ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-3.0/src/UseTheForce/doForces.F90
(Generate patch)

Comparing trunk/OOPSE-3.0/src/UseTheForce/doForces.F90 (file contents):
Revision 1650 by gezelter, Tue Oct 26 22:24:52 2004 UTC vs.
Revision 2274 by gezelter, Wed Aug 17 15:26:42 2005 UTC

# Line 1 | Line 1
1 + !!
2 + !! Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 + !!
4 + !! The University of Notre Dame grants you ("Licensee") a
5 + !! non-exclusive, royalty free, license to use, modify and
6 + !! redistribute this software in source and binary code form, provided
7 + !! that the following conditions are met:
8 + !!
9 + !! 1. Acknowledgement of the program authors must be made in any
10 + !!    publication of scientific results based in part on use of the
11 + !!    program.  An acceptable form of acknowledgement is citation of
12 + !!    the article in which the program was described (Matthew
13 + !!    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 + !!    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 + !!    Parallel Simulation Engine for Molecular Dynamics,"
16 + !!    J. Comput. Chem. 26, pp. 252-271 (2005))
17 + !!
18 + !! 2. Redistributions of source code must retain the above copyright
19 + !!    notice, this list of conditions and the following disclaimer.
20 + !!
21 + !! 3. Redistributions in binary form must reproduce the above copyright
22 + !!    notice, this list of conditions and the following disclaimer in the
23 + !!    documentation and/or other materials provided with the
24 + !!    distribution.
25 + !!
26 + !! This software is provided "AS IS," without a warranty of any
27 + !! kind. All express or implied conditions, representations and
28 + !! warranties, including any implied warranty of merchantability,
29 + !! fitness for a particular purpose or non-infringement, are hereby
30 + !! excluded.  The University of Notre Dame and its licensors shall not
31 + !! be liable for any damages suffered by licensee as a result of
32 + !! using, modifying or distributing the software or its
33 + !! derivatives. In no event will the University of Notre Dame or its
34 + !! licensors be liable for any lost revenue, profit or data, or for
35 + !! direct, indirect, special, consequential, incidental or punitive
36 + !! damages, however caused and regardless of the theory of liability,
37 + !! arising out of the use of or inability to use software, even if the
38 + !! University of Notre Dame has been advised of the possibility of
39 + !! such damages.
40 + !!
41 +
42   !! doForces.F90
43   !! module doForces
44   !! Calculates Long Range forces.
45  
46   !! @author Charles F. Vardeman II
47   !! @author Matthew Meineke
48 < !! @version $Id: doForces.F90,v 1.5 2004-10-26 22:24:44 gezelter Exp $, $Date: 2004-10-26 22:24:44 $, $Name: not supported by cvs2svn $, $Revision: 1.5 $
48 > !! @version $Id: doForces.F90,v 1.30 2005-08-17 15:26:37 gezelter Exp $, $Date: 2005-08-17 15:26:37 $, $Name: not supported by cvs2svn $, $Revision: 1.30 $
49  
50 +
51   module doForces
52    use force_globals
53    use simulation
# Line 14 | Line 56 | module doForces
56    use switcheroo
57    use neighborLists  
58    use lj
59 <  use sticky_pair
60 <  use dipole_dipole
19 <  use charge_charge
59 >  use sticky
60 >  use electrostatic_module
61    use reaction_field
62    use gb_pair
63    use shapes
# Line 32 | Line 73 | module doForces
73  
74   #define __FORTRAN90
75   #include "UseTheForce/fSwitchingFunction.h"
76 + #include "UseTheForce/fCutoffPolicy.h"
77 + #include "UseTheForce/DarkSide/fInteractionMap.h"
78  
79 +
80    INTEGER, PARAMETER:: PREPAIR_LOOP = 1
81    INTEGER, PARAMETER:: PAIR_LOOP    = 2
82  
39  logical, save :: haveRlist = .false.
83    logical, save :: haveNeighborList = .false.
84    logical, save :: haveSIMvariables = .false.
42  logical, save :: havePropertyMap = .false.
85    logical, save :: haveSaneForceField = .false.
86 <  
86 >  logical, save :: haveInteractionHash = .false.
87 >  logical, save :: haveGtypeCutoffMap = .false.
88 >
89    logical, save :: FF_uses_DirectionalAtoms
90 <  logical, save :: FF_uses_LennardJones
47 <  logical, save :: FF_uses_Electrostatic
48 <  logical, save :: FF_uses_charges
49 <  logical, save :: FF_uses_dipoles
50 <  logical, save :: FF_uses_sticky
90 >  logical, save :: FF_uses_Dipoles
91    logical, save :: FF_uses_GayBerne
92    logical, save :: FF_uses_EAM
53  logical, save :: FF_uses_Shapes
54  logical, save :: FF_uses_FLARB
93    logical, save :: FF_uses_RF
94  
95    logical, save :: SIM_uses_DirectionalAtoms
58  logical, save :: SIM_uses_LennardJones
59  logical, save :: SIM_uses_Electrostatics
60  logical, save :: SIM_uses_Charges
61  logical, save :: SIM_uses_Dipoles
62  logical, save :: SIM_uses_Sticky
63  logical, save :: SIM_uses_GayBerne
96    logical, save :: SIM_uses_EAM
65  logical, save :: SIM_uses_Shapes
66  logical, save :: SIM_uses_FLARB
97    logical, save :: SIM_uses_RF
98    logical, save :: SIM_requires_postpair_calc
99    logical, save :: SIM_requires_prepair_calc
100    logical, save :: SIM_uses_PBC
71  logical, save :: SIM_uses_molecular_cutoffs
101  
73  real(kind=dp), save :: rlist, rlistsq
74
102    public :: init_FF
103 +  public :: setDefaultCutoffs
104    public :: do_force_loop
105 <  public :: setRlistDF
105 >  public :: createInteractionHash
106 >  public :: createGtypeCutoffMap
107  
108   #ifdef PROFILE
109    public :: getforcetime
# Line 82 | Line 111 | module doForces
111    real :: forceTimeInitial, forceTimeFinal
112    integer :: nLoops
113   #endif
114 +  
115 +  !! Variables for cutoff mapping and interaction mapping
116 +  ! Bit hash to determine pair-pair interactions.
117 +  integer, dimension(:,:), allocatable :: InteractionHash
118 +  real(kind=dp), dimension(:), allocatable :: atypeMaxCutoff
119 +  real(kind=dp), dimension(:), allocatable :: groupMaxCutoff
120 +  integer, dimension(:), allocatable :: groupToGtype
121 +  real(kind=dp), dimension(:), allocatable :: gtypeMaxCutoff
122 +  type ::gtypeCutoffs
123 +     real(kind=dp) :: rcut
124 +     real(kind=dp) :: rcutsq
125 +     real(kind=dp) :: rlistsq
126 +  end type gtypeCutoffs
127 +  type(gtypeCutoffs), dimension(:,:), allocatable :: gtypeCutoffMap
128  
129 <  type :: Properties
130 <     logical :: is_Directional   = .false.
131 <     logical :: is_LennardJones  = .false.
89 <     logical :: is_Electrostatic = .false.
90 <     logical :: is_Charge        = .false.
91 <     logical :: is_Dipole        = .false.
92 <     logical :: is_Sticky        = .false.
93 <     logical :: is_GayBerne      = .false.
94 <     logical :: is_EAM           = .false.
95 <     logical :: is_Shape         = .false.
96 <     logical :: is_FLARB         = .false.
97 <  end type Properties
98 <
99 <  type(Properties), dimension(:),allocatable :: PropertyMap
100 <
129 >  integer, save :: cutoffPolicy = TRADITIONAL_CUTOFF_POLICY
130 >  real(kind=dp),save :: defaultRcut, defaultRsw, defaultRlist
131 >  
132   contains
133  
134 <  subroutine setRlistDF( this_rlist )
104 <    
105 <    real(kind=dp) :: this_rlist
106 <
107 <    rlist = this_rlist
108 <    rlistsq = rlist * rlist
109 <    
110 <    haveRlist = .true.
111 <
112 <  end subroutine setRlistDF    
113 <
114 <  subroutine createPropertyMap(status)
134 >  subroutine createInteractionHash(status)
135      integer :: nAtypes
136 <    integer :: status
136 >    integer, intent(out) :: status
137      integer :: i
138 <    logical :: thisProperty
139 <    real (kind=DP) :: thisDPproperty
138 >    integer :: j
139 >    integer :: iHash
140 >    !! Test Types
141 >    logical :: i_is_LJ
142 >    logical :: i_is_Elect
143 >    logical :: i_is_Sticky
144 >    logical :: i_is_StickyP
145 >    logical :: i_is_GB
146 >    logical :: i_is_EAM
147 >    logical :: i_is_Shape
148 >    logical :: j_is_LJ
149 >    logical :: j_is_Elect
150 >    logical :: j_is_Sticky
151 >    logical :: j_is_StickyP
152 >    logical :: j_is_GB
153 >    logical :: j_is_EAM
154 >    logical :: j_is_Shape
155 >    
156 >    status = 0  
157  
158 <    status = 0
159 <
158 >    if (.not. associated(atypes)) then
159 >       call handleError("atype", "atypes was not present before call of createInteractionHash!")
160 >       status = -1
161 >       return
162 >    endif
163 >    
164      nAtypes = getSize(atypes)
165 <
165 >    
166      if (nAtypes == 0) then
167         status = -1
168         return
169      end if
170 <        
171 <    if (.not. allocated(PropertyMap)) then
172 <       allocate(PropertyMap(nAtypes))
170 >
171 >    if (.not. allocated(InteractionHash)) then
172 >       allocate(InteractionHash(nAtypes,nAtypes))
173      endif
174  
175 +    if (.not. allocated(atypeMaxCutoff)) then
176 +       allocate(atypeMaxCutoff(nAtypes))
177 +    endif
178 +        
179      do i = 1, nAtypes
180 <       call getElementProperty(atypes, i, "is_Directional", thisProperty)
181 <       PropertyMap(i)%is_Directional = thisProperty
180 >       call getElementProperty(atypes, i, "is_LennardJones", i_is_LJ)
181 >       call getElementProperty(atypes, i, "is_Electrostatic", i_is_Elect)
182 >       call getElementProperty(atypes, i, "is_Sticky", i_is_Sticky)
183 >       call getElementProperty(atypes, i, "is_StickyPower", i_is_StickyP)
184 >       call getElementProperty(atypes, i, "is_GayBerne", i_is_GB)
185 >       call getElementProperty(atypes, i, "is_EAM", i_is_EAM)
186 >       call getElementProperty(atypes, i, "is_Shape", i_is_Shape)
187  
188 <       call getElementProperty(atypes, i, "is_LennardJones", thisProperty)
139 <       PropertyMap(i)%is_LennardJones = thisProperty
140 <      
141 <       call getElementProperty(atypes, i, "is_Electrostatic", thisProperty)
142 <       PropertyMap(i)%is_Electrostatic = thisProperty
188 >       do j = i, nAtypes
189  
190 <       call getElementProperty(atypes, i, "is_Charge", thisProperty)
191 <       PropertyMap(i)%is_Charge = thisProperty
146 <      
147 <       call getElementProperty(atypes, i, "is_Dipole", thisProperty)
148 <       PropertyMap(i)%is_Dipole = thisProperty
190 >          iHash = 0
191 >          myRcut = 0.0_dp
192  
193 <       call getElementProperty(atypes, i, "is_Sticky", thisProperty)
194 <       PropertyMap(i)%is_Sticky = thisProperty
193 >          call getElementProperty(atypes, j, "is_LennardJones", j_is_LJ)
194 >          call getElementProperty(atypes, j, "is_Electrostatic", j_is_Elect)
195 >          call getElementProperty(atypes, j, "is_Sticky", j_is_Sticky)
196 >          call getElementProperty(atypes, j, "is_StickyPower", j_is_StickyP)
197 >          call getElementProperty(atypes, j, "is_GayBerne", j_is_GB)
198 >          call getElementProperty(atypes, j, "is_EAM", j_is_EAM)
199 >          call getElementProperty(atypes, j, "is_Shape", j_is_Shape)
200  
201 <       call getElementProperty(atypes, i, "is_GayBerne", thisProperty)
202 <       PropertyMap(i)%is_GayBerne = thisProperty
201 >          if (i_is_LJ .and. j_is_LJ) then
202 >             iHash = ior(iHash, LJ_PAIR)            
203 >          endif
204 >          
205 >          if (i_is_Elect .and. j_is_Elect) then
206 >             iHash = ior(iHash, ELECTROSTATIC_PAIR)
207 >          endif
208 >          
209 >          if (i_is_Sticky .and. j_is_Sticky) then
210 >             iHash = ior(iHash, STICKY_PAIR)
211 >          endif
212  
213 <       call getElementProperty(atypes, i, "is_EAM", thisProperty)
214 <       PropertyMap(i)%is_EAM = thisProperty
213 >          if (i_is_StickyP .and. j_is_StickyP) then
214 >             iHash = ior(iHash, STICKYPOWER_PAIR)
215 >          endif
216  
217 <       call getElementProperty(atypes, i, "is_Shape", thisProperty)
218 <       PropertyMap(i)%is_Shape = thisProperty
217 >          if (i_is_EAM .and. j_is_EAM) then
218 >             iHash = ior(iHash, EAM_PAIR)
219 >          endif
220  
221 <       call getElementProperty(atypes, i, "is_FLARB", thisProperty)
222 <       PropertyMap(i)%is_FLARB = thisProperty
221 >          if (i_is_GB .and. j_is_GB) iHash = ior(iHash, GAYBERNE_PAIR)
222 >          if (i_is_GB .and. j_is_LJ) iHash = ior(iHash, GAYBERNE_LJ)
223 >          if (i_is_LJ .and. j_is_GB) iHash = ior(iHash, GAYBERNE_LJ)
224 >
225 >          if (i_is_Shape .and. j_is_Shape) iHash = ior(iHash, SHAPE_PAIR)
226 >          if (i_is_Shape .and. j_is_LJ) iHash = ior(iHash, SHAPE_LJ)
227 >          if (i_is_LJ .and. j_is_Shape) iHash = ior(iHash, SHAPE_LJ)
228 >
229 >
230 >          InteractionHash(i,j) = iHash
231 >          InteractionHash(j,i) = iHash
232 >
233 >       end do
234 >
235      end do
236  
237 <    havePropertyMap = .true.
237 >    haveInteractionHash = .true.
238 >  end subroutine createInteractionHash
239  
240 <  end subroutine createPropertyMap
240 >  subroutine createGtypeCutoffMap()
241  
242 +    logical :: i_is_LJ
243 +    logical :: i_is_Elect
244 +    logical :: i_is_Sticky
245 +    logical :: i_is_StickyP
246 +    logical :: i_is_GB
247 +    logical :: i_is_EAM
248 +    logical :: i_is_Shape
249 +
250 +    integer :: myStatus, nAtypes
251 +    real(kind=dp):: thisSigma, bigSigma
252 +
253 +    stat = 0
254 +    if (.not. haveInteractionHash) then
255 +       call createInteractionHash(myStatus)      
256 +       if (myStatus .ne. 0) then
257 +          write(default_error, *) 'createInteractionHash failed in doForces!'
258 +          stat = -1
259 +          return
260 +       endif
261 +    endif
262 +
263 +    nAtypes = getSize(atypes)
264 +    
265 +    do i = 1, nAtypes
266 +       if (SimHasAtype(i)) then          
267 +          call getElementProperty(atypes, i, "is_LennardJones", i_is_LJ)
268 +          call getElementProperty(atypes, i, "is_Electrostatic", i_is_Elect)
269 +          call getElementProperty(atypes, i, "is_Sticky", i_is_Sticky)
270 +          call getElementProperty(atypes, i, "is_StickyPower", i_is_StickyP)
271 +          call getElementProperty(atypes, i, "is_GayBerne", i_is_GB)
272 +          call getElementProperty(atypes, i, "is_EAM", i_is_EAM)
273 +          call getElementProperty(atypes, i, "is_Shape", i_is_Shape)
274 +          
275 +          if (i_is_LJ) then
276 +             thisRcut = getSigma(i) * 2.5_dp
277 +             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
278 +          endif
279 +          if (i_is_Elect) then
280 +             thisRcut = defaultRcut
281 +             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
282 +          endif
283 +          if (i_is_Sticky) then
284 +             thisRcut = getStickyCut(i)
285 +             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
286 +          endif
287 +          if (i_is_StickyPower) then
288 +             thisRcut = getStickyPowerCut(i)
289 +             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
290 +          endif
291 +          if (i_is_GayBerne) then
292 +             thisRcut = getGayBerneCut(i)
293 +             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
294 +          endif
295 +          if (i_is_EAM) then
296 +             thisRcut = getEAMCut(i)
297 +             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
298 +          endif
299 +          if (i_is_Shape) then
300 +             thisRcut = getShapeCut(i)
301 +             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
302 +          endif
303 +          
304 +          if (atypeMaxCutoff(i).gt.biggestAtypeCutoff) then
305 +             biggestAtypeCutoff = atypeMaxCutoff(i)
306 +          endif
307 +       endif
308 +    enddo
309 +
310 +    istart = 1
311 + #ifdef IS_MPI
312 +    iend = nGroupsInRow
313 + #else
314 +    iend = nGroups
315 + #endif
316 +    outer: do i = istart, iend
317 +
318 +       n_in_i = groupStartRow(i+1) - groupStartRow(i)
319 +
320 + #ifdef IS_MPI
321 +             jstart = 1
322 +             jend = nGroupsInCol
323 + #else
324 +             jstart = i+1
325 +             jend = nGroups
326 + #endif
327 +
328 +
329 +
330 +            
331 +
332 +
333 +
334 +     haveGtypeCutoffMap = .true.
335 +   end subroutine createGtypeCutoffMap
336 +
337 +   subroutine setDefaultCutoffs(defRcut, defRsw, defRlist, cutPolicy)
338 +     real(kind=dp),intent(in) :: defRcut, defRsw, defRlist
339 +     integer, intent(in) :: cutPolicy
340 +
341 +     defaultRcut = defRcut
342 +     defaultRsw = defRsw
343 +     defaultRlist = defRlist
344 +     cutoffPolicy = cutPolicy
345 +   end subroutine setDefaultCutoffs
346 +
347 +   subroutine setCutoffPolicy(cutPolicy)
348 +
349 +     integer, intent(in) :: cutPolicy
350 +     cutoffPolicy = cutPolicy
351 +     call createGtypeCutoffMap()
352 +
353 +   end subroutine setDefaultCutoffs
354 +    
355 +    
356    subroutine setSimVariables()
357      SIM_uses_DirectionalAtoms = SimUsesDirectionalAtoms()
172    SIM_uses_LennardJones = SimUsesLennardJones()
173    SIM_uses_Electrostatics = SimUsesElectrostatics()
174    SIM_uses_Charges = SimUsesCharges()
175    SIM_uses_Dipoles = SimUsesDipoles()
176    SIM_uses_Sticky = SimUsesSticky()
177    SIM_uses_GayBerne = SimUsesGayBerne()
358      SIM_uses_EAM = SimUsesEAM()
179    SIM_uses_Shapes = SimUsesShapes()
180    SIM_uses_FLARB = SimUsesFLARB()
359      SIM_uses_RF = SimUsesRF()
360      SIM_requires_postpair_calc = SimRequiresPostpairCalc()
361      SIM_requires_prepair_calc = SimRequiresPrepairCalc()
# Line 194 | Line 372 | contains
372      integer :: myStatus
373  
374      error = 0
197    
198    if (.not. havePropertyMap) then
375  
376 <       myStatus = 0
376 >    if (.not. haveInteractionHash) then      
377 >       myStatus = 0      
378 >       call createInteractionHash(myStatus)      
379 >       if (myStatus .ne. 0) then
380 >          write(default_error, *) 'createInteractionHash failed in doForces!'
381 >          error = -1
382 >          return
383 >       endif
384 >    endif
385  
386 <       call createPropertyMap(myStatus)
387 <
386 >    if (.not. haveGtypeCutoffMap) then        
387 >       myStatus = 0      
388 >       call createGtypeCutoffMap(myStatus)      
389         if (myStatus .ne. 0) then
390 <          write(default_error, *) 'createPropertyMap failed in doForces!'
390 >          write(default_error, *) 'createGtypeCutoffMap failed in doForces!'
391            error = -1
392            return
393         endif
# Line 239 | Line 424 | contains
424   #endif
425      return
426    end subroutine doReadyCheck
242    
427  
428 +
429    subroutine init_FF(use_RF_c, thisStat)
430  
431      logical, intent(in) :: use_RF_c
# Line 255 | Line 440 | contains
440  
441      !! Fortran's version of a cast:
442      FF_uses_RF = use_RF_c
443 <    
443 >
444      !! init_FF is called *after* all of the atom types have been
445      !! defined in atype_module using the new_atype subroutine.
446      !!
447      !! this will scan through the known atypes and figure out what
448      !! interactions are used by the force field.    
449 <  
449 >
450      FF_uses_DirectionalAtoms = .false.
266    FF_uses_LennardJones = .false.
267    FF_uses_Electrostatic = .false.
268    FF_uses_Charges = .false.    
451      FF_uses_Dipoles = .false.
270    FF_uses_Sticky = .false.
452      FF_uses_GayBerne = .false.
453      FF_uses_EAM = .false.
454 <    FF_uses_Shapes = .false.
274 <    FF_uses_FLARB = .false.
275 <    
454 >
455      call getMatchingElementList(atypes, "is_Directional", .true., &
456           nMatches, MatchList)
457      if (nMatches .gt. 0) FF_uses_DirectionalAtoms = .true.
458  
280    call getMatchingElementList(atypes, "is_LennardJones", .true., &
281         nMatches, MatchList)
282    if (nMatches .gt. 0) FF_uses_LennardJones = .true.
283    
284    call getMatchingElementList(atypes, "is_Electrostatic", .true., &
285         nMatches, MatchList)
286    if (nMatches .gt. 0) then
287       FF_uses_Electrostatic = .true.
288    endif
289
290    call getMatchingElementList(atypes, "is_Charge", .true., &
291         nMatches, MatchList)
292    if (nMatches .gt. 0) then
293       FF_uses_charges = .true.  
294       FF_uses_electrostatic = .true.
295    endif
296    
459      call getMatchingElementList(atypes, "is_Dipole", .true., &
460           nMatches, MatchList)
461 <    if (nMatches .gt. 0) then
300 <       FF_uses_dipoles = .true.
301 <       FF_uses_electrostatic = .true.
302 <       FF_uses_DirectionalAtoms = .true.
303 <    endif
461 >    if (nMatches .gt. 0) FF_uses_Dipoles = .true.
462      
305    call getMatchingElementList(atypes, "is_Sticky", .true., nMatches, &
306         MatchList)
307    if (nMatches .gt. 0) then
308       FF_uses_Sticky = .true.
309       FF_uses_DirectionalAtoms = .true.
310    endif
311    
463      call getMatchingElementList(atypes, "is_GayBerne", .true., &
464           nMatches, MatchList)
465 <    if (nMatches .gt. 0) then
466 <       FF_uses_GayBerne = .true.
316 <       FF_uses_DirectionalAtoms = .true.
317 <    endif
318 <    
465 >    if (nMatches .gt. 0) FF_uses_GayBerne = .true.
466 >
467      call getMatchingElementList(atypes, "is_EAM", .true., nMatches, MatchList)
468      if (nMatches .gt. 0) FF_uses_EAM = .true.
321    
322    call getMatchingElementList(atypes, "is_Shape", .true., &
323         nMatches, MatchList)
324    if (nMatches .gt. 0) then
325       FF_uses_Shapes = .true.
326       FF_uses_DirectionalAtoms = .true.
327    endif
469  
329    call getMatchingElementList(atypes, "is_FLARB", .true., &
330         nMatches, MatchList)
331    if (nMatches .gt. 0) FF_uses_FLARB = .true.
470  
333    !! Assume sanity (for the sake of argument)
471      haveSaneForceField = .true.
472 <    
472 >
473      !! check to make sure the FF_uses_RF setting makes sense
474 <    
475 <    if (FF_uses_dipoles) then
474 >
475 >    if (FF_uses_Dipoles) then
476         if (FF_uses_RF) then
477            dielect = getDielect()
478            call initialize_rf(dielect)
# Line 347 | Line 484 | contains
484            haveSaneForceField = .false.
485            return
486         endif
350    endif
351
352    if (FF_uses_sticky) then
353       call check_sticky_FF(my_status)
354       if (my_status /= 0) then
355          thisStat = -1
356          haveSaneForceField = .false.
357          return
358       end if
487      endif
488  
489      if (FF_uses_EAM) then
490 <         call init_EAM_FF(my_status)
490 >       call init_EAM_FF(my_status)
491         if (my_status /= 0) then
492            write(default_error, *) "init_EAM_FF returned a bad status"
493            thisStat = -1
# Line 377 | Line 505 | contains
505         endif
506      endif
507  
380    if (FF_uses_GayBerne .and. FF_uses_LennardJones) then
381    endif
382    
508      if (.not. haveNeighborList) then
509         !! Create neighbor lists
510         call expandNeighborList(nLocal, my_status)
# Line 389 | Line 514 | contains
514            return
515         endif
516         haveNeighborList = .true.
517 <    endif    
518 <    
517 >    endif
518 >
519    end subroutine init_FF
395  
520  
521 +
522    !! Does force loop over i,j pairs. Calls do_pair to calculates forces.
523    !------------------------------------------------------------->
524 <  subroutine do_force_loop(q, q_group, A, u_l, f, t, tau, pot, &
524 >  subroutine do_force_loop(q, q_group, A, eFrame, f, t, tau, pot, &
525         do_pot_c, do_stress_c, error)
526      !! Position array provided by C, dimensioned by getNlocal
527      real ( kind = dp ), dimension(3, nLocal) :: q
# Line 405 | Line 530 | contains
530      !! Rotation Matrix for each long range particle in simulation.
531      real( kind = dp), dimension(9, nLocal) :: A    
532      !! Unit vectors for dipoles (lab frame)
533 <    real( kind = dp ), dimension(3,nLocal) :: u_l
533 >    real( kind = dp ), dimension(9,nLocal) :: eFrame
534      !! Force array provided by C, dimensioned by getNlocal
535      real ( kind = dp ), dimension(3,nLocal) :: f
536      !! Torsion array provided by C, dimensioned by getNlocal
# Line 443 | Line 568 | contains
568      integer :: localError
569      integer :: propPack_i, propPack_j
570      integer :: loopStart, loopEnd, loop
571 <
571 >    integer :: iHash
572      real(kind=dp) :: listSkin = 1.0  
573 <    
573 >
574      !! initialize local variables  
575 <    
575 >
576   #ifdef IS_MPI
577      pot_local = 0.0_dp
578      nAtomsInRow   = getNatomsInRow(plan_atom_row)
# Line 457 | Line 582 | contains
582   #else
583      natoms = nlocal
584   #endif
585 <    
585 >
586      call doReadyCheck(localError)
587      if ( localError .ne. 0 ) then
588         call handleError("do_force_loop", "Not Initialized")
# Line 465 | Line 590 | contains
590         return
591      end if
592      call zero_work_arrays()
593 <        
593 >
594      do_pot = do_pot_c
595      do_stress = do_stress_c
596 <    
596 >
597      ! Gather all information needed by all force loops:
598 <    
598 >
599   #ifdef IS_MPI    
600 <    
600 >
601      call gather(q, q_Row, plan_atom_row_3d)
602      call gather(q, q_Col, plan_atom_col_3d)
603  
604      call gather(q_group, q_group_Row, plan_group_row_3d)
605      call gather(q_group, q_group_Col, plan_group_col_3d)
606 <        
606 >
607      if (FF_UsesDirectionalAtoms() .and. SIM_uses_DirectionalAtoms) then
608 <       call gather(u_l, u_l_Row, plan_atom_row_3d)
609 <       call gather(u_l, u_l_Col, plan_atom_col_3d)
610 <      
608 >       call gather(eFrame, eFrame_Row, plan_atom_row_rotation)
609 >       call gather(eFrame, eFrame_Col, plan_atom_col_rotation)
610 >
611         call gather(A, A_Row, plan_atom_row_rotation)
612         call gather(A, A_Col, plan_atom_col_rotation)
613      endif
614 <    
614 >
615   #endif
616 <    
616 >
617      !! Begin force loop timing:
618   #ifdef PROFILE
619      call cpu_time(forceTimeInitial)
620      nloops = nloops + 1
621   #endif
622 <    
622 >
623      loopEnd = PAIR_LOOP
624      if (FF_RequiresPrepairCalc() .and. SIM_requires_prepair_calc) then
625         loopStart = PREPAIR_LOOP
# Line 509 | Line 634 | contains
634         if (loop .eq. loopStart) then
635   #ifdef IS_MPI
636            call checkNeighborList(nGroupsInRow, q_group_row, listSkin, &
637 <             update_nlist)
637 >               update_nlist)
638   #else
639            call checkNeighborList(nGroups, q_group, listSkin, &
640 <             update_nlist)
640 >               update_nlist)
641   #endif
642         endif
643 <      
643 >
644         if (update_nlist) then
645            !! save current configuration and construct neighbor list
646   #ifdef IS_MPI
# Line 526 | Line 651 | contains
651            neighborListSize = size(list)
652            nlist = 0
653         endif
654 <      
654 >
655         istart = 1
656   #ifdef IS_MPI
657         iend = nGroupsInRow
# Line 536 | Line 661 | contains
661         outer: do i = istart, iend
662  
663            if (update_nlist) point(i) = nlist + 1
664 <          
664 >
665            n_in_i = groupStartRow(i+1) - groupStartRow(i)
666 <          
666 >
667            if (update_nlist) then
668   #ifdef IS_MPI
669               jstart = 1
# Line 553 | Line 678 | contains
678               ! make sure group i has neighbors
679               if (jstart .gt. jend) cycle outer
680            endif
681 <          
681 >
682            do jnab = jstart, jend
683               if (update_nlist) then
684                  j = jnab
# Line 562 | Line 687 | contains
687               endif
688  
689   #ifdef IS_MPI
690 +             me_j = atid_col(j)
691               call get_interatomic_vector(q_group_Row(:,i), &
692                    q_group_Col(:,j), d_grp, rgrpsq)
693   #else
694 +             me_j = atid(j)
695               call get_interatomic_vector(q_group(:,i), &
696                    q_group(:,j), d_grp, rgrpsq)
697   #endif
698  
699 <             if (rgrpsq < rlistsq) then
699 >             if (rgrpsq < InteractionHash(me_i,me_j)%rListsq) then
700                  if (update_nlist) then
701                     nlist = nlist + 1
702 <                  
702 >
703                     if (nlist > neighborListSize) then
704   #ifdef IS_MPI                
705                        call expandNeighborList(nGroupsInRow, listerror)
# Line 586 | Line 713 | contains
713                        end if
714                        neighborListSize = size(list)
715                     endif
716 <                  
716 >
717                     list(nlist) = j
718                  endif
719 <                
719 >
720                  if (loop .eq. PAIR_LOOP) then
721                     vij = 0.0d0
722                     fij(1:3) = 0.0d0
723                  endif
724 <                
724 >
725                  call get_switch(rgrpsq, sw, dswdr, rgrp, group_switch, &
726                       in_switching_region)
727 <                
727 >
728                  n_in_j = groupStartCol(j+1) - groupStartCol(j)
729 <                
729 >
730                  do ia = groupStartRow(i), groupStartRow(i+1)-1
731 <                  
731 >
732                     atom1 = groupListRow(ia)
733 <                  
733 >
734                     inner: do jb = groupStartCol(j), groupStartCol(j+1)-1
735 <                      
735 >
736                        atom2 = groupListCol(jb)
737 <                      
737 >
738                        if (skipThisPair(atom1, atom2)) cycle inner
739  
740                        if ((n_in_i .eq. 1).and.(n_in_j .eq. 1)) then
# Line 627 | Line 754 | contains
754   #ifdef IS_MPI                      
755                           call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
756                                rgrpsq, d_grp, do_pot, do_stress, &
757 <                              u_l, A, f, t, pot_local)
757 >                              eFrame, A, f, t, pot_local)
758   #else
759                           call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
760                                rgrpsq, d_grp, do_pot, do_stress, &
761 <                              u_l, A, f, t, pot)
761 >                              eFrame, A, f, t, pot)
762   #endif                                              
763                        else
764   #ifdef IS_MPI                      
765                           call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
766                                do_pot, &
767 <                              u_l, A, f, t, pot_local, vpair, fpair)
767 >                              eFrame, A, f, t, pot_local, vpair, fpair)
768   #else
769                           call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
770                                do_pot,  &
771 <                              u_l, A, f, t, pot, vpair, fpair)
771 >                              eFrame, A, f, t, pot, vpair, fpair)
772   #endif
773  
774                           vij = vij + vpair
# Line 649 | Line 776 | contains
776                        endif
777                     enddo inner
778                  enddo
779 <                
779 >
780                  if (loop .eq. PAIR_LOOP) then
781                     if (in_switching_region) then
782                        swderiv = vij*dswdr/rgrp
783                        fij(1) = fij(1) + swderiv*d_grp(1)
784                        fij(2) = fij(2) + swderiv*d_grp(2)
785                        fij(3) = fij(3) + swderiv*d_grp(3)
786 <                      
786 >
787                        do ia=groupStartRow(i), groupStartRow(i+1)-1
788                           atom1=groupListRow(ia)
789                           mf = mfactRow(atom1)
# Line 670 | Line 797 | contains
797                           f(3,atom1) = f(3,atom1) + swderiv*d_grp(3)*mf
798   #endif
799                        enddo
800 <                      
800 >
801                        do jb=groupStartCol(j), groupStartCol(j+1)-1
802                           atom2=groupListCol(jb)
803                           mf = mfactCol(atom2)
# Line 685 | Line 812 | contains
812   #endif
813                        enddo
814                     endif
815 <                  
815 >
816                     if (do_stress) call add_stress_tensor(d_grp, fij)
817                  endif
818               end if
819            enddo
820         enddo outer
821 <      
821 >
822         if (update_nlist) then
823   #ifdef IS_MPI
824            point(nGroupsInRow + 1) = nlist + 1
# Line 705 | Line 832 | contains
832               update_nlist = .false.                              
833            endif
834         endif
835 <            
835 >
836         if (loop .eq. PREPAIR_LOOP) then
837            call do_preforce(nlocal, pot)
838         endif
839 <      
839 >
840      enddo
841 <    
841 >
842      !! Do timing
843   #ifdef PROFILE
844      call cpu_time(forceTimeFinal)
845      forceTime = forceTime + forceTimeFinal - forceTimeInitial
846   #endif    
847 <    
847 >
848   #ifdef IS_MPI
849      !!distribute forces
850 <    
850 >
851      f_temp = 0.0_dp
852      call scatter(f_Row,f_temp,plan_atom_row_3d)
853      do i = 1,nlocal
854         f(1:3,i) = f(1:3,i) + f_temp(1:3,i)
855      end do
856 <    
856 >
857      f_temp = 0.0_dp
858      call scatter(f_Col,f_temp,plan_atom_col_3d)
859      do i = 1,nlocal
860         f(1:3,i) = f(1:3,i) + f_temp(1:3,i)
861      end do
862 <    
862 >
863      if (FF_UsesDirectionalAtoms() .and. SIM_uses_DirectionalAtoms) then
864         t_temp = 0.0_dp
865         call scatter(t_Row,t_temp,plan_atom_row_3d)
# Line 741 | Line 868 | contains
868         end do
869         t_temp = 0.0_dp
870         call scatter(t_Col,t_temp,plan_atom_col_3d)
871 <      
871 >
872         do i = 1,nlocal
873            t(1:3,i) = t(1:3,i) + t_temp(1:3,i)
874         end do
875      endif
876 <    
876 >
877      if (do_pot) then
878         ! scatter/gather pot_row into the members of my column
879         call scatter(pot_Row, pot_Temp, plan_atom_row)
880 <      
880 >
881         ! scatter/gather pot_local into all other procs
882         ! add resultant to get total pot
883         do i = 1, nlocal
884            pot_local = pot_local + pot_Temp(i)
885         enddo
886 <      
886 >
887         pot_Temp = 0.0_DP
888 <      
888 >
889         call scatter(pot_Col, pot_Temp, plan_atom_col)
890         do i = 1, nlocal
891            pot_local = pot_local + pot_Temp(i)
892         enddo
893 <      
893 >
894      endif
895   #endif
896 <    
896 >
897      if (FF_RequiresPostpairCalc() .and. SIM_requires_postpair_calc) then
898 <      
898 >
899         if (FF_uses_RF .and. SIM_uses_RF) then
900 <          
900 >
901   #ifdef IS_MPI
902            call scatter(rf_Row,rf,plan_atom_row_3d)
903            call scatter(rf_Col,rf_Temp,plan_atom_col_3d)
# Line 778 | Line 905 | contains
905               rf(1:3,i) = rf(1:3,i) + rf_Temp(1:3,i)
906            end do
907   #endif
908 <          
908 >
909            do i = 1, nLocal
910 <            
910 >
911               rfpot = 0.0_DP
912   #ifdef IS_MPI
913               me_i = atid_row(i)
914   #else
915               me_i = atid(i)
916   #endif
917 +             iHash = InteractionHash(me_i,me_j)
918              
919 <             if (PropertyMap(me_i)%is_Dipole) then
920 <                
919 >             if ( iand(iHash, ELECTROSTATIC_PAIR).ne.0 ) then
920 >
921                  mu_i = getDipoleMoment(me_i)
922 <                
922 >
923                  !! The reaction field needs to include a self contribution
924                  !! to the field:
925 <                call accumulate_self_rf(i, mu_i, u_l)
925 >                call accumulate_self_rf(i, mu_i, eFrame)
926                  !! Get the reaction field contribution to the
927                  !! potential and torques:
928 <                call reaction_field_final(i, mu_i, u_l, rfpot, t, do_pot)
928 >                call reaction_field_final(i, mu_i, eFrame, rfpot, t, do_pot)
929   #ifdef IS_MPI
930                  pot_local = pot_local + rfpot
931   #else
932                  pot = pot + rfpot
933 <      
933 >
934   #endif
935 <             endif            
935 >             endif
936            enddo
937         endif
938      endif
939 <    
940 <    
939 >
940 >
941   #ifdef IS_MPI
942 <    
942 >
943      if (do_pot) then
944         pot = pot + pot_local
945         !! we assume the c code will do the allreduce to get the total potential
946         !! we could do it right here if we needed to...
947      endif
948 <    
948 >
949      if (do_stress) then
950         call mpi_allreduce(tau_Temp, tau, 9,mpi_double_precision,mpi_sum, &
951              mpi_comm_world,mpi_err)
952         call mpi_allreduce(virial_Temp, virial,1,mpi_double_precision,mpi_sum, &
953              mpi_comm_world,mpi_err)
954      endif
955 <    
955 >
956   #else
957 <    
957 >
958      if (do_stress) then
959         tau = tau_Temp
960         virial = virial_Temp
961      endif
962 <    
962 >
963   #endif
964 <      
964 >
965    end subroutine do_force_loop
966 <  
966 >
967    subroutine do_pair(i, j, rijsq, d, sw, do_pot, &
968 <       u_l, A, f, t, pot, vpair, fpair)
968 >       eFrame, A, f, t, pot, vpair, fpair)
969  
970      real( kind = dp ) :: pot, vpair, sw
971      real( kind = dp ), dimension(3) :: fpair
972      real( kind = dp ), dimension(nLocal)   :: mfact
973 <    real( kind = dp ), dimension(3,nLocal) :: u_l
973 >    real( kind = dp ), dimension(9,nLocal) :: eFrame
974      real( kind = dp ), dimension(9,nLocal) :: A
975      real( kind = dp ), dimension(3,nLocal) :: f
976      real( kind = dp ), dimension(3,nLocal) :: t
# Line 852 | Line 980 | contains
980      real ( kind = dp ), intent(inout) :: rijsq
981      real ( kind = dp )                :: r
982      real ( kind = dp ), intent(inout) :: d(3)
983 +    real ( kind = dp ) :: ebalance
984      integer :: me_i, me_j
985  
986 +    integer :: iHash
987 +
988      r = sqrt(rijsq)
989      vpair = 0.0d0
990      fpair(1:3) = 0.0d0
# Line 865 | Line 996 | contains
996      me_i = atid(i)
997      me_j = atid(j)
998   #endif
999 <    
1000 <    if (FF_uses_LennardJones .and. SIM_uses_LennardJones) then
1001 <      
1002 <       if ( PropertyMap(me_i)%is_LennardJones .and. &
1003 <            PropertyMap(me_j)%is_LennardJones ) then
873 <          call do_lj_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, do_pot)
874 <       endif
875 <      
999 >
1000 >    iHash = InteractionHash(me_i, me_j)
1001 >
1002 >    if ( iand(iHash, LJ_PAIR).ne.0 ) then
1003 >       call do_lj_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, do_pot)
1004      endif
877    
878    if (FF_uses_charges .and. SIM_uses_charges) then
879      
880       if (PropertyMap(me_i)%is_Charge .and. PropertyMap(me_j)%is_Charge) then
881          call do_charge_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
882               pot, f, do_pot)
883       endif
884      
885    endif
886    
887    if (FF_uses_dipoles .and. SIM_uses_dipoles) then
888      
889       if ( PropertyMap(me_i)%is_Dipole .and. PropertyMap(me_j)%is_Dipole) then
890          call do_dipole_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
891               pot, u_l, f, t, do_pot)
892          if (FF_uses_RF .and. SIM_uses_RF) then
893             call accumulate_rf(i, j, r, u_l, sw)
894             call rf_correct_forces(i, j, d, r, u_l, sw, f, fpair)
895          endif
896       endif
1005  
1006 <    endif
1006 >    if ( iand(iHash, ELECTROSTATIC_PAIR).ne.0 ) then
1007 >       call doElectrostaticPair(i, j, d, r, rijsq, sw, vpair, fpair, &
1008 >            pot, eFrame, f, t, do_pot)
1009  
1010 <    if (FF_uses_Sticky .and. SIM_uses_sticky) then
1010 >       if (FF_uses_RF .and. SIM_uses_RF) then
1011  
1012 <       if ( PropertyMap(me_i)%is_Sticky .and. PropertyMap(me_j)%is_Sticky) then
1013 <          call do_sticky_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1014 <               pot, A, f, t, do_pot)
1012 >          ! CHECK ME (RF needs to know about all electrostatic types)
1013 >          call accumulate_rf(i, j, r, eFrame, sw)
1014 >          call rf_correct_forces(i, j, d, r, eFrame, sw, f, fpair)
1015         endif
1016 <      
1016 >
1017      endif
1018  
1019 +    if ( iand(iHash, STICKY_PAIR).ne.0 ) then
1020 +       call do_sticky_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1021 +            pot, A, f, t, do_pot)
1022 +    endif
1023  
1024 <    if (FF_uses_GayBerne .and. SIM_uses_GayBerne) then
1025 <      
1026 <       if ( PropertyMap(me_i)%is_GayBerne .and. &
913 <            PropertyMap(me_j)%is_GayBerne) then
914 <          call do_gb_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
915 <               pot, u_l, f, t, do_pot)
916 <       endif
917 <      
1024 >    if ( iand(iHash, STICKYPOWER_PAIR).ne.0 ) then
1025 >       call do_sticky_power_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1026 >            pot, A, f, t, do_pot)
1027      endif
1028 +
1029 +    if ( iand(iHash, GAYBERNE_PAIR).ne.0 ) then
1030 +       call do_gb_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1031 +            pot, A, f, t, do_pot)
1032 +    endif
1033      
1034 <    if (FF_uses_EAM .and. SIM_uses_EAM) then
1035 <      
1036 <       if ( PropertyMap(me_i)%is_EAM .and. PropertyMap(me_j)%is_EAM) then
923 <          call do_eam_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, &
924 <               do_pot)
925 <       endif
926 <      
1034 >    if ( iand(iHash, GAYBERNE_LJ).ne.0 ) then
1035 > !      call do_gblj_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1036 > !           pot, A, f, t, do_pot)
1037      endif
1038  
1039 <    if (FF_uses_Shapes .and. SIM_uses_Shapes) then
1040 <      
1041 <       if ( PropertyMap(me_i)%is_Shape .and. &
932 <            PropertyMap(me_j)%is_Shape ) then
933 <          call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
934 <               pot, A, f, t, do_pot)
935 <       endif
936 <      
1039 >    if ( iand(iHash, EAM_PAIR).ne.0 ) then      
1040 >       call do_eam_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, &
1041 >            do_pot)
1042      endif
1043 +
1044 +    if ( iand(iHash, SHAPE_PAIR).ne.0 ) then      
1045 +       call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1046 +            pot, A, f, t, do_pot)
1047 +    endif
1048 +
1049 +    if ( iand(iHash, SHAPE_LJ).ne.0 ) then      
1050 +       call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1051 +            pot, A, f, t, do_pot)
1052 +    endif
1053      
1054    end subroutine do_pair
1055  
1056    subroutine do_prepair(i, j, rijsq, d, sw, rcijsq, dc, &
1057 <       do_pot, do_stress, u_l, A, f, t, pot)
1057 >       do_pot, do_stress, eFrame, A, f, t, pot)
1058  
1059 <   real( kind = dp ) :: pot, sw
1060 <   real( kind = dp ), dimension(3,nLocal) :: u_l
1061 <   real (kind=dp), dimension(9,nLocal) :: A
1062 <   real (kind=dp), dimension(3,nLocal) :: f
1063 <   real (kind=dp), dimension(3,nLocal) :: t
949 <  
950 <   logical, intent(inout) :: do_pot, do_stress
951 <   integer, intent(in) :: i, j
952 <   real ( kind = dp ), intent(inout)    :: rijsq, rcijsq
953 <   real ( kind = dp )                :: r, rc
954 <   real ( kind = dp ), intent(inout) :: d(3), dc(3)
955 <  
956 <   logical :: is_EAM_i, is_EAM_j
957 <  
958 <   integer :: me_i, me_j
959 <  
1059 >    real( kind = dp ) :: pot, sw
1060 >    real( kind = dp ), dimension(9,nLocal) :: eFrame
1061 >    real (kind=dp), dimension(9,nLocal) :: A
1062 >    real (kind=dp), dimension(3,nLocal) :: f
1063 >    real (kind=dp), dimension(3,nLocal) :: t
1064  
1065 <    r = sqrt(rijsq)
1066 <    if (SIM_uses_molecular_cutoffs) then
1067 <       rc = sqrt(rcijsq)
1068 <    else
1069 <       rc = r
966 <    endif
967 <  
1065 >    logical, intent(inout) :: do_pot, do_stress
1066 >    integer, intent(in) :: i, j
1067 >    real ( kind = dp ), intent(inout)    :: rijsq, rcijsq
1068 >    real ( kind = dp )                :: r, rc
1069 >    real ( kind = dp ), intent(inout) :: d(3), dc(3)
1070  
1071 +    integer :: me_i, me_j, iHash
1072 +
1073   #ifdef IS_MPI  
1074 <   me_i = atid_row(i)
1075 <   me_j = atid_col(j)  
1074 >    me_i = atid_row(i)
1075 >    me_j = atid_col(j)  
1076   #else  
1077 <   me_i = atid(i)
1078 <   me_j = atid(j)  
1077 >    me_i = atid(i)
1078 >    me_j = atid(j)  
1079   #endif
1080 <  
1081 <   if (FF_uses_EAM .and. SIM_uses_EAM) then
1082 <      
1083 <      if (PropertyMap(me_i)%is_EAM .and. PropertyMap(me_j)%is_EAM) &
1084 <           call calc_EAM_prepair_rho(i, j, d, r, rijsq )
1085 <      
1086 <   endif
1087 <  
1088 < end subroutine do_prepair
1089 <
1090 <
1091 < subroutine do_preforce(nlocal,pot)
1092 <   integer :: nlocal
1093 <   real( kind = dp ) :: pot
1094 <  
1095 <   if (FF_uses_EAM .and. SIM_uses_EAM) then
1096 <      call calc_EAM_preforce_Frho(nlocal,pot)
1097 <   endif
1098 <  
1099 <  
1100 < end subroutine do_preforce
1101 <
1102 <
1103 < subroutine get_interatomic_vector(q_i, q_j, d, r_sq)
1104 <  
1105 <   real (kind = dp), dimension(3) :: q_i
1106 <   real (kind = dp), dimension(3) :: q_j
1107 <   real ( kind = dp ), intent(out) :: r_sq
1108 <   real( kind = dp ) :: d(3), scaled(3)
1109 <   integer i
1110 <  
1111 <   d(1:3) = q_j(1:3) - q_i(1:3)
1112 <  
1113 <   ! Wrap back into periodic box if necessary
1114 <   if ( SIM_uses_PBC ) then
1115 <      
1116 <      if( .not.boxIsOrthorhombic ) then
1117 <         ! calc the scaled coordinates.
1118 <        
1119 <         scaled = matmul(HmatInv, d)
1120 <        
1121 <         ! wrap the scaled coordinates
1122 <        
1123 <         scaled = scaled  - anint(scaled)
1124 <        
1125 <        
1126 <         ! calc the wrapped real coordinates from the wrapped scaled
1127 <         ! coordinates
1128 <        
1129 <         d = matmul(Hmat,scaled)
1130 <        
1131 <      else
1132 <         ! calc the scaled coordinates.
1133 <        
1134 <         do i = 1, 3
1135 <            scaled(i) = d(i) * HmatInv(i,i)
1136 <            
1137 <            ! wrap the scaled coordinates
1138 <            
1139 <            scaled(i) = scaled(i) - anint(scaled(i))
1140 <            
1141 <            ! calc the wrapped real coordinates from the wrapped scaled
1142 <            ! coordinates
1143 <            
1144 <            d(i) = scaled(i)*Hmat(i,i)
1145 <         enddo
1146 <      endif
1147 <      
1148 <   endif
1149 <  
1150 <   r_sq = dot_product(d,d)
1151 <  
1152 < end subroutine get_interatomic_vector
1153 <
1154 < subroutine zero_work_arrays()
1051 <  
1080 >
1081 >    iHash = InteractionHash(me_i, me_j)
1082 >
1083 >    if ( iand(iHash, EAM_PAIR).ne.0 ) then      
1084 >            call calc_EAM_prepair_rho(i, j, d, r, rijsq )
1085 >    endif
1086 >    
1087 >  end subroutine do_prepair
1088 >
1089 >
1090 >  subroutine do_preforce(nlocal,pot)
1091 >    integer :: nlocal
1092 >    real( kind = dp ) :: pot
1093 >
1094 >    if (FF_uses_EAM .and. SIM_uses_EAM) then
1095 >       call calc_EAM_preforce_Frho(nlocal,pot)
1096 >    endif
1097 >
1098 >
1099 >  end subroutine do_preforce
1100 >
1101 >
1102 >  subroutine get_interatomic_vector(q_i, q_j, d, r_sq)
1103 >
1104 >    real (kind = dp), dimension(3) :: q_i
1105 >    real (kind = dp), dimension(3) :: q_j
1106 >    real ( kind = dp ), intent(out) :: r_sq
1107 >    real( kind = dp ) :: d(3), scaled(3)
1108 >    integer i
1109 >
1110 >    d(1:3) = q_j(1:3) - q_i(1:3)
1111 >
1112 >    ! Wrap back into periodic box if necessary
1113 >    if ( SIM_uses_PBC ) then
1114 >
1115 >       if( .not.boxIsOrthorhombic ) then
1116 >          ! calc the scaled coordinates.
1117 >
1118 >          scaled = matmul(HmatInv, d)
1119 >
1120 >          ! wrap the scaled coordinates
1121 >
1122 >          scaled = scaled  - anint(scaled)
1123 >
1124 >
1125 >          ! calc the wrapped real coordinates from the wrapped scaled
1126 >          ! coordinates
1127 >
1128 >          d = matmul(Hmat,scaled)
1129 >
1130 >       else
1131 >          ! calc the scaled coordinates.
1132 >
1133 >          do i = 1, 3
1134 >             scaled(i) = d(i) * HmatInv(i,i)
1135 >
1136 >             ! wrap the scaled coordinates
1137 >
1138 >             scaled(i) = scaled(i) - anint(scaled(i))
1139 >
1140 >             ! calc the wrapped real coordinates from the wrapped scaled
1141 >             ! coordinates
1142 >
1143 >             d(i) = scaled(i)*Hmat(i,i)
1144 >          enddo
1145 >       endif
1146 >
1147 >    endif
1148 >
1149 >    r_sq = dot_product(d,d)
1150 >
1151 >  end subroutine get_interatomic_vector
1152 >
1153 >  subroutine zero_work_arrays()
1154 >
1155   #ifdef IS_MPI
1053  
1054   q_Row = 0.0_dp
1055   q_Col = 0.0_dp
1156  
1157 <   q_group_Row = 0.0_dp
1158 <   q_group_Col = 0.0_dp  
1159 <  
1160 <   u_l_Row = 0.0_dp
1161 <   u_l_Col = 0.0_dp
1162 <  
1163 <   A_Row = 0.0_dp
1164 <   A_Col = 0.0_dp
1165 <  
1166 <   f_Row = 0.0_dp
1167 <   f_Col = 0.0_dp
1168 <   f_Temp = 0.0_dp
1169 <  
1170 <   t_Row = 0.0_dp
1171 <   t_Col = 0.0_dp
1172 <   t_Temp = 0.0_dp
1173 <  
1174 <   pot_Row = 0.0_dp
1175 <   pot_Col = 0.0_dp
1176 <   pot_Temp = 0.0_dp
1177 <  
1178 <   rf_Row = 0.0_dp
1179 <   rf_Col = 0.0_dp
1180 <   rf_Temp = 0.0_dp
1181 <  
1157 >    q_Row = 0.0_dp
1158 >    q_Col = 0.0_dp
1159 >
1160 >    q_group_Row = 0.0_dp
1161 >    q_group_Col = 0.0_dp  
1162 >
1163 >    eFrame_Row = 0.0_dp
1164 >    eFrame_Col = 0.0_dp
1165 >
1166 >    A_Row = 0.0_dp
1167 >    A_Col = 0.0_dp
1168 >
1169 >    f_Row = 0.0_dp
1170 >    f_Col = 0.0_dp
1171 >    f_Temp = 0.0_dp
1172 >
1173 >    t_Row = 0.0_dp
1174 >    t_Col = 0.0_dp
1175 >    t_Temp = 0.0_dp
1176 >
1177 >    pot_Row = 0.0_dp
1178 >    pot_Col = 0.0_dp
1179 >    pot_Temp = 0.0_dp
1180 >
1181 >    rf_Row = 0.0_dp
1182 >    rf_Col = 0.0_dp
1183 >    rf_Temp = 0.0_dp
1184 >
1185   #endif
1186 <
1187 <   if (FF_uses_EAM .and. SIM_uses_EAM) then
1188 <      call clean_EAM()
1189 <   endif
1190 <  
1191 <   rf = 0.0_dp
1192 <   tau_Temp = 0.0_dp
1193 <   virial_Temp = 0.0_dp
1194 < end subroutine zero_work_arrays
1195 <
1196 < function skipThisPair(atom1, atom2) result(skip_it)
1197 <   integer, intent(in) :: atom1
1198 <   integer, intent(in), optional :: atom2
1199 <   logical :: skip_it
1200 <   integer :: unique_id_1, unique_id_2
1201 <   integer :: me_i,me_j
1202 <   integer :: i
1203 <  
1204 <   skip_it = .false.
1205 <  
1206 <   !! there are a number of reasons to skip a pair or a particle
1207 <   !! mostly we do this to exclude atoms who are involved in short
1208 <   !! range interactions (bonds, bends, torsions), but we also need
1209 <   !! to exclude some overcounted interactions that result from
1210 <   !! the parallel decomposition
1211 <  
1186 >
1187 >    if (FF_uses_EAM .and. SIM_uses_EAM) then
1188 >       call clean_EAM()
1189 >    endif
1190 >
1191 >    rf = 0.0_dp
1192 >    tau_Temp = 0.0_dp
1193 >    virial_Temp = 0.0_dp
1194 >  end subroutine zero_work_arrays
1195 >
1196 >  function skipThisPair(atom1, atom2) result(skip_it)
1197 >    integer, intent(in) :: atom1
1198 >    integer, intent(in), optional :: atom2
1199 >    logical :: skip_it
1200 >    integer :: unique_id_1, unique_id_2
1201 >    integer :: me_i,me_j
1202 >    integer :: i
1203 >
1204 >    skip_it = .false.
1205 >
1206 >    !! there are a number of reasons to skip a pair or a particle
1207 >    !! mostly we do this to exclude atoms who are involved in short
1208 >    !! range interactions (bonds, bends, torsions), but we also need
1209 >    !! to exclude some overcounted interactions that result from
1210 >    !! the parallel decomposition
1211 >
1212   #ifdef IS_MPI
1213 <   !! in MPI, we have to look up the unique IDs for each atom
1214 <   unique_id_1 = AtomRowToGlobal(atom1)
1213 >    !! in MPI, we have to look up the unique IDs for each atom
1214 >    unique_id_1 = AtomRowToGlobal(atom1)
1215   #else
1216 <   !! in the normal loop, the atom numbers are unique
1217 <   unique_id_1 = atom1
1216 >    !! in the normal loop, the atom numbers are unique
1217 >    unique_id_1 = atom1
1218   #endif
1219 <  
1220 <   !! We were called with only one atom, so just check the global exclude
1221 <   !! list for this atom
1222 <   if (.not. present(atom2)) then
1223 <      do i = 1, nExcludes_global
1224 <         if (excludesGlobal(i) == unique_id_1) then
1225 <            skip_it = .true.
1226 <            return
1227 <         end if
1228 <      end do
1229 <      return
1230 <   end if
1231 <  
1219 >
1220 >    !! We were called with only one atom, so just check the global exclude
1221 >    !! list for this atom
1222 >    if (.not. present(atom2)) then
1223 >       do i = 1, nExcludes_global
1224 >          if (excludesGlobal(i) == unique_id_1) then
1225 >             skip_it = .true.
1226 >             return
1227 >          end if
1228 >       end do
1229 >       return
1230 >    end if
1231 >
1232   #ifdef IS_MPI
1233 <   unique_id_2 = AtomColToGlobal(atom2)
1233 >    unique_id_2 = AtomColToGlobal(atom2)
1234   #else
1235 <   unique_id_2 = atom2
1235 >    unique_id_2 = atom2
1236   #endif
1237 <  
1237 >
1238   #ifdef IS_MPI
1239 <   !! this situation should only arise in MPI simulations
1240 <   if (unique_id_1 == unique_id_2) then
1241 <      skip_it = .true.
1242 <      return
1243 <   end if
1244 <  
1245 <   !! this prevents us from doing the pair on multiple processors
1246 <   if (unique_id_1 < unique_id_2) then
1247 <      if (mod(unique_id_1 + unique_id_2,2) == 0) then
1248 <         skip_it = .true.
1249 <         return
1250 <      endif
1251 <   else                
1252 <      if (mod(unique_id_1 + unique_id_2,2) == 1) then
1253 <         skip_it = .true.
1254 <         return
1255 <      endif
1256 <   endif
1239 >    !! this situation should only arise in MPI simulations
1240 >    if (unique_id_1 == unique_id_2) then
1241 >       skip_it = .true.
1242 >       return
1243 >    end if
1244 >
1245 >    !! this prevents us from doing the pair on multiple processors
1246 >    if (unique_id_1 < unique_id_2) then
1247 >       if (mod(unique_id_1 + unique_id_2,2) == 0) then
1248 >          skip_it = .true.
1249 >          return
1250 >       endif
1251 >    else                
1252 >       if (mod(unique_id_1 + unique_id_2,2) == 1) then
1253 >          skip_it = .true.
1254 >          return
1255 >       endif
1256 >    endif
1257   #endif
1258 <  
1259 <   !! the rest of these situations can happen in all simulations:
1260 <   do i = 1, nExcludes_global      
1261 <      if ((excludesGlobal(i) == unique_id_1) .or. &
1262 <           (excludesGlobal(i) == unique_id_2)) then
1263 <         skip_it = .true.
1264 <         return
1265 <      endif
1266 <   enddo
1267 <  
1268 <   do i = 1, nSkipsForAtom(atom1)
1269 <      if (skipsForAtom(atom1, i) .eq. unique_id_2) then
1270 <         skip_it = .true.
1271 <         return
1272 <      endif
1273 <   end do
1274 <  
1275 <   return
1276 < end function skipThisPair
1277 <
1278 < function FF_UsesDirectionalAtoms() result(doesit)
1279 <   logical :: doesit
1280 <   doesit = FF_uses_DirectionalAtoms .or. FF_uses_Dipoles .or. &
1281 <        FF_uses_Sticky .or. FF_uses_GayBerne .or. FF_uses_Shapes
1282 < end function FF_UsesDirectionalAtoms
1283 <
1284 < function FF_RequiresPrepairCalc() result(doesit)
1285 <   logical :: doesit
1286 <   doesit = FF_uses_EAM
1287 < end function FF_RequiresPrepairCalc
1288 <
1289 < function FF_RequiresPostpairCalc() result(doesit)
1290 <   logical :: doesit
1291 <   doesit = FF_uses_RF
1292 < end function FF_RequiresPostpairCalc
1190 <
1258 >
1259 >    !! the rest of these situations can happen in all simulations:
1260 >    do i = 1, nExcludes_global      
1261 >       if ((excludesGlobal(i) == unique_id_1) .or. &
1262 >            (excludesGlobal(i) == unique_id_2)) then
1263 >          skip_it = .true.
1264 >          return
1265 >       endif
1266 >    enddo
1267 >
1268 >    do i = 1, nSkipsForAtom(atom1)
1269 >       if (skipsForAtom(atom1, i) .eq. unique_id_2) then
1270 >          skip_it = .true.
1271 >          return
1272 >       endif
1273 >    end do
1274 >
1275 >    return
1276 >  end function skipThisPair
1277 >
1278 >  function FF_UsesDirectionalAtoms() result(doesit)
1279 >    logical :: doesit
1280 >    doesit = FF_uses_DirectionalAtoms
1281 >  end function FF_UsesDirectionalAtoms
1282 >
1283 >  function FF_RequiresPrepairCalc() result(doesit)
1284 >    logical :: doesit
1285 >    doesit = FF_uses_EAM
1286 >  end function FF_RequiresPrepairCalc
1287 >
1288 >  function FF_RequiresPostpairCalc() result(doesit)
1289 >    logical :: doesit
1290 >    doesit = FF_uses_RF
1291 >  end function FF_RequiresPostpairCalc
1292 >
1293   #ifdef PROFILE
1294 < function getforcetime() result(totalforcetime)
1295 <   real(kind=dp) :: totalforcetime
1296 <   totalforcetime = forcetime
1297 < end function getforcetime
1294 >  function getforcetime() result(totalforcetime)
1295 >    real(kind=dp) :: totalforcetime
1296 >    totalforcetime = forcetime
1297 >  end function getforcetime
1298   #endif
1197
1198 !! This cleans componets of force arrays belonging only to fortran
1299  
1300 < subroutine add_stress_tensor(dpair, fpair)
1201 <  
1202 <   real( kind = dp ), dimension(3), intent(in) :: dpair, fpair
1203 <  
1204 <   ! because the d vector is the rj - ri vector, and
1205 <   ! because fx, fy, fz are the force on atom i, we need a
1206 <   ! negative sign here:  
1207 <  
1208 <   tau_Temp(1) = tau_Temp(1) - dpair(1) * fpair(1)
1209 <   tau_Temp(2) = tau_Temp(2) - dpair(1) * fpair(2)
1210 <   tau_Temp(3) = tau_Temp(3) - dpair(1) * fpair(3)
1211 <   tau_Temp(4) = tau_Temp(4) - dpair(2) * fpair(1)
1212 <   tau_Temp(5) = tau_Temp(5) - dpair(2) * fpair(2)
1213 <   tau_Temp(6) = tau_Temp(6) - dpair(2) * fpair(3)
1214 <   tau_Temp(7) = tau_Temp(7) - dpair(3) * fpair(1)
1215 <   tau_Temp(8) = tau_Temp(8) - dpair(3) * fpair(2)
1216 <   tau_Temp(9) = tau_Temp(9) - dpair(3) * fpair(3)
1217 <  
1218 <   virial_Temp = virial_Temp + &
1219 <        (tau_Temp(1) + tau_Temp(5) + tau_Temp(9))
1220 <  
1221 < end subroutine add_stress_tensor
1222 <
1223 < end module doForces
1300 >  !! This cleans componets of force arrays belonging only to fortran
1301  
1302 < !! Interfaces for C programs to module....
1302 >  subroutine add_stress_tensor(dpair, fpair)
1303  
1304 < subroutine initFortranFF(use_RF_c, thisStat)
1228 <    use doForces, ONLY: init_FF
1229 <    logical, intent(in) :: use_RF_c
1304 >    real( kind = dp ), dimension(3), intent(in) :: dpair, fpair
1305  
1306 <    integer, intent(out) :: thisStat  
1307 <    call init_FF(use_RF_c, thisStat)
1306 >    ! because the d vector is the rj - ri vector, and
1307 >    ! because fx, fy, fz are the force on atom i, we need a
1308 >    ! negative sign here:  
1309  
1310 < end subroutine initFortranFF
1310 >    tau_Temp(1) = tau_Temp(1) - dpair(1) * fpair(1)
1311 >    tau_Temp(2) = tau_Temp(2) - dpair(1) * fpair(2)
1312 >    tau_Temp(3) = tau_Temp(3) - dpair(1) * fpair(3)
1313 >    tau_Temp(4) = tau_Temp(4) - dpair(2) * fpair(1)
1314 >    tau_Temp(5) = tau_Temp(5) - dpair(2) * fpair(2)
1315 >    tau_Temp(6) = tau_Temp(6) - dpair(2) * fpair(3)
1316 >    tau_Temp(7) = tau_Temp(7) - dpair(3) * fpair(1)
1317 >    tau_Temp(8) = tau_Temp(8) - dpair(3) * fpair(2)
1318 >    tau_Temp(9) = tau_Temp(9) - dpair(3) * fpair(3)
1319  
1320 <  subroutine doForceloop(q, q_group, A, u_l, f, t, tau, pot, &
1321 <       do_pot_c, do_stress_c, error)
1238 <      
1239 <       use definitions, ONLY: dp
1240 <       use simulation
1241 <       use doForces, ONLY: do_force_loop
1242 <    !! Position array provided by C, dimensioned by getNlocal
1243 <    real ( kind = dp ), dimension(3, nLocal) :: q
1244 <    !! molecular center-of-mass position array
1245 <    real ( kind = dp ), dimension(3, nGroups) :: q_group
1246 <    !! Rotation Matrix for each long range particle in simulation.
1247 <    real( kind = dp), dimension(9, nLocal) :: A    
1248 <    !! Unit vectors for dipoles (lab frame)
1249 <    real( kind = dp ), dimension(3,nLocal) :: u_l
1250 <    !! Force array provided by C, dimensioned by getNlocal
1251 <    real ( kind = dp ), dimension(3,nLocal) :: f
1252 <    !! Torsion array provided by C, dimensioned by getNlocal
1253 <    real( kind = dp ), dimension(3,nLocal) :: t    
1320 >    virial_Temp = virial_Temp + &
1321 >         (tau_Temp(1) + tau_Temp(5) + tau_Temp(9))
1322  
1323 <    !! Stress Tensor
1324 <    real( kind = dp), dimension(9) :: tau  
1325 <    real ( kind = dp ) :: pot
1258 <    logical ( kind = 2) :: do_pot_c, do_stress_c
1259 <    integer :: error
1260 <    
1261 <    call do_force_loop(q, q_group, A, u_l, f, t, tau, pot, &
1262 <       do_pot_c, do_stress_c, error)
1263 <      
1264 < end subroutine doForceloop
1323 >  end subroutine add_stress_tensor
1324 >
1325 > end module doForces

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines