ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-3.0/src/UseTheForce/doForces.F90
(Generate patch)

Comparing trunk/OOPSE-3.0/src/UseTheForce/doForces.F90 (file contents):
Revision 1634 by gezelter, Fri Oct 22 21:21:02 2004 UTC vs.
Revision 2310 by chrisfen, Mon Sep 19 23:21:46 2005 UTC

# Line 1 | Line 1
1 + !!
2 + !! Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 + !!
4 + !! The University of Notre Dame grants you ("Licensee") a
5 + !! non-exclusive, royalty free, license to use, modify and
6 + !! redistribute this software in source and binary code form, provided
7 + !! that the following conditions are met:
8 + !!
9 + !! 1. Acknowledgement of the program authors must be made in any
10 + !!    publication of scientific results based in part on use of the
11 + !!    program.  An acceptable form of acknowledgement is citation of
12 + !!    the article in which the program was described (Matthew
13 + !!    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 + !!    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 + !!    Parallel Simulation Engine for Molecular Dynamics,"
16 + !!    J. Comput. Chem. 26, pp. 252-271 (2005))
17 + !!
18 + !! 2. Redistributions of source code must retain the above copyright
19 + !!    notice, this list of conditions and the following disclaimer.
20 + !!
21 + !! 3. Redistributions in binary form must reproduce the above copyright
22 + !!    notice, this list of conditions and the following disclaimer in the
23 + !!    documentation and/or other materials provided with the
24 + !!    distribution.
25 + !!
26 + !! This software is provided "AS IS," without a warranty of any
27 + !! kind. All express or implied conditions, representations and
28 + !! warranties, including any implied warranty of merchantability,
29 + !! fitness for a particular purpose or non-infringement, are hereby
30 + !! excluded.  The University of Notre Dame and its licensors shall not
31 + !! be liable for any damages suffered by licensee as a result of
32 + !! using, modifying or distributing the software or its
33 + !! derivatives. In no event will the University of Notre Dame or its
34 + !! licensors be liable for any lost revenue, profit or data, or for
35 + !! direct, indirect, special, consequential, incidental or punitive
36 + !! damages, however caused and regardless of the theory of liability,
37 + !! arising out of the use of or inability to use software, even if the
38 + !! University of Notre Dame has been advised of the possibility of
39 + !! such damages.
40 + !!
41 +
42   !! doForces.F90
43   !! module doForces
44   !! Calculates Long Range forces.
45  
46   !! @author Charles F. Vardeman II
47   !! @author Matthew Meineke
48 < !! @version $Id: doForces.F90,v 1.3 2004-10-22 21:20:53 gezelter Exp $, $Date: 2004-10-22 21:20:53 $, $Name: not supported by cvs2svn $, $Revision: 1.3 $
48 > !! @version $Id: doForces.F90,v 1.47 2005-09-19 23:21:46 chrisfen Exp $, $Date: 2005-09-19 23:21:46 $, $Name: not supported by cvs2svn $, $Revision: 1.47 $
49  
50 +
51   module doForces
52    use force_globals
53    use simulation
# Line 14 | Line 56 | module doForces
56    use switcheroo
57    use neighborLists  
58    use lj
59 <  use sticky_pair
60 <  use dipole_dipole
61 <  use charge_charge
20 <  use reaction_field
59 >  use sticky
60 >  use electrostatic_module
61 >  use reaction_field_module
62    use gb_pair
63 +  use shapes
64    use vector_class
65    use eam
66    use status
# Line 31 | Line 73 | module doForces
73  
74   #define __FORTRAN90
75   #include "UseTheForce/fSwitchingFunction.h"
76 + #include "UseTheForce/fCutoffPolicy.h"
77 + #include "UseTheForce/DarkSide/fInteractionMap.h"
78 + #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
79  
80 +
81    INTEGER, PARAMETER:: PREPAIR_LOOP = 1
82    INTEGER, PARAMETER:: PAIR_LOOP    = 2
83  
38  logical, save :: haveRlist = .false.
84    logical, save :: haveNeighborList = .false.
85    logical, save :: haveSIMvariables = .false.
41  logical, save :: havePropertyMap = .false.
86    logical, save :: haveSaneForceField = .false.
87 <  
87 >  logical, save :: haveInteractionHash = .false.
88 >  logical, save :: haveGtypeCutoffMap = .false.
89 >  logical, save :: haveRlist = .false.
90 >
91    logical, save :: FF_uses_DirectionalAtoms
92 <  logical, save :: FF_uses_LennardJones
46 <  logical, save :: FF_uses_Electrostatic
47 <  logical, save :: FF_uses_charges
48 <  logical, save :: FF_uses_dipoles
49 <  logical, save :: FF_uses_sticky
92 >  logical, save :: FF_uses_Dipoles
93    logical, save :: FF_uses_GayBerne
94    logical, save :: FF_uses_EAM
52  logical, save :: FF_uses_Shapes
53  logical, save :: FF_uses_FLARB
54  logical, save :: FF_uses_RF
95  
96    logical, save :: SIM_uses_DirectionalAtoms
57  logical, save :: SIM_uses_LennardJones
58  logical, save :: SIM_uses_Electrostatics
59  logical, save :: SIM_uses_Charges
60  logical, save :: SIM_uses_Dipoles
61  logical, save :: SIM_uses_Sticky
62  logical, save :: SIM_uses_GayBerne
97    logical, save :: SIM_uses_EAM
64  logical, save :: SIM_uses_Shapes
65  logical, save :: SIM_uses_FLARB
66  logical, save :: SIM_uses_RF
98    logical, save :: SIM_requires_postpair_calc
99    logical, save :: SIM_requires_prepair_calc
100    logical, save :: SIM_uses_PBC
70  logical, save :: SIM_uses_molecular_cutoffs
101  
102 <  real(kind=dp), save :: rlist, rlistsq
102 >  integer, save :: electrostaticSummationMethod
103  
104    public :: init_FF
105 +  public :: setDefaultCutoffs
106    public :: do_force_loop
107 <  public :: setRlistDF
107 >  public :: createInteractionHash
108 >  public :: createGtypeCutoffMap
109 >  public :: getStickyCut
110 >  public :: getStickyPowerCut
111 >  public :: getGayBerneCut
112 >  public :: getEAMCut
113 >  public :: getShapeCut
114  
115   #ifdef PROFILE
116    public :: getforcetime
# Line 81 | Line 118 | module doForces
118    real :: forceTimeInitial, forceTimeFinal
119    integer :: nLoops
120   #endif
121 +  
122 +  !! Variables for cutoff mapping and interaction mapping
123 +  ! Bit hash to determine pair-pair interactions.
124 +  integer, dimension(:,:), allocatable :: InteractionHash
125 +  real(kind=dp), dimension(:), allocatable :: atypeMaxCutoff
126 +  real(kind=dp), dimension(:), allocatable :: groupMaxCutoff
127 +  integer, dimension(:), allocatable :: groupToGtype
128 +  real(kind=dp), dimension(:), allocatable :: gtypeMaxCutoff
129 +  type ::gtypeCutoffs
130 +     real(kind=dp) :: rcut
131 +     real(kind=dp) :: rcutsq
132 +     real(kind=dp) :: rlistsq
133 +  end type gtypeCutoffs
134 +  type(gtypeCutoffs), dimension(:,:), allocatable :: gtypeCutoffMap
135  
136 <  type :: Properties
137 <     logical :: is_Directional   = .false.
138 <     logical :: is_LennardJones  = .false.
88 <     logical :: is_Electrostatic = .false.
89 <     logical :: is_Charge        = .false.
90 <     logical :: is_Dipole        = .false.
91 <     logical :: is_Sticky        = .false.
92 <     logical :: is_GayBerne      = .false.
93 <     logical :: is_EAM           = .false.
94 <     logical :: is_Shape         = .false.
95 <     logical :: is_FLARB         = .false.
96 <  end type Properties
97 <
98 <  type(Properties), dimension(:),allocatable :: PropertyMap
99 <
136 >  integer, save :: cutoffPolicy = TRADITIONAL_CUTOFF_POLICY
137 >  real(kind=dp),save :: defaultRcut, defaultRsw, defaultRlist
138 >  
139   contains
140  
141 <  subroutine setRlistDF( this_rlist )
103 <    
104 <    real(kind=dp) :: this_rlist
105 <
106 <    rlist = this_rlist
107 <    rlistsq = rlist * rlist
108 <    
109 <    haveRlist = .true.
110 <
111 <  end subroutine setRlistDF    
112 <
113 <  subroutine createPropertyMap(status)
141 >  subroutine createInteractionHash(status)
142      integer :: nAtypes
143 <    integer :: status
143 >    integer, intent(out) :: status
144      integer :: i
145 <    logical :: thisProperty
146 <    real (kind=DP) :: thisDPproperty
145 >    integer :: j
146 >    integer :: iHash
147 >    !! Test Types
148 >    logical :: i_is_LJ
149 >    logical :: i_is_Elect
150 >    logical :: i_is_Sticky
151 >    logical :: i_is_StickyP
152 >    logical :: i_is_GB
153 >    logical :: i_is_EAM
154 >    logical :: i_is_Shape
155 >    logical :: j_is_LJ
156 >    logical :: j_is_Elect
157 >    logical :: j_is_Sticky
158 >    logical :: j_is_StickyP
159 >    logical :: j_is_GB
160 >    logical :: j_is_EAM
161 >    logical :: j_is_Shape
162 >    real(kind=dp) :: myRcut
163  
164 <    status = 0
164 >    status = 0  
165  
166 +    if (.not. associated(atypes)) then
167 +       call handleError("atype", "atypes was not present before call of createInteractionHash!")
168 +       status = -1
169 +       return
170 +    endif
171 +    
172      nAtypes = getSize(atypes)
173 <
173 >    
174      if (nAtypes == 0) then
175         status = -1
176         return
177      end if
178 <        
179 <    if (.not. allocated(PropertyMap)) then
180 <       allocate(PropertyMap(nAtypes))
178 >
179 >    if (.not. allocated(InteractionHash)) then
180 >       allocate(InteractionHash(nAtypes,nAtypes))
181      endif
182  
183 +    if (.not. allocated(atypeMaxCutoff)) then
184 +       allocate(atypeMaxCutoff(nAtypes))
185 +    endif
186 +        
187      do i = 1, nAtypes
188 <       call getElementProperty(atypes, i, "is_Directional", thisProperty)
189 <       PropertyMap(i)%is_Directional = thisProperty
188 >       call getElementProperty(atypes, i, "is_LennardJones", i_is_LJ)
189 >       call getElementProperty(atypes, i, "is_Electrostatic", i_is_Elect)
190 >       call getElementProperty(atypes, i, "is_Sticky", i_is_Sticky)
191 >       call getElementProperty(atypes, i, "is_StickyPower", i_is_StickyP)
192 >       call getElementProperty(atypes, i, "is_GayBerne", i_is_GB)
193 >       call getElementProperty(atypes, i, "is_EAM", i_is_EAM)
194 >       call getElementProperty(atypes, i, "is_Shape", i_is_Shape)
195  
196 <       call getElementProperty(atypes, i, "is_LennardJones", thisProperty)
138 <       PropertyMap(i)%is_LennardJones = thisProperty
139 <      
140 <       call getElementProperty(atypes, i, "is_Electrostatic", thisProperty)
141 <       PropertyMap(i)%is_Electrostatic = thisProperty
196 >       do j = i, nAtypes
197  
198 <       call getElementProperty(atypes, i, "is_Charge", thisProperty)
199 <       PropertyMap(i)%is_Charge = thisProperty
145 <      
146 <       call getElementProperty(atypes, i, "is_Dipole", thisProperty)
147 <       PropertyMap(i)%is_Dipole = thisProperty
198 >          iHash = 0
199 >          myRcut = 0.0_dp
200  
201 <       call getElementProperty(atypes, i, "is_Sticky", thisProperty)
202 <       PropertyMap(i)%is_Sticky = thisProperty
201 >          call getElementProperty(atypes, j, "is_LennardJones", j_is_LJ)
202 >          call getElementProperty(atypes, j, "is_Electrostatic", j_is_Elect)
203 >          call getElementProperty(atypes, j, "is_Sticky", j_is_Sticky)
204 >          call getElementProperty(atypes, j, "is_StickyPower", j_is_StickyP)
205 >          call getElementProperty(atypes, j, "is_GayBerne", j_is_GB)
206 >          call getElementProperty(atypes, j, "is_EAM", j_is_EAM)
207 >          call getElementProperty(atypes, j, "is_Shape", j_is_Shape)
208  
209 <       call getElementProperty(atypes, i, "is_GayBerne", thisProperty)
210 <       PropertyMap(i)%is_GayBerne = thisProperty
209 >          if (i_is_LJ .and. j_is_LJ) then
210 >             iHash = ior(iHash, LJ_PAIR)            
211 >          endif
212 >          
213 >          if (i_is_Elect .and. j_is_Elect) then
214 >             iHash = ior(iHash, ELECTROSTATIC_PAIR)
215 >          endif
216 >          
217 >          if (i_is_Sticky .and. j_is_Sticky) then
218 >             iHash = ior(iHash, STICKY_PAIR)
219 >          endif
220  
221 <       call getElementProperty(atypes, i, "is_EAM", thisProperty)
222 <       PropertyMap(i)%is_EAM = thisProperty
221 >          if (i_is_StickyP .and. j_is_StickyP) then
222 >             iHash = ior(iHash, STICKYPOWER_PAIR)
223 >          endif
224  
225 <       call getElementProperty(atypes, i, "is_Shape", thisProperty)
226 <       PropertyMap(i)%is_Shape = thisProperty
225 >          if (i_is_EAM .and. j_is_EAM) then
226 >             iHash = ior(iHash, EAM_PAIR)
227 >          endif
228  
229 <       call getElementProperty(atypes, i, "is_FLARB", thisProperty)
230 <       PropertyMap(i)%is_FLARB = thisProperty
229 >          if (i_is_GB .and. j_is_GB) iHash = ior(iHash, GAYBERNE_PAIR)
230 >          if (i_is_GB .and. j_is_LJ) iHash = ior(iHash, GAYBERNE_LJ)
231 >          if (i_is_LJ .and. j_is_GB) iHash = ior(iHash, GAYBERNE_LJ)
232 >
233 >          if (i_is_Shape .and. j_is_Shape) iHash = ior(iHash, SHAPE_PAIR)
234 >          if (i_is_Shape .and. j_is_LJ) iHash = ior(iHash, SHAPE_LJ)
235 >          if (i_is_LJ .and. j_is_Shape) iHash = ior(iHash, SHAPE_LJ)
236 >
237 >
238 >          InteractionHash(i,j) = iHash
239 >          InteractionHash(j,i) = iHash
240 >
241 >       end do
242 >
243      end do
244  
245 <    havePropertyMap = .true.
245 >    haveInteractionHash = .true.
246 >  end subroutine createInteractionHash
247  
248 <  end subroutine createPropertyMap
248 >  subroutine createGtypeCutoffMap(stat)
249  
250 +    integer, intent(out), optional :: stat
251 +    logical :: i_is_LJ
252 +    logical :: i_is_Elect
253 +    logical :: i_is_Sticky
254 +    logical :: i_is_StickyP
255 +    logical :: i_is_GB
256 +    logical :: i_is_EAM
257 +    logical :: i_is_Shape
258 +    logical :: GtypeFound
259 +
260 +    integer :: myStatus, nAtypes,  i, j, istart, iend, jstart, jend
261 +    integer :: n_in_i, me_i, ia, g, atom1, nGroupTypes
262 +    integer :: nGroupsInRow
263 +    real(kind=dp):: thisSigma, bigSigma, thisRcut, tol, skin
264 +    real(kind=dp) :: biggestAtypeCutoff
265 +
266 +    stat = 0
267 +    if (.not. haveInteractionHash) then
268 +       call createInteractionHash(myStatus)      
269 +       if (myStatus .ne. 0) then
270 +          write(default_error, *) 'createInteractionHash failed in doForces!'
271 +          stat = -1
272 +          return
273 +       endif
274 +    endif
275 + #ifdef IS_MPI
276 +    nGroupsInRow = getNgroupsInRow(plan_group_row)
277 + #endif
278 +    nAtypes = getSize(atypes)
279 + ! Set all of the initial cutoffs to zero.
280 +    atypeMaxCutoff = 0.0_dp
281 +    do i = 1, nAtypes
282 +       if (SimHasAtype(i)) then    
283 +          call getElementProperty(atypes, i, "is_LennardJones", i_is_LJ)
284 +          call getElementProperty(atypes, i, "is_Electrostatic", i_is_Elect)
285 +          call getElementProperty(atypes, i, "is_Sticky", i_is_Sticky)
286 +          call getElementProperty(atypes, i, "is_StickyPower", i_is_StickyP)
287 +          call getElementProperty(atypes, i, "is_GayBerne", i_is_GB)
288 +          call getElementProperty(atypes, i, "is_EAM", i_is_EAM)
289 +          call getElementProperty(atypes, i, "is_Shape", i_is_Shape)
290 +          
291 +
292 +          if (i_is_LJ) then
293 +             thisRcut = getSigma(i) * 2.5_dp
294 +             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
295 +          endif
296 +          if (i_is_Elect) then
297 +             thisRcut = defaultRcut
298 +             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
299 +          endif
300 +          if (i_is_Sticky) then
301 +             thisRcut = getStickyCut(i)
302 +             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
303 +          endif
304 +          if (i_is_StickyP) then
305 +             thisRcut = getStickyPowerCut(i)
306 +             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
307 +          endif
308 +          if (i_is_GB) then
309 +             thisRcut = getGayBerneCut(i)
310 +             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
311 +          endif
312 +          if (i_is_EAM) then
313 +             thisRcut = getEAMCut(i)
314 +             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
315 +          endif
316 +          if (i_is_Shape) then
317 +             thisRcut = getShapeCut(i)
318 +             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
319 +          endif
320 +          
321 +          if (atypeMaxCutoff(i).gt.biggestAtypeCutoff) then
322 +             biggestAtypeCutoff = atypeMaxCutoff(i)
323 +          endif
324 +       endif
325 +    enddo
326 +  
327 +    nGroupTypes = 0
328 +    
329 +    istart = 1
330 + #ifdef IS_MPI
331 +    iend = nGroupsInRow
332 + #else
333 +    iend = nGroups
334 + #endif
335 +    
336 +    !! allocate the groupToGtype and gtypeMaxCutoff here.
337 +    if(.not.allocated(groupToGtype)) then
338 +       allocate(groupToGtype(iend))
339 +       allocate(groupMaxCutoff(iend))
340 +       allocate(gtypeMaxCutoff(iend))
341 +       groupMaxCutoff = 0.0_dp
342 +       gtypeMaxCutoff = 0.0_dp
343 +    endif
344 +    !! first we do a single loop over the cutoff groups to find the
345 +    !! largest cutoff for any atypes present in this group.  We also
346 +    !! create gtypes at this point.
347 +    
348 +    tol = 1.0d-6
349 +    
350 +    do i = istart, iend      
351 +       n_in_i = groupStartRow(i+1) - groupStartRow(i)
352 +       groupMaxCutoff(i) = 0.0_dp
353 +       do ia = groupStartRow(i), groupStartRow(i+1)-1
354 +          atom1 = groupListRow(ia)
355 + #ifdef IS_MPI
356 +          me_i = atid_row(atom1)
357 + #else
358 +          me_i = atid(atom1)
359 + #endif          
360 +          if (atypeMaxCutoff(me_i).gt.groupMaxCutoff(i)) then
361 +             groupMaxCutoff(i)=atypeMaxCutoff(me_i)
362 +          endif          
363 +       enddo
364 +
365 +       if (nGroupTypes.eq.0) then
366 +          nGroupTypes = nGroupTypes + 1
367 +          gtypeMaxCutoff(nGroupTypes) = groupMaxCutoff(i)
368 +          groupToGtype(i) = nGroupTypes
369 +       else
370 +          GtypeFound = .false.
371 +          do g = 1, nGroupTypes
372 +             if ( abs(groupMaxCutoff(i) - gtypeMaxCutoff(g)).lt.tol) then
373 +                groupToGtype(i) = g
374 +                GtypeFound = .true.
375 +             endif
376 +          enddo
377 +          if (.not.GtypeFound) then            
378 +             nGroupTypes = nGroupTypes + 1
379 +             gtypeMaxCutoff(nGroupTypes) = groupMaxCutoff(i)
380 +             groupToGtype(i) = nGroupTypes
381 +          endif
382 +       endif
383 +    enddo    
384 +
385 +    !! allocate the gtypeCutoffMap here.
386 +    allocate(gtypeCutoffMap(nGroupTypes,nGroupTypes))
387 +    !! then we do a double loop over all the group TYPES to find the cutoff
388 +    !! map between groups of two types
389 +    
390 +    do i = 1, nGroupTypes
391 +       do j = 1, nGroupTypes
392 +      
393 +          select case(cutoffPolicy)
394 +          case(TRADITIONAL_CUTOFF_POLICY)
395 +             thisRcut = maxval(gtypeMaxCutoff)
396 +          case(MIX_CUTOFF_POLICY)
397 +             thisRcut = 0.5_dp * (gtypeMaxCutoff(i) + gtypeMaxCutoff(j))
398 +          case(MAX_CUTOFF_POLICY)
399 +             thisRcut = max(gtypeMaxCutoff(i), gtypeMaxCutoff(j))
400 +          case default
401 +             call handleError("createGtypeCutoffMap", "Unknown Cutoff Policy")
402 +             return
403 +          end select
404 +          gtypeCutoffMap(i,j)%rcut = thisRcut
405 +          gtypeCutoffMap(i,j)%rcutsq = thisRcut*thisRcut
406 +          skin = defaultRlist - defaultRcut
407 +          gtypeCutoffMap(i,j)%rlistsq = (thisRcut + skin)**2
408 +
409 +       enddo
410 +    enddo
411 +    
412 +    haveGtypeCutoffMap = .true.
413 +   end subroutine createGtypeCutoffMap
414 +
415 +   subroutine setDefaultCutoffs(defRcut, defRsw, defRlist, cutPolicy)
416 +     real(kind=dp),intent(in) :: defRcut, defRsw, defRlist
417 +     integer, intent(in) :: cutPolicy
418 +
419 +     defaultRcut = defRcut
420 +     defaultRsw = defRsw
421 +     defaultRlist = defRlist
422 +     cutoffPolicy = cutPolicy
423 +   end subroutine setDefaultCutoffs
424 +
425 +   subroutine setCutoffPolicy(cutPolicy)
426 +
427 +     integer, intent(in) :: cutPolicy
428 +     cutoffPolicy = cutPolicy
429 +     call createGtypeCutoffMap()
430 +   end subroutine setCutoffPolicy
431 +    
432 +    
433    subroutine setSimVariables()
434      SIM_uses_DirectionalAtoms = SimUsesDirectionalAtoms()
171    SIM_uses_LennardJones = SimUsesLennardJones()
172    SIM_uses_Electrostatics = SimUsesElectrostatics()
173    SIM_uses_Charges = SimUsesCharges()
174    SIM_uses_Dipoles = SimUsesDipoles()
175    SIM_uses_Sticky = SimUsesSticky()
176    SIM_uses_GayBerne = SimUsesGayBerne()
435      SIM_uses_EAM = SimUsesEAM()
178    SIM_uses_Shapes = SimUsesShapes()
179    SIM_uses_FLARB = SimUsesFLARB()
180    SIM_uses_RF = SimUsesRF()
436      SIM_requires_postpair_calc = SimRequiresPostpairCalc()
437      SIM_requires_prepair_calc = SimRequiresPrepairCalc()
438      SIM_uses_PBC = SimUsesPBC()
# Line 193 | Line 448 | contains
448      integer :: myStatus
449  
450      error = 0
196    
197    if (.not. havePropertyMap) then
451  
452 <       myStatus = 0
452 >    if (.not. haveInteractionHash) then      
453 >       myStatus = 0      
454 >       call createInteractionHash(myStatus)      
455 >       if (myStatus .ne. 0) then
456 >          write(default_error, *) 'createInteractionHash failed in doForces!'
457 >          error = -1
458 >          return
459 >       endif
460 >    endif
461  
462 <       call createPropertyMap(myStatus)
463 <
462 >    if (.not. haveGtypeCutoffMap) then        
463 >       myStatus = 0      
464 >       call createGtypeCutoffMap(myStatus)      
465         if (myStatus .ne. 0) then
466 <          write(default_error, *) 'createPropertyMap failed in doForces!'
466 >          write(default_error, *) 'createGtypeCutoffMap failed in doForces!'
467            error = -1
468            return
469         endif
# Line 211 | Line 473 | contains
473         call setSimVariables()
474      endif
475  
476 <    if (.not. haveRlist) then
477 <       write(default_error, *) 'rList has not been set in doForces!'
478 <       error = -1
479 <       return
480 <    endif
476 >  !  if (.not. haveRlist) then
477 >  !     write(default_error, *) 'rList has not been set in doForces!'
478 >  !     error = -1
479 >  !     return
480 >  !  endif
481  
482      if (.not. haveNeighborList) then
483         write(default_error, *) 'neighbor list has not been initialized in doForces!'
# Line 238 | Line 500 | contains
500   #endif
501      return
502    end subroutine doReadyCheck
241    
503  
243  subroutine init_FF(use_RF_c, thisStat)
504  
505 <    logical, intent(in) :: use_RF_c
505 >  subroutine init_FF(thisESM, thisStat)
506  
507 +    integer, intent(in) :: thisESM
508      integer, intent(out) :: thisStat  
509      integer :: my_status, nMatches
510      integer, pointer :: MatchList(:) => null()
# Line 252 | Line 513 | contains
513      !! assume things are copacetic, unless they aren't
514      thisStat = 0
515  
516 <    !! Fortran's version of a cast:
517 <    FF_uses_RF = use_RF_c
257 <    
516 >    electrostaticSummationMethod = thisESM
517 >
518      !! init_FF is called *after* all of the atom types have been
519      !! defined in atype_module using the new_atype subroutine.
520      !!
521      !! this will scan through the known atypes and figure out what
522      !! interactions are used by the force field.    
523 <  
523 >
524      FF_uses_DirectionalAtoms = .false.
265    FF_uses_LennardJones = .false.
266    FF_uses_Electrostatic = .false.
267    FF_uses_Charges = .false.    
525      FF_uses_Dipoles = .false.
269    FF_uses_Sticky = .false.
526      FF_uses_GayBerne = .false.
527      FF_uses_EAM = .false.
528 <    FF_uses_Shapes = .false.
273 <    FF_uses_FLARB = .false.
274 <    
528 >
529      call getMatchingElementList(atypes, "is_Directional", .true., &
530           nMatches, MatchList)
531      if (nMatches .gt. 0) FF_uses_DirectionalAtoms = .true.
532  
279    call getMatchingElementList(atypes, "is_LennardJones", .true., &
280         nMatches, MatchList)
281    if (nMatches .gt. 0) FF_uses_LennardJones = .true.
282    
283    call getMatchingElementList(atypes, "is_Electrostatic", .true., &
284         nMatches, MatchList)
285    if (nMatches .gt. 0) then
286       FF_uses_Electrostatic = .true.
287    endif
288
289    call getMatchingElementList(atypes, "is_Charge", .true., &
290         nMatches, MatchList)
291    if (nMatches .gt. 0) then
292       FF_uses_charges = .true.  
293       FF_uses_electrostatic = .true.
294    endif
295    
533      call getMatchingElementList(atypes, "is_Dipole", .true., &
534           nMatches, MatchList)
535 <    if (nMatches .gt. 0) then
299 <       FF_uses_dipoles = .true.
300 <       FF_uses_electrostatic = .true.
301 <       FF_uses_DirectionalAtoms = .true.
302 <    endif
535 >    if (nMatches .gt. 0) FF_uses_Dipoles = .true.
536      
304    call getMatchingElementList(atypes, "is_Sticky", .true., nMatches, &
305         MatchList)
306    if (nMatches .gt. 0) then
307       FF_uses_Sticky = .true.
308       FF_uses_DirectionalAtoms = .true.
309    endif
310    
537      call getMatchingElementList(atypes, "is_GayBerne", .true., &
538           nMatches, MatchList)
539 <    if (nMatches .gt. 0) then
540 <       FF_uses_GayBerne = .true.
315 <       FF_uses_DirectionalAtoms = .true.
316 <    endif
317 <    
539 >    if (nMatches .gt. 0) FF_uses_GayBerne = .true.
540 >
541      call getMatchingElementList(atypes, "is_EAM", .true., nMatches, MatchList)
542      if (nMatches .gt. 0) FF_uses_EAM = .true.
320    
321    call getMatchingElementList(atypes, "is_Shape", .true., &
322         nMatches, MatchList)
323    if (nMatches .gt. 0) then
324       FF_uses_Shapes = .true.
325       FF_uses_DirectionalAtoms = .true.
326    endif
543  
328    call getMatchingElementList(atypes, "is_FLARB", .true., &
329         nMatches, MatchList)
330    if (nMatches .gt. 0) FF_uses_FLARB = .true.
544  
332    !! Assume sanity (for the sake of argument)
545      haveSaneForceField = .true.
546 <    
547 <    !! check to make sure the FF_uses_RF setting makes sense
548 <    
549 <    if (FF_uses_dipoles) then
550 <       if (FF_uses_RF) then
546 >
547 >    !! check to make sure the reaction field setting makes sense
548 >
549 >    if (FF_uses_Dipoles) then
550 >       if (electrostaticSummationMethod == REACTION_FIELD) then
551            dielect = getDielect()
552            call initialize_rf(dielect)
553         endif
554      else
555 <       if (FF_uses_RF) then          
555 >       if (electrostaticSummationMethod == REACTION_FIELD) then
556            write(default_error,*) 'Using Reaction Field with no dipoles?  Huh?'
557            thisStat = -1
558            haveSaneForceField = .false.
559            return
560         endif
349    endif
350
351    if (FF_uses_sticky) then
352       call check_sticky_FF(my_status)
353       if (my_status /= 0) then
354          thisStat = -1
355          haveSaneForceField = .false.
356          return
357       end if
561      endif
562  
563      if (FF_uses_EAM) then
564 <         call init_EAM_FF(my_status)
564 >       call init_EAM_FF(my_status)
565         if (my_status /= 0) then
566            write(default_error, *) "init_EAM_FF returned a bad status"
567            thisStat = -1
# Line 376 | Line 579 | contains
579         endif
580      endif
581  
379    if (FF_uses_GayBerne .and. FF_uses_LennardJones) then
380    endif
381    
582      if (.not. haveNeighborList) then
583         !! Create neighbor lists
584         call expandNeighborList(nLocal, my_status)
# Line 388 | Line 588 | contains
588            return
589         endif
590         haveNeighborList = .true.
591 <    endif    
592 <    
591 >    endif
592 >
593    end subroutine init_FF
394  
594  
595 +
596    !! Does force loop over i,j pairs. Calls do_pair to calculates forces.
597    !------------------------------------------------------------->
598 <  subroutine do_force_loop(q, q_group, A, u_l, f, t, tau, pot, &
598 >  subroutine do_force_loop(q, q_group, A, eFrame, f, t, tau, pot, &
599         do_pot_c, do_stress_c, error)
600      !! Position array provided by C, dimensioned by getNlocal
601      real ( kind = dp ), dimension(3, nLocal) :: q
# Line 404 | Line 604 | contains
604      !! Rotation Matrix for each long range particle in simulation.
605      real( kind = dp), dimension(9, nLocal) :: A    
606      !! Unit vectors for dipoles (lab frame)
607 <    real( kind = dp ), dimension(3,nLocal) :: u_l
607 >    real( kind = dp ), dimension(9,nLocal) :: eFrame
608      !! Force array provided by C, dimensioned by getNlocal
609      real ( kind = dp ), dimension(3,nLocal) :: f
610      !! Torsion array provided by C, dimensioned by getNlocal
# Line 442 | Line 642 | contains
642      integer :: localError
643      integer :: propPack_i, propPack_j
644      integer :: loopStart, loopEnd, loop
645 <
645 >    integer :: iHash
646      real(kind=dp) :: listSkin = 1.0  
647 <    
647 >
648      !! initialize local variables  
649 <    
649 >
650   #ifdef IS_MPI
651      pot_local = 0.0_dp
652      nAtomsInRow   = getNatomsInRow(plan_atom_row)
# Line 456 | Line 656 | contains
656   #else
657      natoms = nlocal
658   #endif
659 <    
659 >
660      call doReadyCheck(localError)
661      if ( localError .ne. 0 ) then
662         call handleError("do_force_loop", "Not Initialized")
# Line 464 | Line 664 | contains
664         return
665      end if
666      call zero_work_arrays()
667 <        
667 >
668      do_pot = do_pot_c
669      do_stress = do_stress_c
670 <    
670 >
671      ! Gather all information needed by all force loops:
672 <    
672 >
673   #ifdef IS_MPI    
674 <    
674 >
675      call gather(q, q_Row, plan_atom_row_3d)
676      call gather(q, q_Col, plan_atom_col_3d)
677  
678      call gather(q_group, q_group_Row, plan_group_row_3d)
679      call gather(q_group, q_group_Col, plan_group_col_3d)
680 <        
680 >
681      if (FF_UsesDirectionalAtoms() .and. SIM_uses_DirectionalAtoms) then
682 <       call gather(u_l, u_l_Row, plan_atom_row_3d)
683 <       call gather(u_l, u_l_Col, plan_atom_col_3d)
684 <      
682 >       call gather(eFrame, eFrame_Row, plan_atom_row_rotation)
683 >       call gather(eFrame, eFrame_Col, plan_atom_col_rotation)
684 >
685         call gather(A, A_Row, plan_atom_row_rotation)
686         call gather(A, A_Col, plan_atom_col_rotation)
687      endif
688 <    
688 >
689   #endif
690 <    
690 >
691      !! Begin force loop timing:
692   #ifdef PROFILE
693      call cpu_time(forceTimeInitial)
694      nloops = nloops + 1
695   #endif
696 <    
696 >
697      loopEnd = PAIR_LOOP
698      if (FF_RequiresPrepairCalc() .and. SIM_requires_prepair_calc) then
699         loopStart = PREPAIR_LOOP
# Line 508 | Line 708 | contains
708         if (loop .eq. loopStart) then
709   #ifdef IS_MPI
710            call checkNeighborList(nGroupsInRow, q_group_row, listSkin, &
711 <             update_nlist)
711 >               update_nlist)
712   #else
713            call checkNeighborList(nGroups, q_group, listSkin, &
714 <             update_nlist)
714 >               update_nlist)
715   #endif
716         endif
717 <      
717 >
718         if (update_nlist) then
719            !! save current configuration and construct neighbor list
720   #ifdef IS_MPI
# Line 525 | Line 725 | contains
725            neighborListSize = size(list)
726            nlist = 0
727         endif
728 <      
728 >
729         istart = 1
730   #ifdef IS_MPI
731         iend = nGroupsInRow
# Line 535 | Line 735 | contains
735         outer: do i = istart, iend
736  
737            if (update_nlist) point(i) = nlist + 1
738 <          
738 >
739            n_in_i = groupStartRow(i+1) - groupStartRow(i)
740 <          
740 >
741            if (update_nlist) then
742   #ifdef IS_MPI
743               jstart = 1
# Line 552 | Line 752 | contains
752               ! make sure group i has neighbors
753               if (jstart .gt. jend) cycle outer
754            endif
755 <          
755 >
756            do jnab = jstart, jend
757               if (update_nlist) then
758                  j = jnab
# Line 561 | Line 761 | contains
761               endif
762  
763   #ifdef IS_MPI
764 +             me_j = atid_col(j)
765               call get_interatomic_vector(q_group_Row(:,i), &
766                    q_group_Col(:,j), d_grp, rgrpsq)
767   #else
768 +             me_j = atid(j)
769               call get_interatomic_vector(q_group(:,i), &
770                    q_group(:,j), d_grp, rgrpsq)
771   #endif
772  
773 <             if (rgrpsq < rlistsq) then
773 >             if (rgrpsq < gtypeCutoffMap(groupToGtype(i),groupToGtype(j))%rListsq) then
774                  if (update_nlist) then
775                     nlist = nlist + 1
776 <                  
776 >
777                     if (nlist > neighborListSize) then
778   #ifdef IS_MPI                
779                        call expandNeighborList(nGroupsInRow, listerror)
# Line 585 | Line 787 | contains
787                        end if
788                        neighborListSize = size(list)
789                     endif
790 <                  
790 >
791                     list(nlist) = j
792                  endif
793 <                
793 >
794                  if (loop .eq. PAIR_LOOP) then
795                     vij = 0.0d0
796                     fij(1:3) = 0.0d0
797                  endif
798 <                
798 >
799                  call get_switch(rgrpsq, sw, dswdr, rgrp, group_switch, &
800                       in_switching_region)
801 <                
801 >
802                  n_in_j = groupStartCol(j+1) - groupStartCol(j)
803 <                
803 >
804                  do ia = groupStartRow(i), groupStartRow(i+1)-1
805 <                  
805 >
806                     atom1 = groupListRow(ia)
807 <                  
807 >
808                     inner: do jb = groupStartCol(j), groupStartCol(j+1)-1
809 <                      
809 >
810                        atom2 = groupListCol(jb)
811 <                      
811 >
812                        if (skipThisPair(atom1, atom2)) cycle inner
813  
814                        if ((n_in_i .eq. 1).and.(n_in_j .eq. 1)) then
# Line 626 | Line 828 | contains
828   #ifdef IS_MPI                      
829                           call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
830                                rgrpsq, d_grp, do_pot, do_stress, &
831 <                              u_l, A, f, t, pot_local)
831 >                              eFrame, A, f, t, pot_local)
832   #else
833                           call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
834                                rgrpsq, d_grp, do_pot, do_stress, &
835 <                              u_l, A, f, t, pot)
835 >                              eFrame, A, f, t, pot)
836   #endif                                              
837                        else
838   #ifdef IS_MPI                      
839                           call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
840                                do_pot, &
841 <                              u_l, A, f, t, pot_local, vpair, fpair)
841 >                              eFrame, A, f, t, pot_local, vpair, fpair)
842   #else
843                           call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
844                                do_pot,  &
845 <                              u_l, A, f, t, pot, vpair, fpair)
845 >                              eFrame, A, f, t, pot, vpair, fpair)
846   #endif
847  
848                           vij = vij + vpair
# Line 648 | Line 850 | contains
850                        endif
851                     enddo inner
852                  enddo
853 <                
853 >
854                  if (loop .eq. PAIR_LOOP) then
855                     if (in_switching_region) then
856                        swderiv = vij*dswdr/rgrp
857                        fij(1) = fij(1) + swderiv*d_grp(1)
858                        fij(2) = fij(2) + swderiv*d_grp(2)
859                        fij(3) = fij(3) + swderiv*d_grp(3)
860 <                      
860 >
861                        do ia=groupStartRow(i), groupStartRow(i+1)-1
862                           atom1=groupListRow(ia)
863                           mf = mfactRow(atom1)
# Line 669 | Line 871 | contains
871                           f(3,atom1) = f(3,atom1) + swderiv*d_grp(3)*mf
872   #endif
873                        enddo
874 <                      
874 >
875                        do jb=groupStartCol(j), groupStartCol(j+1)-1
876                           atom2=groupListCol(jb)
877                           mf = mfactCol(atom2)
# Line 684 | Line 886 | contains
886   #endif
887                        enddo
888                     endif
889 <                  
889 >
890                     if (do_stress) call add_stress_tensor(d_grp, fij)
891                  endif
892               end if
893            enddo
894         enddo outer
895 <      
895 >
896         if (update_nlist) then
897   #ifdef IS_MPI
898            point(nGroupsInRow + 1) = nlist + 1
# Line 704 | Line 906 | contains
906               update_nlist = .false.                              
907            endif
908         endif
909 <            
909 >
910         if (loop .eq. PREPAIR_LOOP) then
911            call do_preforce(nlocal, pot)
912         endif
913 <      
913 >
914      enddo
915 <    
915 >
916      !! Do timing
917   #ifdef PROFILE
918      call cpu_time(forceTimeFinal)
919      forceTime = forceTime + forceTimeFinal - forceTimeInitial
920   #endif    
921 <    
921 >
922   #ifdef IS_MPI
923      !!distribute forces
924 <    
924 >
925      f_temp = 0.0_dp
926      call scatter(f_Row,f_temp,plan_atom_row_3d)
927      do i = 1,nlocal
928         f(1:3,i) = f(1:3,i) + f_temp(1:3,i)
929      end do
930 <    
930 >
931      f_temp = 0.0_dp
932      call scatter(f_Col,f_temp,plan_atom_col_3d)
933      do i = 1,nlocal
934         f(1:3,i) = f(1:3,i) + f_temp(1:3,i)
935      end do
936 <    
936 >
937      if (FF_UsesDirectionalAtoms() .and. SIM_uses_DirectionalAtoms) then
938         t_temp = 0.0_dp
939         call scatter(t_Row,t_temp,plan_atom_row_3d)
# Line 740 | Line 942 | contains
942         end do
943         t_temp = 0.0_dp
944         call scatter(t_Col,t_temp,plan_atom_col_3d)
945 <      
945 >
946         do i = 1,nlocal
947            t(1:3,i) = t(1:3,i) + t_temp(1:3,i)
948         end do
949      endif
950 <    
950 >
951      if (do_pot) then
952         ! scatter/gather pot_row into the members of my column
953         call scatter(pot_Row, pot_Temp, plan_atom_row)
954 <      
954 >
955         ! scatter/gather pot_local into all other procs
956         ! add resultant to get total pot
957         do i = 1, nlocal
958            pot_local = pot_local + pot_Temp(i)
959         enddo
960 <      
960 >
961         pot_Temp = 0.0_DP
962 <      
962 >
963         call scatter(pot_Col, pot_Temp, plan_atom_col)
964         do i = 1, nlocal
965            pot_local = pot_local + pot_Temp(i)
966         enddo
967 <      
967 >
968      endif
969   #endif
970 <    
970 >
971      if (FF_RequiresPostpairCalc() .and. SIM_requires_postpair_calc) then
972 <      
973 <       if (FF_uses_RF .and. SIM_uses_RF) then
974 <          
972 >
973 >       if (electrostaticSummationMethod == REACTION_FIELD) then
974 >
975   #ifdef IS_MPI
976            call scatter(rf_Row,rf,plan_atom_row_3d)
977            call scatter(rf_Col,rf_Temp,plan_atom_col_3d)
# Line 777 | Line 979 | contains
979               rf(1:3,i) = rf(1:3,i) + rf_Temp(1:3,i)
980            end do
981   #endif
982 <          
982 >
983            do i = 1, nLocal
984 <            
984 >
985               rfpot = 0.0_DP
986   #ifdef IS_MPI
987               me_i = atid_row(i)
988   #else
989               me_i = atid(i)
990   #endif
991 +             iHash = InteractionHash(me_i,me_j)
992              
993 <             if (PropertyMap(me_i)%is_Dipole) then
994 <                
993 >             if ( iand(iHash, ELECTROSTATIC_PAIR).ne.0 ) then
994 >
995                  mu_i = getDipoleMoment(me_i)
996 <                
996 >
997                  !! The reaction field needs to include a self contribution
998                  !! to the field:
999 <                call accumulate_self_rf(i, mu_i, u_l)
999 >                call accumulate_self_rf(i, mu_i, eFrame)
1000                  !! Get the reaction field contribution to the
1001                  !! potential and torques:
1002 <                call reaction_field_final(i, mu_i, u_l, rfpot, t, do_pot)
1002 >                call reaction_field_final(i, mu_i, eFrame, rfpot, t, do_pot)
1003   #ifdef IS_MPI
1004                  pot_local = pot_local + rfpot
1005   #else
1006                  pot = pot + rfpot
1007 <      
1007 >
1008   #endif
1009 <             endif            
1009 >             endif
1010            enddo
1011         endif
1012      endif
1013 <    
1014 <    
1013 >
1014 >
1015   #ifdef IS_MPI
1016 <    
1016 >
1017      if (do_pot) then
1018         pot = pot + pot_local
1019         !! we assume the c code will do the allreduce to get the total potential
1020         !! we could do it right here if we needed to...
1021      endif
1022 <    
1022 >
1023      if (do_stress) then
1024         call mpi_allreduce(tau_Temp, tau, 9,mpi_double_precision,mpi_sum, &
1025              mpi_comm_world,mpi_err)
1026         call mpi_allreduce(virial_Temp, virial,1,mpi_double_precision,mpi_sum, &
1027              mpi_comm_world,mpi_err)
1028      endif
1029 <    
1029 >
1030   #else
1031 <    
1031 >
1032      if (do_stress) then
1033         tau = tau_Temp
1034         virial = virial_Temp
1035      endif
1036 <    
1036 >
1037   #endif
1038 <      
1038 >
1039    end subroutine do_force_loop
1040 <  
1040 >
1041    subroutine do_pair(i, j, rijsq, d, sw, do_pot, &
1042 <       u_l, A, f, t, pot, vpair, fpair)
1042 >       eFrame, A, f, t, pot, vpair, fpair)
1043  
1044      real( kind = dp ) :: pot, vpair, sw
1045      real( kind = dp ), dimension(3) :: fpair
1046      real( kind = dp ), dimension(nLocal)   :: mfact
1047 <    real( kind = dp ), dimension(3,nLocal) :: u_l
1047 >    real( kind = dp ), dimension(9,nLocal) :: eFrame
1048      real( kind = dp ), dimension(9,nLocal) :: A
1049      real( kind = dp ), dimension(3,nLocal) :: f
1050      real( kind = dp ), dimension(3,nLocal) :: t
# Line 853 | Line 1056 | contains
1056      real ( kind = dp ), intent(inout) :: d(3)
1057      integer :: me_i, me_j
1058  
1059 +    integer :: iHash
1060 +
1061      r = sqrt(rijsq)
1062      vpair = 0.0d0
1063      fpair(1:3) = 0.0d0
# Line 864 | Line 1069 | contains
1069      me_i = atid(i)
1070      me_j = atid(j)
1071   #endif
867    
868    if (FF_uses_LennardJones .and. SIM_uses_LennardJones) then
869      
870       if ( PropertyMap(me_i)%is_LennardJones .and. &
871            PropertyMap(me_j)%is_LennardJones ) then
872          call do_lj_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, do_pot)
873       endif
874      
875    endif
876    
877    if (FF_uses_charges .and. SIM_uses_charges) then
878      
879       if (PropertyMap(me_i)%is_Charge .and. PropertyMap(me_j)%is_Charge) then
880          call do_charge_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
881               pot, f, do_pot)
882       endif
883      
884    endif
885    
886    if (FF_uses_dipoles .and. SIM_uses_dipoles) then
887      
888       if ( PropertyMap(me_i)%is_Dipole .and. PropertyMap(me_j)%is_Dipole) then
889          call do_dipole_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
890               pot, u_l, f, t, do_pot)
891          if (FF_uses_RF .and. SIM_uses_RF) then
892             call accumulate_rf(i, j, r, u_l, sw)
893             call rf_correct_forces(i, j, d, r, u_l, sw, f, fpair)
894          endif
895       endif
1072  
1073 +    iHash = InteractionHash(me_i, me_j)
1074 +
1075 +    if ( iand(iHash, LJ_PAIR).ne.0 ) then
1076 +       call do_lj_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, do_pot)
1077      endif
1078  
1079 <    if (FF_uses_Sticky .and. SIM_uses_sticky) then
1079 >    if ( iand(iHash, ELECTROSTATIC_PAIR).ne.0 ) then
1080 >       call doElectrostaticPair(i, j, d, r, rijsq, sw, vpair, fpair, &
1081 >            pot, eFrame, f, t, do_pot)
1082  
1083 <       if ( PropertyMap(me_i)%is_Sticky .and. PropertyMap(me_j)%is_Sticky) then
1084 <          call do_sticky_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1085 <               pot, A, f, t, do_pot)
1083 >       if (electrostaticSummationMethod == REACTION_FIELD) then
1084 >
1085 >          ! CHECK ME (RF needs to know about all electrostatic types)
1086 >          call accumulate_rf(i, j, r, eFrame, sw)
1087 >          call rf_correct_forces(i, j, d, r, eFrame, sw, f, fpair)
1088         endif
1089 <      
1089 >
1090      endif
1091  
1092 +    if ( iand(iHash, STICKY_PAIR).ne.0 ) then
1093 +       call do_sticky_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1094 +            pot, A, f, t, do_pot)
1095 +    endif
1096  
1097 <    if (FF_uses_GayBerne .and. SIM_uses_GayBerne) then
1098 <      
1099 <       if ( PropertyMap(me_i)%is_GayBerne .and. &
912 <            PropertyMap(me_j)%is_GayBerne) then
913 <          call do_gb_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
914 <               pot, u_l, f, t, do_pot)
915 <       endif
916 <      
1097 >    if ( iand(iHash, STICKYPOWER_PAIR).ne.0 ) then
1098 >       call do_sticky_power_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1099 >            pot, A, f, t, do_pot)
1100      endif
1101 +
1102 +    if ( iand(iHash, GAYBERNE_PAIR).ne.0 ) then
1103 +       call do_gb_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1104 +            pot, A, f, t, do_pot)
1105 +    endif
1106      
1107 <    if (FF_uses_EAM .and. SIM_uses_EAM) then
1108 <      
1109 <       if ( PropertyMap(me_i)%is_EAM .and. PropertyMap(me_j)%is_EAM) then
922 <          call do_eam_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, &
923 <               do_pot)
924 <       endif
925 <      
1107 >    if ( iand(iHash, GAYBERNE_LJ).ne.0 ) then
1108 > !      call do_gblj_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1109 > !           pot, A, f, t, do_pot)
1110      endif
1111  
1112 <    if (FF_uses_Shapes .and. SIM_uses_Shapes) then
1113 <      
1114 <       if ( PropertyMap(me_i)%is_Shape .and. &
931 <            PropertyMap(me_j)%is_Shape ) then
932 <          call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
933 <               pot, u_l, f, t, do_pot)
934 <       endif
935 <      
1112 >    if ( iand(iHash, EAM_PAIR).ne.0 ) then      
1113 >       call do_eam_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, &
1114 >            do_pot)
1115      endif
1116 +
1117 +    if ( iand(iHash, SHAPE_PAIR).ne.0 ) then      
1118 +       call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1119 +            pot, A, f, t, do_pot)
1120 +    endif
1121 +
1122 +    if ( iand(iHash, SHAPE_LJ).ne.0 ) then      
1123 +       call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1124 +            pot, A, f, t, do_pot)
1125 +    endif
1126      
1127    end subroutine do_pair
1128  
1129    subroutine do_prepair(i, j, rijsq, d, sw, rcijsq, dc, &
1130 <       do_pot, do_stress, u_l, A, f, t, pot)
1130 >       do_pot, do_stress, eFrame, A, f, t, pot)
1131  
1132 <   real( kind = dp ) :: pot, sw
1133 <   real( kind = dp ), dimension(3,nLocal) :: u_l
1134 <   real (kind=dp), dimension(9,nLocal) :: A
1135 <   real (kind=dp), dimension(3,nLocal) :: f
1136 <   real (kind=dp), dimension(3,nLocal) :: t
948 <  
949 <   logical, intent(inout) :: do_pot, do_stress
950 <   integer, intent(in) :: i, j
951 <   real ( kind = dp ), intent(inout)    :: rijsq, rcijsq
952 <   real ( kind = dp )                :: r, rc
953 <   real ( kind = dp ), intent(inout) :: d(3), dc(3)
954 <  
955 <   logical :: is_EAM_i, is_EAM_j
956 <  
957 <   integer :: me_i, me_j
958 <  
1132 >    real( kind = dp ) :: pot, sw
1133 >    real( kind = dp ), dimension(9,nLocal) :: eFrame
1134 >    real (kind=dp), dimension(9,nLocal) :: A
1135 >    real (kind=dp), dimension(3,nLocal) :: f
1136 >    real (kind=dp), dimension(3,nLocal) :: t
1137  
1138 +    logical, intent(inout) :: do_pot, do_stress
1139 +    integer, intent(in) :: i, j
1140 +    real ( kind = dp ), intent(inout)    :: rijsq, rcijsq
1141 +    real ( kind = dp )                :: r, rc
1142 +    real ( kind = dp ), intent(inout) :: d(3), dc(3)
1143 +
1144 +    integer :: me_i, me_j, iHash
1145 +
1146      r = sqrt(rijsq)
961    if (SIM_uses_molecular_cutoffs) then
962       rc = sqrt(rcijsq)
963    else
964       rc = r
965    endif
966  
1147  
1148   #ifdef IS_MPI  
1149 <   me_i = atid_row(i)
1150 <   me_j = atid_col(j)  
1149 >    me_i = atid_row(i)
1150 >    me_j = atid_col(j)  
1151   #else  
1152 <   me_i = atid(i)
1153 <   me_j = atid(j)  
1152 >    me_i = atid(i)
1153 >    me_j = atid(j)  
1154   #endif
1155 <  
1156 <   if (FF_uses_EAM .and. SIM_uses_EAM) then
1157 <      
1158 <      if (PropertyMap(me_i)%is_EAM .and. PropertyMap(me_j)%is_EAM) &
1159 <           call calc_EAM_prepair_rho(i, j, d, r, rijsq )
1160 <      
1161 <   endif
1162 <  
1163 < end subroutine do_prepair
1164 <
1165 <
1166 < subroutine do_preforce(nlocal,pot)
1167 <   integer :: nlocal
1168 <   real( kind = dp ) :: pot
1169 <  
1170 <   if (FF_uses_EAM .and. SIM_uses_EAM) then
1171 <      call calc_EAM_preforce_Frho(nlocal,pot)
1172 <   endif
1173 <  
1174 <  
1175 < end subroutine do_preforce
1176 <
1177 <
1178 < subroutine get_interatomic_vector(q_i, q_j, d, r_sq)
1179 <  
1180 <   real (kind = dp), dimension(3) :: q_i
1181 <   real (kind = dp), dimension(3) :: q_j
1182 <   real ( kind = dp ), intent(out) :: r_sq
1183 <   real( kind = dp ) :: d(3), scaled(3)
1184 <   integer i
1185 <  
1186 <   d(1:3) = q_j(1:3) - q_i(1:3)
1187 <  
1188 <   ! Wrap back into periodic box if necessary
1189 <   if ( SIM_uses_PBC ) then
1190 <      
1191 <      if( .not.boxIsOrthorhombic ) then
1192 <         ! calc the scaled coordinates.
1193 <        
1194 <         scaled = matmul(HmatInv, d)
1195 <        
1196 <         ! wrap the scaled coordinates
1197 <        
1198 <         scaled = scaled  - anint(scaled)
1199 <        
1200 <        
1201 <         ! calc the wrapped real coordinates from the wrapped scaled
1202 <         ! coordinates
1203 <        
1204 <         d = matmul(Hmat,scaled)
1205 <        
1206 <      else
1207 <         ! calc the scaled coordinates.
1208 <        
1209 <         do i = 1, 3
1210 <            scaled(i) = d(i) * HmatInv(i,i)
1211 <            
1212 <            ! wrap the scaled coordinates
1213 <            
1214 <            scaled(i) = scaled(i) - anint(scaled(i))
1215 <            
1216 <            ! calc the wrapped real coordinates from the wrapped scaled
1217 <            ! coordinates
1218 <            
1219 <            d(i) = scaled(i)*Hmat(i,i)
1220 <         enddo
1221 <      endif
1222 <      
1223 <   endif
1224 <  
1225 <   r_sq = dot_product(d,d)
1226 <  
1227 < end subroutine get_interatomic_vector
1228 <
1229 < subroutine zero_work_arrays()
1050 <  
1155 >
1156 >    iHash = InteractionHash(me_i, me_j)
1157 >
1158 >    if ( iand(iHash, EAM_PAIR).ne.0 ) then      
1159 >            call calc_EAM_prepair_rho(i, j, d, r, rijsq )
1160 >    endif
1161 >    
1162 >  end subroutine do_prepair
1163 >
1164 >
1165 >  subroutine do_preforce(nlocal,pot)
1166 >    integer :: nlocal
1167 >    real( kind = dp ) :: pot
1168 >
1169 >    if (FF_uses_EAM .and. SIM_uses_EAM) then
1170 >       call calc_EAM_preforce_Frho(nlocal,pot)
1171 >    endif
1172 >
1173 >
1174 >  end subroutine do_preforce
1175 >
1176 >
1177 >  subroutine get_interatomic_vector(q_i, q_j, d, r_sq)
1178 >
1179 >    real (kind = dp), dimension(3) :: q_i
1180 >    real (kind = dp), dimension(3) :: q_j
1181 >    real ( kind = dp ), intent(out) :: r_sq
1182 >    real( kind = dp ) :: d(3), scaled(3)
1183 >    integer i
1184 >
1185 >    d(1:3) = q_j(1:3) - q_i(1:3)
1186 >
1187 >    ! Wrap back into periodic box if necessary
1188 >    if ( SIM_uses_PBC ) then
1189 >
1190 >       if( .not.boxIsOrthorhombic ) then
1191 >          ! calc the scaled coordinates.
1192 >
1193 >          scaled = matmul(HmatInv, d)
1194 >
1195 >          ! wrap the scaled coordinates
1196 >
1197 >          scaled = scaled  - anint(scaled)
1198 >
1199 >
1200 >          ! calc the wrapped real coordinates from the wrapped scaled
1201 >          ! coordinates
1202 >
1203 >          d = matmul(Hmat,scaled)
1204 >
1205 >       else
1206 >          ! calc the scaled coordinates.
1207 >
1208 >          do i = 1, 3
1209 >             scaled(i) = d(i) * HmatInv(i,i)
1210 >
1211 >             ! wrap the scaled coordinates
1212 >
1213 >             scaled(i) = scaled(i) - anint(scaled(i))
1214 >
1215 >             ! calc the wrapped real coordinates from the wrapped scaled
1216 >             ! coordinates
1217 >
1218 >             d(i) = scaled(i)*Hmat(i,i)
1219 >          enddo
1220 >       endif
1221 >
1222 >    endif
1223 >
1224 >    r_sq = dot_product(d,d)
1225 >
1226 >  end subroutine get_interatomic_vector
1227 >
1228 >  subroutine zero_work_arrays()
1229 >
1230   #ifdef IS_MPI
1052  
1053   q_Row = 0.0_dp
1054   q_Col = 0.0_dp
1231  
1232 <   q_group_Row = 0.0_dp
1233 <   q_group_Col = 0.0_dp  
1234 <  
1235 <   u_l_Row = 0.0_dp
1236 <   u_l_Col = 0.0_dp
1237 <  
1238 <   A_Row = 0.0_dp
1239 <   A_Col = 0.0_dp
1240 <  
1241 <   f_Row = 0.0_dp
1242 <   f_Col = 0.0_dp
1243 <   f_Temp = 0.0_dp
1244 <  
1245 <   t_Row = 0.0_dp
1246 <   t_Col = 0.0_dp
1247 <   t_Temp = 0.0_dp
1248 <  
1249 <   pot_Row = 0.0_dp
1250 <   pot_Col = 0.0_dp
1251 <   pot_Temp = 0.0_dp
1252 <  
1253 <   rf_Row = 0.0_dp
1254 <   rf_Col = 0.0_dp
1255 <   rf_Temp = 0.0_dp
1256 <  
1232 >    q_Row = 0.0_dp
1233 >    q_Col = 0.0_dp
1234 >
1235 >    q_group_Row = 0.0_dp
1236 >    q_group_Col = 0.0_dp  
1237 >
1238 >    eFrame_Row = 0.0_dp
1239 >    eFrame_Col = 0.0_dp
1240 >
1241 >    A_Row = 0.0_dp
1242 >    A_Col = 0.0_dp
1243 >
1244 >    f_Row = 0.0_dp
1245 >    f_Col = 0.0_dp
1246 >    f_Temp = 0.0_dp
1247 >
1248 >    t_Row = 0.0_dp
1249 >    t_Col = 0.0_dp
1250 >    t_Temp = 0.0_dp
1251 >
1252 >    pot_Row = 0.0_dp
1253 >    pot_Col = 0.0_dp
1254 >    pot_Temp = 0.0_dp
1255 >
1256 >    rf_Row = 0.0_dp
1257 >    rf_Col = 0.0_dp
1258 >    rf_Temp = 0.0_dp
1259 >
1260   #endif
1261 <
1262 <   if (FF_uses_EAM .and. SIM_uses_EAM) then
1263 <      call clean_EAM()
1264 <   endif
1265 <  
1266 <   rf = 0.0_dp
1267 <   tau_Temp = 0.0_dp
1268 <   virial_Temp = 0.0_dp
1269 < end subroutine zero_work_arrays
1270 <
1271 < function skipThisPair(atom1, atom2) result(skip_it)
1272 <   integer, intent(in) :: atom1
1273 <   integer, intent(in), optional :: atom2
1274 <   logical :: skip_it
1275 <   integer :: unique_id_1, unique_id_2
1276 <   integer :: me_i,me_j
1277 <   integer :: i
1278 <  
1279 <   skip_it = .false.
1280 <  
1281 <   !! there are a number of reasons to skip a pair or a particle
1282 <   !! mostly we do this to exclude atoms who are involved in short
1283 <   !! range interactions (bonds, bends, torsions), but we also need
1284 <   !! to exclude some overcounted interactions that result from
1285 <   !! the parallel decomposition
1286 <  
1261 >
1262 >    if (FF_uses_EAM .and. SIM_uses_EAM) then
1263 >       call clean_EAM()
1264 >    endif
1265 >
1266 >    rf = 0.0_dp
1267 >    tau_Temp = 0.0_dp
1268 >    virial_Temp = 0.0_dp
1269 >  end subroutine zero_work_arrays
1270 >
1271 >  function skipThisPair(atom1, atom2) result(skip_it)
1272 >    integer, intent(in) :: atom1
1273 >    integer, intent(in), optional :: atom2
1274 >    logical :: skip_it
1275 >    integer :: unique_id_1, unique_id_2
1276 >    integer :: me_i,me_j
1277 >    integer :: i
1278 >
1279 >    skip_it = .false.
1280 >
1281 >    !! there are a number of reasons to skip a pair or a particle
1282 >    !! mostly we do this to exclude atoms who are involved in short
1283 >    !! range interactions (bonds, bends, torsions), but we also need
1284 >    !! to exclude some overcounted interactions that result from
1285 >    !! the parallel decomposition
1286 >
1287   #ifdef IS_MPI
1288 <   !! in MPI, we have to look up the unique IDs for each atom
1289 <   unique_id_1 = AtomRowToGlobal(atom1)
1288 >    !! in MPI, we have to look up the unique IDs for each atom
1289 >    unique_id_1 = AtomRowToGlobal(atom1)
1290   #else
1291 <   !! in the normal loop, the atom numbers are unique
1292 <   unique_id_1 = atom1
1291 >    !! in the normal loop, the atom numbers are unique
1292 >    unique_id_1 = atom1
1293   #endif
1294 <  
1295 <   !! We were called with only one atom, so just check the global exclude
1296 <   !! list for this atom
1297 <   if (.not. present(atom2)) then
1298 <      do i = 1, nExcludes_global
1299 <         if (excludesGlobal(i) == unique_id_1) then
1300 <            skip_it = .true.
1301 <            return
1302 <         end if
1303 <      end do
1304 <      return
1305 <   end if
1306 <  
1294 >
1295 >    !! We were called with only one atom, so just check the global exclude
1296 >    !! list for this atom
1297 >    if (.not. present(atom2)) then
1298 >       do i = 1, nExcludes_global
1299 >          if (excludesGlobal(i) == unique_id_1) then
1300 >             skip_it = .true.
1301 >             return
1302 >          end if
1303 >       end do
1304 >       return
1305 >    end if
1306 >
1307   #ifdef IS_MPI
1308 <   unique_id_2 = AtomColToGlobal(atom2)
1308 >    unique_id_2 = AtomColToGlobal(atom2)
1309   #else
1310 <   unique_id_2 = atom2
1310 >    unique_id_2 = atom2
1311   #endif
1312 <  
1312 >
1313   #ifdef IS_MPI
1314 <   !! this situation should only arise in MPI simulations
1315 <   if (unique_id_1 == unique_id_2) then
1316 <      skip_it = .true.
1317 <      return
1318 <   end if
1319 <  
1320 <   !! this prevents us from doing the pair on multiple processors
1321 <   if (unique_id_1 < unique_id_2) then
1322 <      if (mod(unique_id_1 + unique_id_2,2) == 0) then
1323 <         skip_it = .true.
1324 <         return
1325 <      endif
1326 <   else                
1327 <      if (mod(unique_id_1 + unique_id_2,2) == 1) then
1328 <         skip_it = .true.
1329 <         return
1330 <      endif
1331 <   endif
1314 >    !! this situation should only arise in MPI simulations
1315 >    if (unique_id_1 == unique_id_2) then
1316 >       skip_it = .true.
1317 >       return
1318 >    end if
1319 >
1320 >    !! this prevents us from doing the pair on multiple processors
1321 >    if (unique_id_1 < unique_id_2) then
1322 >       if (mod(unique_id_1 + unique_id_2,2) == 0) then
1323 >          skip_it = .true.
1324 >          return
1325 >       endif
1326 >    else                
1327 >       if (mod(unique_id_1 + unique_id_2,2) == 1) then
1328 >          skip_it = .true.
1329 >          return
1330 >       endif
1331 >    endif
1332   #endif
1333 <  
1334 <   !! the rest of these situations can happen in all simulations:
1335 <   do i = 1, nExcludes_global      
1336 <      if ((excludesGlobal(i) == unique_id_1) .or. &
1337 <           (excludesGlobal(i) == unique_id_2)) then
1338 <         skip_it = .true.
1339 <         return
1340 <      endif
1341 <   enddo
1342 <  
1343 <   do i = 1, nSkipsForAtom(atom1)
1344 <      if (skipsForAtom(atom1, i) .eq. unique_id_2) then
1345 <         skip_it = .true.
1346 <         return
1347 <      endif
1348 <   end do
1349 <  
1350 <   return
1351 < end function skipThisPair
1352 <
1353 < function FF_UsesDirectionalAtoms() result(doesit)
1354 <   logical :: doesit
1355 <   doesit = FF_uses_DirectionalAtoms .or. FF_uses_Dipoles .or. &
1356 <        FF_uses_Sticky .or. FF_uses_GayBerne .or. FF_uses_Shapes
1357 < end function FF_UsesDirectionalAtoms
1358 <
1359 < function FF_RequiresPrepairCalc() result(doesit)
1360 <   logical :: doesit
1361 <   doesit = FF_uses_EAM
1362 < end function FF_RequiresPrepairCalc
1363 <
1364 < function FF_RequiresPostpairCalc() result(doesit)
1365 <   logical :: doesit
1366 <   doesit = FF_uses_RF
1367 < end function FF_RequiresPostpairCalc
1189 <
1333 >
1334 >    !! the rest of these situations can happen in all simulations:
1335 >    do i = 1, nExcludes_global      
1336 >       if ((excludesGlobal(i) == unique_id_1) .or. &
1337 >            (excludesGlobal(i) == unique_id_2)) then
1338 >          skip_it = .true.
1339 >          return
1340 >       endif
1341 >    enddo
1342 >
1343 >    do i = 1, nSkipsForAtom(atom1)
1344 >       if (skipsForAtom(atom1, i) .eq. unique_id_2) then
1345 >          skip_it = .true.
1346 >          return
1347 >       endif
1348 >    end do
1349 >
1350 >    return
1351 >  end function skipThisPair
1352 >
1353 >  function FF_UsesDirectionalAtoms() result(doesit)
1354 >    logical :: doesit
1355 >    doesit = FF_uses_DirectionalAtoms
1356 >  end function FF_UsesDirectionalAtoms
1357 >
1358 >  function FF_RequiresPrepairCalc() result(doesit)
1359 >    logical :: doesit
1360 >    doesit = FF_uses_EAM
1361 >  end function FF_RequiresPrepairCalc
1362 >
1363 >  function FF_RequiresPostpairCalc() result(doesit)
1364 >    logical :: doesit
1365 >    if (electrostaticSummationMethod == REACTION_FIELD) doesit = .true.
1366 >  end function FF_RequiresPostpairCalc
1367 >
1368   #ifdef PROFILE
1369 < function getforcetime() result(totalforcetime)
1370 <   real(kind=dp) :: totalforcetime
1371 <   totalforcetime = forcetime
1372 < end function getforcetime
1369 >  function getforcetime() result(totalforcetime)
1370 >    real(kind=dp) :: totalforcetime
1371 >    totalforcetime = forcetime
1372 >  end function getforcetime
1373   #endif
1196
1197 !! This cleans componets of force arrays belonging only to fortran
1374  
1375 < subroutine add_stress_tensor(dpair, fpair)
1200 <  
1201 <   real( kind = dp ), dimension(3), intent(in) :: dpair, fpair
1202 <  
1203 <   ! because the d vector is the rj - ri vector, and
1204 <   ! because fx, fy, fz are the force on atom i, we need a
1205 <   ! negative sign here:  
1206 <  
1207 <   tau_Temp(1) = tau_Temp(1) - dpair(1) * fpair(1)
1208 <   tau_Temp(2) = tau_Temp(2) - dpair(1) * fpair(2)
1209 <   tau_Temp(3) = tau_Temp(3) - dpair(1) * fpair(3)
1210 <   tau_Temp(4) = tau_Temp(4) - dpair(2) * fpair(1)
1211 <   tau_Temp(5) = tau_Temp(5) - dpair(2) * fpair(2)
1212 <   tau_Temp(6) = tau_Temp(6) - dpair(2) * fpair(3)
1213 <   tau_Temp(7) = tau_Temp(7) - dpair(3) * fpair(1)
1214 <   tau_Temp(8) = tau_Temp(8) - dpair(3) * fpair(2)
1215 <   tau_Temp(9) = tau_Temp(9) - dpair(3) * fpair(3)
1216 <  
1217 <   virial_Temp = virial_Temp + &
1218 <        (tau_Temp(1) + tau_Temp(5) + tau_Temp(9))
1219 <  
1220 < end subroutine add_stress_tensor
1221 <
1222 < end module doForces
1375 >  !! This cleans componets of force arrays belonging only to fortran
1376  
1377 < !! Interfaces for C programs to module....
1377 >  subroutine add_stress_tensor(dpair, fpair)
1378  
1379 < subroutine initFortranFF(use_RF_c, thisStat)
1227 <    use doForces, ONLY: init_FF
1228 <    logical, intent(in) :: use_RF_c
1379 >    real( kind = dp ), dimension(3), intent(in) :: dpair, fpair
1380  
1381 <    integer, intent(out) :: thisStat  
1382 <    call init_FF(use_RF_c, thisStat)
1381 >    ! because the d vector is the rj - ri vector, and
1382 >    ! because fx, fy, fz are the force on atom i, we need a
1383 >    ! negative sign here:  
1384  
1385 < end subroutine initFortranFF
1385 >    tau_Temp(1) = tau_Temp(1) - dpair(1) * fpair(1)
1386 >    tau_Temp(2) = tau_Temp(2) - dpair(1) * fpair(2)
1387 >    tau_Temp(3) = tau_Temp(3) - dpair(1) * fpair(3)
1388 >    tau_Temp(4) = tau_Temp(4) - dpair(2) * fpair(1)
1389 >    tau_Temp(5) = tau_Temp(5) - dpair(2) * fpair(2)
1390 >    tau_Temp(6) = tau_Temp(6) - dpair(2) * fpair(3)
1391 >    tau_Temp(7) = tau_Temp(7) - dpair(3) * fpair(1)
1392 >    tau_Temp(8) = tau_Temp(8) - dpair(3) * fpair(2)
1393 >    tau_Temp(9) = tau_Temp(9) - dpair(3) * fpair(3)
1394  
1395 <  subroutine doForceloop(q, q_group, A, u_l, f, t, tau, pot, &
1396 <       do_pot_c, do_stress_c, error)
1237 <      
1238 <       use definitions, ONLY: dp
1239 <       use simulation
1240 <       use doForces, ONLY: do_force_loop
1241 <    !! Position array provided by C, dimensioned by getNlocal
1242 <    real ( kind = dp ), dimension(3, nLocal) :: q
1243 <    !! molecular center-of-mass position array
1244 <    real ( kind = dp ), dimension(3, nGroups) :: q_group
1245 <    !! Rotation Matrix for each long range particle in simulation.
1246 <    real( kind = dp), dimension(9, nLocal) :: A    
1247 <    !! Unit vectors for dipoles (lab frame)
1248 <    real( kind = dp ), dimension(3,nLocal) :: u_l
1249 <    !! Force array provided by C, dimensioned by getNlocal
1250 <    real ( kind = dp ), dimension(3,nLocal) :: f
1251 <    !! Torsion array provided by C, dimensioned by getNlocal
1252 <    real( kind = dp ), dimension(3,nLocal) :: t    
1395 >    virial_Temp = virial_Temp + &
1396 >         (tau_Temp(1) + tau_Temp(5) + tau_Temp(9))
1397  
1398 <    !! Stress Tensor
1399 <    real( kind = dp), dimension(9) :: tau  
1400 <    real ( kind = dp ) :: pot
1257 <    logical ( kind = 2) :: do_pot_c, do_stress_c
1258 <    integer :: error
1259 <    
1260 <    call do_force_loop(q, q_group, A, u_l, f, t, tau, pot, &
1261 <       do_pot_c, do_stress_c, error)
1262 <      
1263 < end subroutine doForceloop
1398 >  end subroutine add_stress_tensor
1399 >
1400 > end module doForces

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines