%is_GayBerne = thisProperty
222 >          if (i_is_StickyP .and. j_is_StickyP) then
223 >             iHash = ior(iHash, STICKYPOWER_PAIR)
224 >          endif
225  
226 <       call getElementProperty(atypes, i, "is_EAM", thisProperty)
227 <       PropertyMap(i)%is_EAM = thisProperty
226 >          if (i_is_EAM .and. j_is_EAM) then
227 >             iHash = ior(iHash, EAM_PAIR)
228 >          endif
229  
230 <       call getElementProperty(atypes, i, "is_Shape", thisProperty)
231 <       PropertyMap(i)%is_Shape = thisProperty
230 >          if (i_is_GB .and. j_is_GB) iHash = ior(iHash, GAYBERNE_PAIR)
231 >          if (i_is_GB .and. j_is_LJ) iHash = ior(iHash, GAYBERNE_LJ)
232 >          if (i_is_LJ .and. j_is_GB) iHash = ior(iHash, GAYBERNE_LJ)
233  
234 <       call getElementProperty(atypes, i, "is_FLARB", thisProperty)
235 <       PropertyMap(i)%is_FLARB = thisProperty
234 >          if (i_is_Shape .and. j_is_Shape) iHash = ior(iHash, SHAPE_PAIR)
235 >          if (i_is_Shape .and. j_is_LJ) iHash = ior(iHash, SHAPE_LJ)
236 >          if (i_is_LJ .and. j_is_Shape) iHash = ior(iHash, SHAPE_LJ)
237 >
238 >
239 >          InteractionHash(i,j) = iHash
240 >          InteractionHash(j,i) = iHash
241 >
242 >       end do
243 >
244      end do
245  
246 <    havePropertyMap = .true.
246 >    haveInteractionHash = .true.
247 >  end subroutine createInteractionHash
248  
249 <  end subroutine createPropertyMap
249 >  subroutine createGtypeCutoffMap(stat)
250 >
251 >    integer, intent(out), optional :: stat
252 >    logical :: i_is_LJ
253 >    logical :: i_is_Elect
254 >    logical :: i_is_Sticky
255 >    logical :: i_is_StickyP
256 >    logical :: i_is_GB
257 >    logical :: i_is_EAM
258 >    logical :: i_is_Shape
259 >    logical :: GtypeFound
260 >
261 >    integer :: myStatus, nAtypes,  i, j, istart, iend, jstart, jend
262 >    integer :: n_in_i, me_i, ia, g, atom1, nGroupTypes
263 >    integer :: nGroupsInRow
264 >    real(kind=dp):: thisSigma, bigSigma, thisRcut, tol, skin
265 >    real(kind=dp) :: biggestAtypeCutoff
266 >
267 >    stat = 0
268 >    if (.not. haveInteractionHash) then
269 >       call createInteractionHash(myStatus)      
270 >       if (myStatus .ne. 0) then
271 >          write(default_error, *) 'createInteractionHash failed in doForces!'
272 >          stat = -1
273 >          return
274 >       endif
275 >    endif
276 > #ifdef IS_MPI
277 >    nGroupsInRow = getNgroupsInRow(plan_group_row)
278 > #endif
279 >    nAtypes = getSize(atypes)
280 > ! Set all of the initial cutoffs to zero.
281 >    atypeMaxCutoff = 0.0_dp
282 >    do i = 1, nAtypes
283 >       if (SimHasAtype(i)) then    
284 >          call getElementProperty(atypes, i, "is_LennardJones", i_is_LJ)
285 >          call getElementProperty(atypes, i, "is_Electrostatic", i_is_Elect)
286 >          call getElementProperty(atypes, i, "is_Sticky", i_is_Sticky)
287 >          call getElementProperty(atypes, i, "is_StickyPower", i_is_StickyP)
288 >          call getElementProperty(atypes, i, "is_GayBerne", i_is_GB)
289 >          call getElementProperty(atypes, i, "is_EAM", i_is_EAM)
290 >          call getElementProperty(atypes, i, "is_Shape", i_is_Shape)
291 >          
292 >
293 >          if (haveDefaultCutoffs) then
294 >             atypeMaxCutoff(i) = defaultRcut
295 >          else
296 >             if (i_is_LJ) then          
297 >                thisRcut = getSigma(i) * 2.5_dp
298 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
299 >             endif
300 >             if (i_is_Elect) then
301 >                thisRcut = defaultRcut
302 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
303 >             endif
304 >             if (i_is_Sticky) then
305 >                thisRcut = getStickyCut(i)
306 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
307 >             endif
308 >             if (i_is_StickyP) then
309 >                thisRcut = getStickyPowerCut(i)
310 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
311 >             endif
312 >             if (i_is_GB) then
313 >                thisRcut = getGayBerneCut(i)
314 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
315 >             endif
316 >             if (i_is_EAM) then
317 >                thisRcut = getEAMCut(i)
318 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
319 >             endif
320 >             if (i_is_Shape) then
321 >                thisRcut = getShapeCut(i)
322 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
323 >             endif
324 >          endif
325 >          
326 >          
327 >          if (atypeMaxCutoff(i).gt.biggestAtypeCutoff) then
328 >             biggestAtypeCutoff = atypeMaxCutoff(i)
329 >          endif
330 >
331 >       endif
332 >    enddo
333 >  
334 >    nGroupTypes = 0
335 >    
336 >    istart = 1
337 > #ifdef IS_MPI
338 >    iend = nGroupsInRow
339 > #else
340 >    iend = nGroups
341 > #endif
342 >    
343 >    !! allocate the groupToGtype and gtypeMaxCutoff here.
344 >    if(.not.allocated(groupToGtype)) then
345 >       allocate(groupToGtype(iend))
346 >       allocate(groupMaxCutoff(iend))
347 >       allocate(gtypeMaxCutoff(iend))
348 >       groupMaxCutoff = 0.0_dp
349 >       gtypeMaxCutoff = 0.0_dp
350 >    endif
351 >    !! first we do a single loop over the cutoff groups to find the
352 >    !! largest cutoff for any atypes present in this group.  We also
353 >    !! create gtypes at this point.
354 >    
355 >    tol = 1.0d-6
356 >    
357 >    do i = istart, iend      
358 >       n_in_i = groupStartRow(i+1) - groupStartRow(i)
359 >       groupMaxCutoff(i) = 0.0_dp
360 >       do ia = groupStartRow(i), groupStartRow(i+1)-1
361 >          atom1 = groupListRow(ia)
362 > #ifdef IS_MPI
363 >          me_i = atid_row(atom1)
364 > #else
365 >          me_i = atid(atom1)
366 > #endif          
367 >          if (atypeMaxCutoff(me_i).gt.groupMaxCutoff(i)) then
368 >             groupMaxCutoff(i)=atypeMaxCutoff(me_i)
369 >          endif          
370 >       enddo
371 >
372 >       if (nGroupTypes.eq.0) then
373 >          nGroupTypes = nGroupTypes + 1
374 >          gtypeMaxCutoff(nGroupTypes) = groupMaxCutoff(i)
375 >          groupToGtype(i) = nGroupTypes
376 >       else
377 >          GtypeFound = .false.
378 >          do g = 1, nGroupTypes
379 >             if ( abs(groupMaxCutoff(i) - gtypeMaxCutoff(g)).lt.tol) then
380 >                groupToGtype(i) = g
381 >                GtypeFound = .true.
382 >             endif
383 >          enddo
384 >          if (.not.GtypeFound) then            
385 >             nGroupTypes = nGroupTypes + 1
386 >             gtypeMaxCutoff(nGroupTypes) = groupMaxCutoff(i)
387 >             groupToGtype(i) = nGroupTypes
388 >          endif
389 >       endif
390 >    enddo    
391 >
392 >    !! allocate the gtypeCutoffMap here.
393 >    allocate(gtypeCutoffMap(nGroupTypes,nGroupTypes))
394 >    !! then we do a double loop over all the group TYPES to find the cutoff
395 >    !! map between groups of two types
396 >    
397 >    do i = 1, nGroupTypes
398 >       do j = 1, nGroupTypes
399 >      
400 >          select case(cutoffPolicy)
401 >          case(TRADITIONAL_CUTOFF_POLICY)
402 >             thisRcut = maxval(gtypeMaxCutoff)
403 >          case(MIX_CUTOFF_POLICY)
404 >             thisRcut = 0.5_dp * (gtypeMaxCutoff(i) + gtypeMaxCutoff(j))
405 >          case(MAX_CUTOFF_POLICY)
406 >             thisRcut = max(gtypeMaxCutoff(i), gtypeMaxCutoff(j))
407 >          case default
408 >             call handleError("createGtypeCutoffMap", "Unknown Cutoff Policy")
409 >             return
410 >          end select
411 >          gtypeCutoffMap(i,j)%rcut = thisRcut
412 >          gtypeCutoffMap(i,j)%rcutsq = thisRcut*thisRcut
413 >          skin = defaultRlist - defaultRcut
414 >          gtypeCutoffMap(i,j)%rlistsq = (thisRcut + skin)**2
415  
416 +          ! sanity check
417 +
418 +          if (haveDefaultCutoffs) then
419 +             if (abs(gtypeCutoffMap(i,j)%rcut - defaultRcut).gt.0.0001) then
420 +                call handleError("createGtypeCutoffMap", "user-specified rCut does not match computed group Cutoff")
421 +             endif
422 +          endif
423 +       enddo
424 +    enddo
425 +
426 +    haveGtypeCutoffMap = .true.
427 +   end subroutine createGtypeCutoffMap
428 +
429 +   subroutine setDefaultCutoffs(defRcut, defRsw, defRlist, cutPolicy)
430 +     real(kind=dp),intent(in) :: defRcut, defRsw, defRlist
431 +     integer, intent(in) :: cutPolicy
432 +
433 +     defaultRcut = defRcut
434 +     defaultRsw = defRsw
435 +     defaultRlist = defRlist
436 +     cutoffPolicy = cutPolicy
437 +
438 +     haveDefaultCutoffs = .true.
439 +   end subroutine setDefaultCutoffs
440 +
441 +   subroutine setCutoffPolicy(cutPolicy)
442 +
443 +     integer, intent(in) :: cutPolicy
444 +     cutoffPolicy = cutPolicy
445 +     call createGtypeCutoffMap()
446 +   end subroutine setCutoffPolicy
447 +    
448 +    
449    subroutine setSimVariables()
450      SIM_uses_DirectionalAtoms = SimUsesDirectionalAtoms()
219    SIM_uses_LennardJones = SimUsesLennardJones()
220    SIM_uses_Electrostatics = SimUsesElectrostatics()
221    SIM_uses_Charges = SimUsesCharges()
222    SIM_uses_Dipoles = SimUsesDipoles()
223    SIM_uses_Sticky = SimUsesSticky()
224    SIM_uses_GayBerne = SimUsesGayBerne()
451      SIM_uses_EAM = SimUsesEAM()
226    SIM_uses_Shapes = SimUsesShapes()
227    SIM_uses_FLARB = SimUsesFLARB()
228    SIM_uses_RF = SimUsesRF()
452      SIM_requires_postpair_calc = SimRequiresPostpairCalc()
453      SIM_requires_prepair_calc = SimRequiresPrepairCalc()
454      SIM_uses_PBC = SimUsesPBC()
# Line 241 | Line 464 | contains
464      integer :: myStatus
465  
466      error = 0
244    
245    if (.not. havePropertyMap) then
467  
468 <       myStatus = 0
468 >    if (.not. haveInteractionHash) then      
469 >       myStatus = 0      
470 >       call createInteractionHash(myStatus)      
471 >       if (myStatus .ne. 0) then
472 >          write(default_error, *) 'createInteractionHash failed in doForces!'
473 >          error = -1
474 >          return
475 >       endif
476 >    endif
477  
478 <       call createPropertyMap(myStatus)
479 <
478 >    if (.not. haveGtypeCutoffMap) then        
479 >       myStatus = 0      
480 >       call createGtypeCutoffMap(myStatus)      
481         if (myStatus .ne. 0) then
482 <          write(default_error, *) 'createPropertyMap failed in doForces!'
482 >          write(default_error, *) 'createGtypeCutoffMap failed in doForces!'
483            error = -1
484            return
485         endif
# Line 259 | Line 489 | contains
489         call setSimVariables()
490      endif
491  
492 <    if (.not. haveRlist) then
493 <       write(default_error, *) 'rList has not been set in doForces!'
494 <       error = -1
495 <       return
496 <    endif
492 >  !  if (.not. haveRlist) then
493 >  !     write(default_error, *) 'rList has not been set in doForces!'
494 >  !     error = -1
495 >  !     return
496 >  !  endif
497  
498      if (.not. haveNeighborList) then
499         write(default_error, *) 'neighbor list has not been initialized in doForces!'
# Line 286 | Line 516 | contains
516   #endif
517      return
518    end subroutine doReadyCheck
289    
519  
291  subroutine init_FF(use_RF_c, thisStat)
520  
521 <    logical, intent(in) :: use_RF_c
521 >  subroutine init_FF(thisESM, thisStat)
522  
523 +    integer, intent(in) :: thisESM
524      integer, intent(out) :: thisStat  
525      integer :: my_status, nMatches
526      integer, pointer :: MatchList(:) => null()
# Line 300 | Line 529 | contains
529      !! assume things are copacetic, unless they aren't
530      thisStat = 0
531  
532 <    !! Fortran's version of a cast:
533 <    FF_uses_RF = use_RF_c
305 <    
532 >    electrostaticSummationMethod = thisESM
533 >
534      !! init_FF is called *after* all of the atom types have been
535      !! defined in atype_module using the new_atype subroutine.
536      !!
537      !! this will scan through the known atypes and figure out what
538      !! interactions are used by the force field.    
539 <  
539 >
540      FF_uses_DirectionalAtoms = .false.
313    FF_uses_LennardJones = .false.
314    FF_uses_Electrostatics = .false.
315    FF_uses_Charges = .false.    
541      FF_uses_Dipoles = .false.
317    FF_uses_Sticky = .false.
542      FF_uses_GayBerne = .false.
543      FF_uses_EAM = .false.
544 <    FF_uses_Shapes = .false.
321 <    FF_uses_FLARB = .false.
322 <    
544 >
545      call getMatchingElementList(atypes, "is_Directional", .true., &
546           nMatches, MatchList)
547      if (nMatches .gt. 0) FF_uses_DirectionalAtoms = .true.
548  
327    call getMatchingElementList(atypes, "is_LennardJones", .true., &
328         nMatches, MatchList)
329    if (nMatches .gt. 0) FF_uses_LennardJones = .true.
330    
331    call getMatchingElementList(atypes, "is_Electrostatic", .true., &
332         nMatches, MatchList)
333    if (nMatches .gt. 0) then
334       FF_uses_Electrostatics = .true.
335    endif
336
337    call getMatchingElementList(atypes, "is_Charge", .true., &
338         nMatches, MatchList)
339    if (nMatches .gt. 0) then
340       FF_uses_Charges = .true.  
341       FF_uses_Electrostatics = .true.
342    endif
343    
549      call getMatchingElementList(atypes, "is_Dipole", .true., &
550           nMatches, MatchList)
551 <    if (nMatches .gt. 0) then
347 <       FF_uses_Dipoles = .true.
348 <       FF_uses_Electrostatics = .true.
349 <       FF_uses_DirectionalAtoms = .true.
350 <    endif
351 <
352 <    call getMatchingElementList(atypes, "is_Quadrupole", .true., &
353 <         nMatches, MatchList)
354 <    if (nMatches .gt. 0) then
355 <       FF_uses_Quadrupoles = .true.
356 <       FF_uses_Electrostatics = .true.
357 <       FF_uses_DirectionalAtoms = .true.
358 <    endif
551 >    if (nMatches .gt. 0) FF_uses_Dipoles = .true.
552      
360    call getMatchingElementList(atypes, "is_Sticky", .true., nMatches, &
361         MatchList)
362    if (nMatches .gt. 0) then
363       FF_uses_Sticky = .true.
364       FF_uses_DirectionalAtoms = .true.
365    endif
366    
553      call getMatchingElementList(atypes, "is_GayBerne", .true., &
554           nMatches, MatchList)
555 <    if (nMatches .gt. 0) then
556 <       FF_uses_GayBerne = .true.
371 <       FF_uses_DirectionalAtoms = .true.
372 <    endif
373 <    
555 >    if (nMatches .gt. 0) FF_uses_GayBerne = .true.
556 >
557      call getMatchingElementList(atypes, "is_EAM", .true., nMatches, MatchList)
558      if (nMatches .gt. 0) FF_uses_EAM = .true.
376    
377    call getMatchingElementList(atypes, "is_Shape", .true., &
378         nMatches, MatchList)
379    if (nMatches .gt. 0) then
380       FF_uses_Shapes = .true.
381       FF_uses_DirectionalAtoms = .true.
382    endif
559  
384    call getMatchingElementList(atypes, "is_FLARB", .true., &
385         nMatches, MatchList)
386    if (nMatches .gt. 0) FF_uses_FLARB = .true.
560  
388    !! Assume sanity (for the sake of argument)
561      haveSaneForceField = .true.
562 <    
563 <    !! check to make sure the FF_uses_RF setting makes sense
564 <    
565 <    if (FF_uses_dipoles) then
566 <       if (FF_uses_RF) then
562 >
563 >    !! check to make sure the reaction field setting makes sense
564 >
565 >    if (FF_uses_Dipoles) then
566 >       if (electrostaticSummationMethod == REACTION_FIELD) then
567            dielect = getDielect()
568            call initialize_rf(dielect)
569         endif
570      else
571 <       if (FF_uses_RF) then          
571 >       if (electrostaticSummationMethod == REACTION_FIELD) then
572            write(default_error,*) 'Using Reaction Field with no dipoles?  Huh?'
573            thisStat = -1
574            haveSaneForceField = .false.
575            return
576         endif
577 <    endif
406 <
407 <    !sticky module does not contain check_sticky_FF anymore
408 <    !if (FF_uses_sticky) then
409 <    !   call check_sticky_FF(my_status)
410 <    !   if (my_status /= 0) then
411 <    !      thisStat = -1
412 <    !      haveSaneForceField = .false.
413 <    !      return
414 <    !   end if
415 <    !endif
577 >    endif
578  
579      if (FF_uses_EAM) then
580 <         call init_EAM_FF(my_status)
580 >       call init_EAM_FF(my_status)
581         if (my_status /= 0) then
582            write(default_error, *) "init_EAM_FF returned a bad status"
583            thisStat = -1
# Line 433 | Line 595 | contains
595         endif
596      endif
597  
436    if (FF_uses_GayBerne .and. FF_uses_LennardJones) then
437    endif
438    
598      if (.not. haveNeighborList) then
599         !! Create neighbor lists
600         call expandNeighborList(nLocal, my_status)
# Line 445 | Line 604 | contains
604            return
605         endif
606         haveNeighborList = .true.
607 <    endif    
608 <    
607 >    endif
608 >
609    end subroutine init_FF
451  
610  
611 +
612    !! Does force loop over i,j pairs. Calls do_pair to calculates forces.
613    !------------------------------------------------------------->
614    subroutine do_force_loop(q, q_group, A, eFrame, f, t, tau, pot, &
# Line 499 | Line 658 | contains
658      integer :: localError
659      integer :: propPack_i, propPack_j
660      integer :: loopStart, loopEnd, loop
661 <
661 >    integer :: iHash
662      real(kind=dp) :: listSkin = 1.0  
663 <    
663 >
664      !! initialize local variables  
665 <    
665 >
666   #ifdef IS_MPI
667      pot_local = 0.0_dp
668      nAtomsInRow   = getNatomsInRow(plan_atom_row)
# Line 513 | Line 672 | contains
672   #else
673      natoms = nlocal
674   #endif
675 <    
675 >
676      call doReadyCheck(localError)
677      if ( localError .ne. 0 ) then
678         call handleError("do_force_loop", "Not Initialized")
# Line 521 | Line 680 | contains
680         return
681      end if
682      call zero_work_arrays()
683 <        
683 >
684      do_pot = do_pot_c
685      do_stress = do_stress_c
686 <    
686 >
687      ! Gather all information needed by all force loops:
688 <    
688 >
689   #ifdef IS_MPI    
690 <    
690 >
691      call gather(q, q_Row, plan_atom_row_3d)
692      call gather(q, q_Col, plan_atom_col_3d)
693  
694      call gather(q_group, q_group_Row, plan_group_row_3d)
695      call gather(q_group, q_group_Col, plan_group_col_3d)
696 <        
696 >
697      if (FF_UsesDirectionalAtoms() .and. SIM_uses_DirectionalAtoms) then
698         call gather(eFrame, eFrame_Row, plan_atom_row_rotation)
699         call gather(eFrame, eFrame_Col, plan_atom_col_rotation)
700 <      
700 >
701         call gather(A, A_Row, plan_atom_row_rotation)
702         call gather(A, A_Col, plan_atom_col_rotation)
703      endif
704 <    
704 >
705   #endif
706 <    
706 >
707      !! Begin force loop timing:
708   #ifdef PROFILE
709      call cpu_time(forceTimeInitial)
710      nloops = nloops + 1
711   #endif
712 <    
712 >
713      loopEnd = PAIR_LOOP
714      if (FF_RequiresPrepairCalc() .and. SIM_requires_prepair_calc) then
715         loopStart = PREPAIR_LOOP
# Line 565 | Line 724 | contains
724         if (loop .eq. loopStart) then
725   #ifdef IS_MPI
726            call checkNeighborList(nGroupsInRow, q_group_row, listSkin, &
727 <             update_nlist)
727 >               update_nlist)
728   #else
729            call checkNeighborList(nGroups, q_group, listSkin, &
730 <             update_nlist)
730 >               update_nlist)
731   #endif
732         endif
733 <      
733 >
734         if (update_nlist) then
735            !! save current configuration and construct neighbor list
736   #ifdef IS_MPI
# Line 582 | Line 741 | contains
741            neighborListSize = size(list)
742            nlist = 0
743         endif
744 <      
744 >
745         istart = 1
746   #ifdef IS_MPI
747         iend = nGroupsInRow
# Line 592 | Line 751 | contains
751         outer: do i = istart, iend
752  
753            if (update_nlist) point(i) = nlist + 1
754 <          
754 >
755            n_in_i = groupStartRow(i+1) - groupStartRow(i)
756 <          
756 >
757            if (update_nlist) then
758   #ifdef IS_MPI
759               jstart = 1
# Line 609 | Line 768 | contains
768               ! make sure group i has neighbors
769               if (jstart .gt. jend) cycle outer
770            endif
771 <          
771 >
772            do jnab = jstart, jend
773               if (update_nlist) then
774                  j = jnab
# Line 618 | Line 777 | contains
777               endif
778  
779   #ifdef IS_MPI
780 +             me_j = atid_col(j)
781               call get_interatomic_vector(q_group_Row(:,i), &
782                    q_group_Col(:,j), d_grp, rgrpsq)
783   #else
784 +             me_j = atid(j)
785               call get_interatomic_vector(q_group(:,i), &
786                    q_group(:,j), d_grp, rgrpsq)
787 < #endif
787 > #endif      
788  
789 <             if (rgrpsq < rlistsq) then
789 >             if (rgrpsq < gtypeCutoffMap(groupToGtype(i),groupToGtype(j))%rListsq) then
790                  if (update_nlist) then
791                     nlist = nlist + 1
792 <                  
792 >
793                     if (nlist > neighborListSize) then
794   #ifdef IS_MPI                
795                        call expandNeighborList(nGroupsInRow, listerror)
# Line 642 | Line 803 | contains
803                        end if
804                        neighborListSize = size(list)
805                     endif
806 <                  
806 >
807                     list(nlist) = j
808                  endif
809 <                
809 >
810                  if (loop .eq. PAIR_LOOP) then
811                     vij = 0.0d0
812                     fij(1:3) = 0.0d0
813                  endif
814 <                
814 >
815                  call get_switch(rgrpsq, sw, dswdr, rgrp, group_switch, &
816                       in_switching_region)
817 <                
817 >
818                  n_in_j = groupStartCol(j+1) - groupStartCol(j)
819 <                
819 >
820                  do ia = groupStartRow(i), groupStartRow(i+1)-1
821 <                  
821 >
822                     atom1 = groupListRow(ia)
823 <                  
823 >
824                     inner: do jb = groupStartCol(j), groupStartCol(j+1)-1
825 <                      
825 >
826                        atom2 = groupListCol(jb)
827 <                      
827 >
828                        if (skipThisPair(atom1, atom2)) cycle inner
829  
830                        if ((n_in_i .eq. 1).and.(n_in_j .eq. 1)) then
# Line 705 | Line 866 | contains
866                        endif
867                     enddo inner
868                  enddo
869 <                
869 >
870                  if (loop .eq. PAIR_LOOP) then
871                     if (in_switching_region) then
872                        swderiv = vij*dswdr/rgrp
873                        fij(1) = fij(1) + swderiv*d_grp(1)
874                        fij(2) = fij(2) + swderiv*d_grp(2)
875                        fij(3) = fij(3) + swderiv*d_grp(3)
876 <                      
876 >
877                        do ia=groupStartRow(i), groupStartRow(i+1)-1
878                           atom1=groupListRow(ia)
879                           mf = mfactRow(atom1)
# Line 726 | Line 887 | contains
887                           f(3,atom1) = f(3,atom1) + swderiv*d_grp(3)*mf
888   #endif
889                        enddo
890 <                      
890 >
891                        do jb=groupStartCol(j), groupStartCol(j+1)-1
892                           atom2=groupListCol(jb)
893                           mf = mfactCol(atom2)
# Line 741 | Line 902 | contains
902   #endif
903                        enddo
904                     endif
905 <                  
905 >
906                     if (do_stress) call add_stress_tensor(d_grp, fij)
907                  endif
908               end if
909            enddo
910         enddo outer
911 <      
911 >
912         if (update_nlist) then
913   #ifdef IS_MPI
914            point(nGroupsInRow + 1) = nlist + 1
# Line 761 | Line 922 | contains
922               update_nlist = .false.                              
923            endif
924         endif
925 <            
925 >
926         if (loop .eq. PREPAIR_LOOP) then
927            call do_preforce(nlocal, pot)
928         endif
929 <      
929 >
930      enddo
931 <    
931 >
932      !! Do timing
933   #ifdef PROFILE
934      call cpu_time(forceTimeFinal)
935      forceTime = forceTime + forceTimeFinal - forceTimeInitial
936   #endif    
937 <    
937 >
938   #ifdef IS_MPI
939      !!distribute forces
940 <    
940 >
941      f_temp = 0.0_dp
942      call scatter(f_Row,f_temp,plan_atom_row_3d)
943      do i = 1,nlocal
944         f(1:3,i) = f(1:3,i) + f_temp(1:3,i)
945      end do
946 <    
946 >
947      f_temp = 0.0_dp
948      call scatter(f_Col,f_temp,plan_atom_col_3d)
949      do i = 1,nlocal
950         f(1:3,i) = f(1:3,i) + f_temp(1:3,i)
951      end do
952 <    
952 >
953      if (FF_UsesDirectionalAtoms() .and. SIM_uses_DirectionalAtoms) then
954         t_temp = 0.0_dp
955         call scatter(t_Row,t_temp,plan_atom_row_3d)
# Line 797 | Line 958 | contains
958         end do
959         t_temp = 0.0_dp
960         call scatter(t_Col,t_temp,plan_atom_col_3d)
961 <      
961 >
962         do i = 1,nlocal
963            t(1:3,i) = t(1:3,i) + t_temp(1:3,i)
964         end do
965      endif
966 <    
966 >
967      if (do_pot) then
968         ! scatter/gather pot_row into the members of my column
969         call scatter(pot_Row, pot_Temp, plan_atom_row)
970 <      
970 >
971         ! scatter/gather pot_local into all other procs
972         ! add resultant to get total pot
973         do i = 1, nlocal
974            pot_local = pot_local + pot_Temp(i)
975         enddo
976 <      
976 >
977         pot_Temp = 0.0_DP
978 <      
978 >
979         call scatter(pot_Col, pot_Temp, plan_atom_col)
980         do i = 1, nlocal
981            pot_local = pot_local + pot_Temp(i)
982         enddo
983 <      
983 >
984      endif
985   #endif
986 <    
986 >
987      if (FF_RequiresPostpairCalc() .and. SIM_requires_postpair_calc) then
988 <      
989 <       if (FF_uses_RF .and. SIM_uses_RF) then
990 <          
988 >
989 >       if (electrostaticSummationMethod == REACTION_FIELD) then
990 >
991   #ifdef IS_MPI
992            call scatter(rf_Row,rf,plan_atom_row_3d)
993            call scatter(rf_Col,rf_Temp,plan_atom_col_3d)
# Line 834 | Line 995 | contains
995               rf(1:3,i) = rf(1:3,i) + rf_Temp(1:3,i)
996            end do
997   #endif
998 <          
998 >
999            do i = 1, nLocal
1000 <            
1000 >
1001               rfpot = 0.0_DP
1002   #ifdef IS_MPI
1003               me_i = atid_row(i)
1004   #else
1005               me_i = atid(i)
1006   #endif
1007 +             iHash = InteractionHash(me_i,me_j)
1008              
1009 <             if (PropertyMap(me_i)%is_Dipole) then
1010 <                
1009 >             if ( iand(iHash, ELECTROSTATIC_PAIR).ne.0 ) then
1010 >
1011                  mu_i = getDipoleMoment(me_i)
1012 <                
1012 >
1013                  !! The reaction field needs to include a self contribution
1014                  !! to the field:
1015                  call accumulate_self_rf(i, mu_i, eFrame)
# Line 858 | Line 1020 | contains
1020                  pot_local = pot_local + rfpot
1021   #else
1022                  pot = pot + rfpot
1023 <      
1023 >
1024   #endif
1025 <             endif            
1025 >             endif
1026            enddo
1027         endif
1028      endif
1029 <    
1030 <    
1029 >
1030 >
1031   #ifdef IS_MPI
1032 <    
1032 >
1033      if (do_pot) then
1034         pot = pot + pot_local
1035         !! we assume the c code will do the allreduce to get the total potential
1036         !! we could do it right here if we needed to...
1037      endif
1038 <    
1038 >
1039      if (do_stress) then
1040         call mpi_allreduce(tau_Temp, tau, 9,mpi_double_precision,mpi_sum, &
1041              mpi_comm_world,mpi_err)
1042         call mpi_allreduce(virial_Temp, virial,1,mpi_double_precision,mpi_sum, &
1043              mpi_comm_world,mpi_err)
1044      endif
1045 <    
1045 >
1046   #else
1047 <    
1047 >
1048      if (do_stress) then
1049         tau = tau_Temp
1050         virial = virial_Temp
1051      endif
1052 <    
1052 >
1053   #endif
1054 <      
1054 >
1055    end subroutine do_force_loop
1056 <  
1056 >
1057    subroutine do_pair(i, j, rijsq, d, sw, do_pot, &
1058         eFrame, A, f, t, pot, vpair, fpair)
1059  
# Line 910 | Line 1072 | contains
1072      real ( kind = dp ), intent(inout) :: d(3)
1073      integer :: me_i, me_j
1074  
1075 +    integer :: iHash
1076 +
1077      r = sqrt(rijsq)
1078      vpair = 0.0d0
1079      fpair(1:3) = 0.0d0
# Line 922 | Line 1086 | contains
1086      me_j = atid(j)
1087   #endif
1088  
1089 < !    write(*,*) i, j, me_i, me_j
1090 <    
1091 <    if (FF_uses_LennardJones .and. SIM_uses_LennardJones) then
1092 <      
929 <       if ( PropertyMap(me_i)%is_LennardJones .and. &
930 <            PropertyMap(me_j)%is_LennardJones ) then
931 <          call do_lj_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, do_pot)
932 <       endif
933 <      
1089 >    iHash = InteractionHash(me_i, me_j)
1090 >
1091 >    if ( iand(iHash, LJ_PAIR).ne.0 ) then
1092 >       call do_lj_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, do_pot)
1093      endif
935    
936    if (FF_uses_Electrostatics .and. SIM_uses_Electrostatics) then
937      
938       if (PropertyMap(me_i)%is_Electrostatic .and. &
939            PropertyMap(me_j)%is_Electrostatic) then
940          call doElectrostaticPair(i, j, d, r, rijsq, sw, vpair, fpair, &
941               pot, eFrame, f, t, do_pot)
942       endif
943      
944       if (FF_uses_dipoles .and. SIM_uses_dipoles) then      
945          if ( PropertyMap(me_i)%is_Dipole .and. &
946               PropertyMap(me_j)%is_Dipole) then
947             if (FF_uses_RF .and. SIM_uses_RF) then
948                call accumulate_rf(i, j, r, eFrame, sw)
949                call rf_correct_forces(i, j, d, r, eFrame, sw, f, fpair)
950             endif
951          endif
952       endif
953    endif
1094  
1095 +    if ( iand(iHash, ELECTROSTATIC_PAIR).ne.0 ) then
1096 +       call doElectrostaticPair(i, j, d, r, rijsq, sw, vpair, fpair, &
1097 +            pot, eFrame, f, t, do_pot)
1098  
1099 <    if (FF_uses_Sticky .and. SIM_uses_sticky) then
1099 >       if (electrostaticSummationMethod == REACTION_FIELD) then
1100  
1101 <       if ( PropertyMap(me_i)%is_Sticky .and. PropertyMap(me_j)%is_Sticky) then
1102 <          call do_sticky_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1103 <               pot, A, f, t, do_pot)
1101 >          ! CHECK ME (RF needs to know about all electrostatic types)
1102 >          call accumulate_rf(i, j, r, eFrame, sw)
1103 >          call rf_correct_forces(i, j, d, r, eFrame, sw, f, fpair)
1104         endif
1105 <      
1105 >
1106      endif
1107  
1108 +    if ( iand(iHash, STICKY_PAIR).ne.0 ) then
1109 +       call do_sticky_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1110 +            pot, A, f, t, do_pot)
1111 +    endif
1112  
1113 <    if (FF_uses_GayBerne .and. SIM_uses_GayBerne) then
1114 <      
1115 <       if ( PropertyMap(me_i)%is_GayBerne .and. &
969 <            PropertyMap(me_j)%is_GayBerne) then
970 <          call do_gb_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
971 <               pot, A, f, t, do_pot)
972 <       endif
973 <      
1113 >    if ( iand(iHash, STICKYPOWER_PAIR).ne.0 ) then
1114 >       call do_sticky_power_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1115 >            pot, A, f, t, do_pot)
1116      endif
1117 +
1118 +    if ( iand(iHash, GAYBERNE_PAIR).ne.0 ) then
1119 +       call do_gb_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1120 +            pot, A, f, t, do_pot)
1121 +    endif
1122      
1123 <    if (FF_uses_EAM .and. SIM_uses_EAM) then
1124 <      
1125 <       if ( PropertyMap(me_i)%is_EAM .and. PropertyMap(me_j)%is_EAM) then
979 <          call do_eam_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, &
980 <               do_pot)
981 <       endif
982 <      
1123 >    if ( iand(iHash, GAYBERNE_LJ).ne.0 ) then
1124 > !      call do_gblj_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1125 > !           pot, A, f, t, do_pot)
1126      endif
1127  
1128 +    if ( iand(iHash, EAM_PAIR).ne.0 ) then      
1129 +       call do_eam_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, &
1130 +            do_pot)
1131 +    endif
1132  
1133 < !    write(*,*) PropertyMap(me_i)%is_Shape,PropertyMap(me_j)%is_Shape
1133 >    if ( iand(iHash, SHAPE_PAIR).ne.0 ) then      
1134 >       call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1135 >            pot, A, f, t, do_pot)
1136 >    endif
1137  
1138 <    if (FF_uses_Shapes .and. SIM_uses_Shapes) then
1139 <       if ( PropertyMap(me_i)%is_Shape .and. &
1140 <            PropertyMap(me_j)%is_Shape ) then
991 <          call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
992 <               pot, A, f, t, do_pot)
993 <       endif
994 <      
1138 >    if ( iand(iHash, SHAPE_LJ).ne.0 ) then      
1139 >       call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1140 >            pot, A, f, t, do_pot)
1141      endif
1142      
1143    end subroutine do_pair
# Line 999 | Line 1145 | contains
1145    subroutine do_prepair(i, j, rijsq, d, sw, rcijsq, dc, &
1146         do_pot, do_stress, eFrame, A, f, t, pot)
1147  
1148 <   real( kind = dp ) :: pot, sw
1149 <   real( kind = dp ), dimension(9,nLocal) :: eFrame
1150 <   real (kind=dp), dimension(9,nLocal) :: A
1151 <   real (kind=dp), dimension(3,nLocal) :: f
1152 <   real (kind=dp), dimension(3,nLocal) :: t
1007 <  
1008 <   logical, intent(inout) :: do_pot, do_stress
1009 <   integer, intent(in) :: i, j
1010 <   real ( kind = dp ), intent(inout)    :: rijsq, rcijsq
1011 <   real ( kind = dp )                :: r, rc
1012 <   real ( kind = dp ), intent(inout) :: d(3), dc(3)
1013 <  
1014 <   logical :: is_EAM_i, is_EAM_j
1015 <  
1016 <   integer :: me_i, me_j
1017 <  
1148 >    real( kind = dp ) :: pot, sw
1149 >    real( kind = dp ), dimension(9,nLocal) :: eFrame
1150 >    real (kind=dp), dimension(9,nLocal) :: A
1151 >    real (kind=dp), dimension(3,nLocal) :: f
1152 >    real (kind=dp), dimension(3,nLocal) :: t
1153  
1154 +    logical, intent(inout) :: do_pot, do_stress
1155 +    integer, intent(in) :: i, j
1156 +    real ( kind = dp ), intent(inout)    :: rijsq, rcijsq
1157 +    real ( kind = dp )                :: r, rc
1158 +    real ( kind = dp ), intent(inout) :: d(3), dc(3)
1159 +
1160 +    integer :: me_i, me_j, iHash
1161 +
1162      r = sqrt(rijsq)
1020    if (SIM_uses_molecular_cutoffs) then
1021       rc = sqrt(rcijsq)
1022    else
1023       rc = r
1024    endif
1025  
1163  
1164   #ifdef IS_MPI  
1165 <   me_i = atid_row(i)
1166 <   me_j = atid_col(j)  
1165 >    me_i = atid_row(i)
1166 >    me_j = atid_col(j)  
1167   #else  
1168 <   me_i = atid(i)
1169 <   me_j = atid(j)  
1168 >    me_i = atid(i)
1169 >    me_j = atid(j)  
1170   #endif
1034  
1035   if (FF_uses_EAM .and. SIM_uses_EAM) then
1036      
1037      if (PropertyMap(me_i)%is_EAM .and. PropertyMap(me_j)%is_EAM) &
1038           call calc_EAM_prepair_rho(i, j, d, r, rijsq )
1039      
1040   endif
1041  
1042 end subroutine do_prepair
1043
1044
1045 subroutine do_preforce(nlocal,pot)
1046   integer :: nlocal
1047   real( kind = dp ) :: pot
1048  
1049   if (FF_uses_EAM .and. SIM_uses_EAM) then
1050      call calc_EAM_preforce_Frho(nlocal,pot)
1051   endif
1052  
1053  
1054 end subroutine do_preforce
1055
1056
1057 subroutine get_interatomic_vector(q_i, q_j, d, r_sq)
1058  
1059   real (kind = dp), dimension(3) :: q_i
1060   real (kind = dp), dimension(3) :: q_j
1061   real ( kind = dp ), intent(out) :: r_sq
1062   real( kind = dp ) :: d(3), scaled(3)
1063   integer i
1064  
1065   d(1:3) = q_j(1:3) - q_i(1:3)
1066  
1067   ! Wrap back into periodic box if necessary
1068   if ( SIM_uses_PBC ) then
1069      
1070      if( .not.boxIsOrthorhombic ) then
1071         ! calc the scaled coordinates.
1072        
1073         scaled = matmul(HmatInv, d)
1074        
1075         ! wrap the scaled coordinates
1076        
1077         scaled = scaled  - anint(scaled)
1078        
1079        
1080         ! calc the wrapped real coordinates from the wrapped scaled
1081         ! coordinates
1082        
1083         d = matmul(Hmat,scaled)
1084        
1085      else
1086         ! calc the scaled coordinates.
1087        
1088         do i = 1, 3
1089            scaled(i) = d(i) * HmatInv(i,i)
1090            
1091            ! wrap the scaled coordinates
1092            
1093            scaled(i) = scaled(i) - anint(scaled(i))
1094            
1095            ! calc the wrapped real coordinates from the wrapped scaled
1096            ! coordinates
1097            
1098            d(i) = scaled(i)*Hmat(i,i)
1099         enddo
1100      endif
1101      
1102   endif
1103  
1104   r_sq = dot_product(d,d)
1105  
1106 end subroutine get_interatomic_vector
1107
1108 subroutine zero_work_arrays()
1109  
1110 #ifdef IS_MPI
1111  
1112   q_Row = 0.0_dp
1113   q_Col = 0.0_dp
1171  
1172 <   q_group_Row = 0.0_dp
1173 <   q_group_Col = 0.0_dp  
1174 <  
1175 <   eFrame_Row = 0.0_dp
1176 <   eFrame_Col = 0.0_dp
1177 <  
1178 <   A_Row = 0.0_dp
1179 <   A_Col = 0.0_dp
1180 <  
1181 <   f_Row = 0.0_dp
1182 <   f_Col = 0.0_dp
1183 <   f_Temp = 0.0_dp
1184 <  
1185 <   t_Row = 0.0_dp
1186 <   t_Col = 0.0_dp
1187 <   t_Temp = 0.0_dp
1188 <  
1189 <   pot_Row = 0.0_dp
1190 <   pot_Col = 0.0_dp
1191 <   pot_Temp = 0.0_dp
1192 <  
1193 <   rf_Row = 0.0_dp
1194 <   rf_Col = 0.0_dp
1195 <   rf_Temp = 0.0_dp
1196 <  
1197 < #endif
1198 <
1199 <   if (FF_uses_EAM .and. SIM_uses_EAM) then
1200 <      call clean_EAM()
1201 <   endif
1202 <  
1203 <   rf = 0.0_dp
1204 <   tau_Temp = 0.0_dp
1205 <   virial_Temp = 0.0_dp
1206 < end subroutine zero_work_arrays
1207 <
1208 < function skipThisPair(atom1, atom2) result(skip_it)
1209 <   integer, intent(in) :: atom1
1210 <   integer, intent(in), optional :: atom2
1211 <   logical :: skip_it
1212 <   integer :: unique_id_1, unique_id_2
1213 <   integer :: me_i,me_j
1214 <   integer :: i
1215 <  
1216 <   skip_it = .false.
1217 <  
1218 <   !! there are a number of reasons to skip a pair or a particle
1219 <   !! mostly we do this to exclude atoms who are involved in short
1220 <   !! range interactions (bonds, bends, torsions), but we also need
1221 <   !! to exclude some overcounted interactions that result from
1222 <   !! the parallel decomposition
1223 <  
1224 < #ifdef IS_MPI
1225 <   !! in MPI, we have to look up the unique IDs for each atom
1226 <   unique_id_1 = AtomRowToGlobal(atom1)
1227 < #else
1228 <   !! in the normal loop, the atom numbers are unique
1229 <   unique_id_1 = atom1
1230 < #endif
1231 <  
1232 <   !! We were called with only one atom, so just check the global exclude
1233 <   !! list for this atom
1234 <   if (.not. present(atom2)) then
1235 <      do i = 1, nExcludes_global
1236 <         if (excludesGlobal(i) == unique_id_1) then
1237 <            skip_it = .true.
1238 <            return
1239 <         end if
1240 <      end do
1241 <      return
1242 <   end if
1243 <  
1244 < #ifdef IS_MPI
1245 <   unique_id_2 = AtomColToGlobal(atom2)
1189 < #else
1190 <   unique_id_2 = atom2
1191 < #endif
1192 <  
1172 >    iHash = InteractionHash(me_i, me_j)
1173 >
1174 >    if ( iand(iHash, EAM_PAIR).ne.0 ) then      
1175 >            call calc_EAM_prepair_rho(i, j, d, r, rijsq )
1176 >    endif
1177 >    
1178 >  end subroutine do_prepair
1179 >
1180 >
1181 >  subroutine do_preforce(nlocal,pot)
1182 >    integer :: nlocal
1183 >    real( kind = dp ) :: pot
1184 >
1185 >    if (FF_uses_EAM .and. SIM_uses_EAM) then
1186 >       call calc_EAM_preforce_Frho(nlocal,pot)
1187 >    endif
1188 >
1189 >
1190 >  end subroutine do_preforce
1191 >
1192 >
1193 >  subroutine get_interatomic_vector(q_i, q_j, d, r_sq)
1194 >
1195 >    real (kind = dp), dimension(3) :: q_i
1196 >    real (kind = dp), dimension(3) :: q_j
1197 >    real ( kind = dp ), intent(out) :: r_sq
1198 >    real( kind = dp ) :: d(3), scaled(3)
1199 >    integer i
1200 >
1201 >    d(1:3) = q_j(1:3) - q_i(1:3)
1202 >
1203 >    ! Wrap back into periodic box if necessary
1204 >    if ( SIM_uses_PBC ) then
1205 >
1206 >       if( .not.boxIsOrthorhombic ) then
1207 >          ! calc the scaled coordinates.
1208 >
1209 >          scaled = matmul(HmatInv, d)
1210 >
1211 >          ! wrap the scaled coordinates
1212 >
1213 >          scaled = scaled  - anint(scaled)
1214 >
1215 >
1216 >          ! calc the wrapped real coordinates from the wrapped scaled
1217 >          ! coordinates
1218 >
1219 >          d = matmul(Hmat,scaled)
1220 >
1221 >       else
1222 >          ! calc the scaled coordinates.
1223 >
1224 >          do i = 1, 3
1225 >             scaled(i) = d(i) * HmatInv(i,i)
1226 >
1227 >             ! wrap the scaled coordinates
1228 >
1229 >             scaled(i) = scaled(i) - anint(scaled(i))
1230 >
1231 >             ! calc the wrapped real coordinates from the wrapped scaled
1232 >             ! coordinates
1233 >
1234 >             d(i) = scaled(i)*Hmat(i,i)
1235 >          enddo
1236 >       endif
1237 >
1238 >    endif
1239 >
1240 >    r_sq = dot_product(d,d)
1241 >
1242 >  end subroutine get_interatomic_vector
1243 >
1244 >  subroutine zero_work_arrays()
1245 >
1246   #ifdef IS_MPI
1247 <   !! this situation should only arise in MPI simulations
1248 <   if (unique_id_1 == unique_id_2) then
1249 <      skip_it = .true.
1250 <      return
1251 <   end if
1252 <  
1253 <   !! this prevents us from doing the pair on multiple processors
1254 <   if (unique_id_1 < unique_id_2) then
1255 <      if (mod(unique_id_1 + unique_id_2,2) == 0) then
1256 <         skip_it = .true.
1257 <         return
1258 <      endif
1259 <   else                
1260 <      if (mod(unique_id_1 + unique_id_2,2) == 1) then
1261 <         skip_it = .true.
1262 <         return
1263 <      endif
1264 <   endif
1247 >
1248 >    q_Row = 0.0_dp
1249 >    q_Col = 0.0_dp
1250 >
1251 >    q_group_Row = 0.0_dp
1252 >    q_group_Col = 0.0_dp  
1253 >
1254 >    eFrame_Row = 0.0_dp
1255 >    eFrame_Col = 0.0_dp
1256 >
1257 >    A_Row = 0.0_dp
1258 >    A_Col = 0.0_dp
1259 >
1260 >    f_Row = 0.0_dp
1261 >    f_Col = 0.0_dp
1262 >    f_Temp = 0.0_dp
1263 >
1264 >    t_Row = 0.0_dp
1265 >    t_Col = 0.0_dp
1266 >    t_Temp = 0.0_dp
1267 >
1268 >    pot_Row = 0.0_dp
1269 >    pot_Col = 0.0_dp
1270 >    pot_Temp = 0.0_dp
1271 >
1272 >    rf_Row = 0.0_dp
1273 >    rf_Col = 0.0_dp
1274 >    rf_Temp = 0.0_dp
1275 >
1276   #endif
1277 <  
1278 <   !! the rest of these situations can happen in all simulations:
1279 <   do i = 1, nExcludes_global      
1280 <      if ((excludesGlobal(i) == unique_id_1) .or. &
1281 <           (excludesGlobal(i) == unique_id_2)) then
1282 <         skip_it = .true.
1283 <         return
1284 <      endif
1285 <   enddo
1286 <  
1287 <   do i = 1, nSkipsForAtom(atom1)
1288 <      if (skipsForAtom(atom1, i) .eq. unique_id_2) then
1289 <         skip_it = .true.
1290 <         return
1291 <      endif
1292 <   end do
1293 <  
1294 <   return
1295 < end function skipThisPair
1296 <
1297 < function FF_UsesDirectionalAtoms() result(doesit)
1298 <   logical :: doesit
1299 <   doesit = FF_uses_DirectionalAtoms .or. FF_uses_Dipoles .or. &
1300 <        FF_uses_Quadrupoles .or. FF_uses_Sticky .or. &
1301 <        FF_uses_GayBerne .or. FF_uses_Shapes
1302 < end function FF_UsesDirectionalAtoms
1303 <
1304 < function FF_RequiresPrepairCalc() result(doesit)
1305 <   logical :: doesit
1306 <   doesit = FF_uses_EAM
1307 < end function FF_RequiresPrepairCalc
1308 <
1309 < function FF_RequiresPostpairCalc() result(doesit)
1310 <   logical :: doesit
1311 <   doesit = FF_uses_RF
1312 < end function FF_RequiresPostpairCalc
1313 <
1277 >
1278 >    if (FF_uses_EAM .and. SIM_uses_EAM) then
1279 >       call clean_EAM()
1280 >    endif
1281 >
1282 >    rf = 0.0_dp
1283 >    tau_Temp = 0.0_dp
1284 >    virial_Temp = 0.0_dp
1285 >  end subroutine zero_work_arrays
1286 >
1287 >  function skipThisPair(atom1, atom2) result(skip_it)
1288 >    integer, intent(in) :: atom1
1289 >    integer, intent(in), optional :: atom2
1290 >    logical :: skip_it
1291 >    integer :: unique_id_1, unique_id_2
1292 >    integer :: me_i,me_j
1293 >    integer :: i
1294 >
1295 >    skip_it = .false.
1296 >
1297 >    !! there are a number of reasons to skip a pair or a particle
1298 >    !! mostly we do this to exclude atoms who are involved in short
1299 >    !! range interactions (bonds, bends, torsions), but we also need
1300 >    !! to exclude some overcounted interactions that result from
1301 >    !! the parallel decomposition
1302 >
1303 > #ifdef IS_MPI
1304 >    !! in MPI, we have to look up the unique IDs for each atom
1305 >    unique_id_1 = AtomRowToGlobal(atom1)
1306 > #else
1307 >    !! in the normal loop, the atom numbers are unique
1308 >    unique_id_1 = atom1
1309 > #endif
1310 >
1311 >    !! We were called with only one atom, so just check the global exclude
1312 >    !! list for this atom
1313 >    if (.not. present(atom2)) then
1314 >       do i = 1, nExcludes_global
1315 >          if (excludesGlobal(i) == unique_id_1) then
1316 >             skip_it = .true.
1317 >             return
1318 >          end if
1319 >       end do
1320 >       return
1321 >    end if
1322 >
1323 > #ifdef IS_MPI
1324 >    unique_id_2 = AtomColToGlobal(atom2)
1325 > #else
1326 >    unique_id_2 = atom2
1327 > #endif
1328 >
1329 > #ifdef IS_MPI
1330 >    !! this situation should only arise in MPI simulations
1331 >    if (unique_id_1 == unique_id_2) then
1332 >       skip_it = .true.
1333 >       return
1334 >    end if
1335 >
1336 >    !! this prevents us from doing the pair on multiple processors
1337 >    if (unique_id_1 < unique_id_2) then
1338 >       if (mod(unique_id_1 + unique_id_2,2) == 0) then
1339 >          skip_it = .true.
1340 >          return
1341 >       endif
1342 >    else                
1343 >       if (mod(unique_id_1 + unique_id_2,2) == 1) then
1344 >          skip_it = .true.
1345 >          return
1346 >       endif
1347 >    endif
1348 > #endif
1349 >
1350 >    !! the rest of these situations can happen in all simulations:
1351 >    do i = 1, nExcludes_global      
1352 >       if ((excludesGlobal(i) == unique_id_1) .or. &
1353 >            (excludesGlobal(i) == unique_id_2)) then
1354 >          skip_it = .true.
1355 >          return
1356 >       endif
1357 >    enddo
1358 >
1359 >    do i = 1, nSkipsForAtom(atom1)
1360 >       if (skipsForAtom(atom1, i) .eq. unique_id_2) then
1361 >          skip_it = .true.
1362 >          return
1363 >       endif
1364 >    end do
1365 >
1366 >    return
1367 >  end function skipThisPair
1368 >
1369 >  function FF_UsesDirectionalAtoms() result(doesit)
1370 >    logical :: doesit
1371 >    doesit = FF_uses_DirectionalAtoms
1372 >  end function FF_UsesDirectionalAtoms
1373 >
1374 >  function FF_RequiresPrepairCalc() result(doesit)
1375 >    logical :: doesit
1376 >    doesit = FF_uses_EAM
1377 >  end function FF_RequiresPrepairCalc
1378 >
1379 >  function FF_RequiresPostpairCalc() result(doesit)
1380 >    logical :: doesit
1381 >    if (electrostaticSummationMethod == REACTION_FIELD) doesit = .true.
1382 >  end function FF_RequiresPostpairCalc
1383 >
1384   #ifdef PROFILE
1385 < function getforcetime() result(totalforcetime)
1386 <   real(kind=dp) :: totalforcetime
1387 <   totalforcetime = forcetime
1388 < end function getforcetime
1385 >  function getforcetime() result(totalforcetime)
1386 >    real(kind=dp) :: totalforcetime
1387 >    totalforcetime = forcetime
1388 >  end function getforcetime
1389   #endif
1256
1257 !! This cleans componets of force arrays belonging only to fortran
1390  
1391 < subroutine add_stress_tensor(dpair, fpair)
1392 <  
1393 <   real( kind = dp ), dimension(3), intent(in) :: dpair, fpair
1394 <  
1395 <   ! because the d vector is the rj - ri vector, and
1396 <   ! because fx, fy, fz are the force on atom i, we need a
1397 <   ! negative sign here:  
1398 <  
1399 <   tau_Temp(1) = tau_Temp(1) - dpair(1) * fpair(1)
1400 <   tau_Temp(2) = tau_Temp(2) - dpair(1) * fpair(2)
1401 <   tau_Temp(3) = tau_Temp(3) - dpair(1) * fpair(3)
1402 <   tau_Temp(4) = tau_Temp(4) - dpair(2) * fpair(1)
1403 <   tau_Temp(5) = tau_Temp(5) - dpair(2) * fpair(2)
1404 <   tau_Temp(6) = tau_Temp(6) - dpair(2) * fpair(3)
1405 <   tau_Temp(7) = tau_Temp(7) - dpair(3) * fpair(1)
1406 <   tau_Temp(8) = tau_Temp(8) - dpair(3) * fpair(2)
1407 <   tau_Temp(9) = tau_Temp(9) - dpair(3) * fpair(3)
1408 <  
1409 <   virial_Temp = virial_Temp + &
1410 <        (tau_Temp(1) + tau_Temp(5) + tau_Temp(9))
1411 <  
1412 < end subroutine add_stress_tensor
1413 <
1391 >  !! This cleans componets of force arrays belonging only to fortran
1392 >
1393 >  subroutine add_stress_tensor(dpair, fpair)
1394 >
1395 >    real( kind = dp ), dimension(3), intent(in) :: dpair, fpair
1396 >
1397 >    ! because the d vector is the rj - ri vector, and
1398 >    ! because fx, fy, fz are the force on atom i, we need a
1399 >    ! negative sign here:  
1400 >
1401 >    tau_Temp(1) = tau_Temp(1) - dpair(1) * fpair(1)
1402 >    tau_Temp(2) = tau_Temp(2) - dpair(1) * fpair(2)
1403 >    tau_Temp(3) = tau_Temp(3) - dpair(1) * fpair(3)
1404 >    tau_Temp(4) = tau_Temp(4) - dpair(2) * fpair(1)
1405 >    tau_Temp(5) = tau_Temp(5) - dpair(2) * fpair(2)
1406 >    tau_Temp(6) = tau_Temp(6) - dpair(2) * fpair(3)
1407 >    tau_Temp(7) = tau_Temp(7) - dpair(3) * fpair(1)
1408 >    tau_Temp(8) = tau_Temp(8) - dpair(3) * fpair(2)
1409 >    tau_Temp(9) = tau_Temp(9) - dpair(3) * fpair(3)
1410 >
1411 >    virial_Temp = virial_Temp + &
1412 >         (tau_Temp(1) + tau_Temp(5) + tau_Temp(9))
1413 >
1414 >  end subroutine add_stress_tensor
1415 >
1416   end module doForces

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines