ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-3.0/src/UseTheForce/doForces.F90
Revision: 2381
Committed: Tue Oct 18 15:01:42 2005 UTC (18 years, 8 months ago) by chrisfen
File size: 46375 byte(s)
Log Message:
merged reaction field with electrostatics.F90

File Contents

# Content
1 !!
2 !! Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 !!
4 !! The University of Notre Dame grants you ("Licensee") a
5 !! non-exclusive, royalty free, license to use, modify and
6 !! redistribute this software in source and binary code form, provided
7 !! that the following conditions are met:
8 !!
9 !! 1. Acknowledgement of the program authors must be made in any
10 !! publication of scientific results based in part on use of the
11 !! program. An acceptable form of acknowledgement is citation of
12 !! the article in which the program was described (Matthew
13 !! A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 !! J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 !! Parallel Simulation Engine for Molecular Dynamics,"
16 !! J. Comput. Chem. 26, pp. 252-271 (2005))
17 !!
18 !! 2. Redistributions of source code must retain the above copyright
19 !! notice, this list of conditions and the following disclaimer.
20 !!
21 !! 3. Redistributions in binary form must reproduce the above copyright
22 !! notice, this list of conditions and the following disclaimer in the
23 !! documentation and/or other materials provided with the
24 !! distribution.
25 !!
26 !! This software is provided "AS IS," without a warranty of any
27 !! kind. All express or implied conditions, representations and
28 !! warranties, including any implied warranty of merchantability,
29 !! fitness for a particular purpose or non-infringement, are hereby
30 !! excluded. The University of Notre Dame and its licensors shall not
31 !! be liable for any damages suffered by licensee as a result of
32 !! using, modifying or distributing the software or its
33 !! derivatives. In no event will the University of Notre Dame or its
34 !! licensors be liable for any lost revenue, profit or data, or for
35 !! direct, indirect, special, consequential, incidental or punitive
36 !! damages, however caused and regardless of the theory of liability,
37 !! arising out of the use of or inability to use software, even if the
38 !! University of Notre Dame has been advised of the possibility of
39 !! such damages.
40 !!
41
42 !! doForces.F90
43 !! module doForces
44 !! Calculates Long Range forces.
45
46 !! @author Charles F. Vardeman II
47 !! @author Matthew Meineke
48 !! @version $Id: doForces.F90,v 1.60 2005-10-18 15:01:42 chrisfen Exp $, $Date: 2005-10-18 15:01:42 $, $Name: not supported by cvs2svn $, $Revision: 1.60 $
49
50
51 module doForces
52 use force_globals
53 use simulation
54 use definitions
55 use atype_module
56 use switcheroo
57 use neighborLists
58 use lj
59 use sticky
60 use electrostatic_module
61 use gayberne
62 use shapes
63 use vector_class
64 use eam
65 use status
66 #ifdef IS_MPI
67 use mpiSimulation
68 #endif
69
70 implicit none
71 PRIVATE
72
73 #define __FORTRAN90
74 #include "UseTheForce/fSwitchingFunction.h"
75 #include "UseTheForce/fCutoffPolicy.h"
76 #include "UseTheForce/DarkSide/fInteractionMap.h"
77 #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
78
79
80 INTEGER, PARAMETER:: PREPAIR_LOOP = 1
81 INTEGER, PARAMETER:: PAIR_LOOP = 2
82
83 logical, save :: haveNeighborList = .false.
84 logical, save :: haveSIMvariables = .false.
85 logical, save :: haveSaneForceField = .false.
86 logical, save :: haveInteractionHash = .false.
87 logical, save :: haveGtypeCutoffMap = .false.
88 logical, save :: haveDefaultCutoffs = .false.
89 logical, save :: haveRlist = .false.
90
91 logical, save :: FF_uses_DirectionalAtoms
92 logical, save :: FF_uses_Dipoles
93 logical, save :: FF_uses_GayBerne
94 logical, save :: FF_uses_EAM
95
96 logical, save :: SIM_uses_DirectionalAtoms
97 logical, save :: SIM_uses_EAM
98 logical, save :: SIM_requires_postpair_calc
99 logical, save :: SIM_requires_prepair_calc
100 logical, save :: SIM_uses_PBC
101
102 integer, save :: electrostaticSummationMethod
103
104 public :: init_FF
105 public :: setDefaultCutoffs
106 public :: do_force_loop
107 public :: createInteractionHash
108 public :: createGtypeCutoffMap
109 public :: getStickyCut
110 public :: getStickyPowerCut
111 public :: getGayBerneCut
112 public :: getEAMCut
113 public :: getShapeCut
114
115 #ifdef PROFILE
116 public :: getforcetime
117 real, save :: forceTime = 0
118 real :: forceTimeInitial, forceTimeFinal
119 integer :: nLoops
120 #endif
121
122 !! Variables for cutoff mapping and interaction mapping
123 ! Bit hash to determine pair-pair interactions.
124 integer, dimension(:,:), allocatable :: InteractionHash
125 real(kind=dp), dimension(:), allocatable :: atypeMaxCutoff
126 real(kind=dp), dimension(:), allocatable, target :: groupMaxCutoffRow
127 real(kind=dp), dimension(:), pointer :: groupMaxCutoffCol
128
129 integer, dimension(:), allocatable, target :: groupToGtypeRow
130 integer, dimension(:), pointer :: groupToGtypeCol => null()
131
132 real(kind=dp), dimension(:), allocatable,target :: gtypeMaxCutoffRow
133 real(kind=dp), dimension(:), pointer :: gtypeMaxCutoffCol
134 type ::gtypeCutoffs
135 real(kind=dp) :: rcut
136 real(kind=dp) :: rcutsq
137 real(kind=dp) :: rlistsq
138 end type gtypeCutoffs
139 type(gtypeCutoffs), dimension(:,:), allocatable :: gtypeCutoffMap
140
141 integer, save :: cutoffPolicy = TRADITIONAL_CUTOFF_POLICY
142 real(kind=dp),save :: defaultRcut, defaultRsw, defaultRlist
143 real(kind=dp),save :: listSkin
144
145 contains
146
147 subroutine createInteractionHash(status)
148 integer :: nAtypes
149 integer, intent(out) :: status
150 integer :: i
151 integer :: j
152 integer :: iHash
153 !! Test Types
154 logical :: i_is_LJ
155 logical :: i_is_Elect
156 logical :: i_is_Sticky
157 logical :: i_is_StickyP
158 logical :: i_is_GB
159 logical :: i_is_EAM
160 logical :: i_is_Shape
161 logical :: j_is_LJ
162 logical :: j_is_Elect
163 logical :: j_is_Sticky
164 logical :: j_is_StickyP
165 logical :: j_is_GB
166 logical :: j_is_EAM
167 logical :: j_is_Shape
168 real(kind=dp) :: myRcut
169
170 status = 0
171
172 if (.not. associated(atypes)) then
173 call handleError("atype", "atypes was not present before call of createInteractionHash!")
174 status = -1
175 return
176 endif
177
178 nAtypes = getSize(atypes)
179
180 if (nAtypes == 0) then
181 status = -1
182 return
183 end if
184
185 if (.not. allocated(InteractionHash)) then
186 allocate(InteractionHash(nAtypes,nAtypes))
187 else
188 deallocate(InteractionHash)
189 allocate(InteractionHash(nAtypes,nAtypes))
190 endif
191
192 if (.not. allocated(atypeMaxCutoff)) then
193 allocate(atypeMaxCutoff(nAtypes))
194 else
195 deallocate(atypeMaxCutoff)
196 allocate(atypeMaxCutoff(nAtypes))
197 endif
198
199 do i = 1, nAtypes
200 call getElementProperty(atypes, i, "is_LennardJones", i_is_LJ)
201 call getElementProperty(atypes, i, "is_Electrostatic", i_is_Elect)
202 call getElementProperty(atypes, i, "is_Sticky", i_is_Sticky)
203 call getElementProperty(atypes, i, "is_StickyPower", i_is_StickyP)
204 call getElementProperty(atypes, i, "is_GayBerne", i_is_GB)
205 call getElementProperty(atypes, i, "is_EAM", i_is_EAM)
206 call getElementProperty(atypes, i, "is_Shape", i_is_Shape)
207
208 do j = i, nAtypes
209
210 iHash = 0
211 myRcut = 0.0_dp
212
213 call getElementProperty(atypes, j, "is_LennardJones", j_is_LJ)
214 call getElementProperty(atypes, j, "is_Electrostatic", j_is_Elect)
215 call getElementProperty(atypes, j, "is_Sticky", j_is_Sticky)
216 call getElementProperty(atypes, j, "is_StickyPower", j_is_StickyP)
217 call getElementProperty(atypes, j, "is_GayBerne", j_is_GB)
218 call getElementProperty(atypes, j, "is_EAM", j_is_EAM)
219 call getElementProperty(atypes, j, "is_Shape", j_is_Shape)
220
221 if (i_is_LJ .and. j_is_LJ) then
222 iHash = ior(iHash, LJ_PAIR)
223 endif
224
225 if (i_is_Elect .and. j_is_Elect) then
226 iHash = ior(iHash, ELECTROSTATIC_PAIR)
227 endif
228
229 if (i_is_Sticky .and. j_is_Sticky) then
230 iHash = ior(iHash, STICKY_PAIR)
231 endif
232
233 if (i_is_StickyP .and. j_is_StickyP) then
234 iHash = ior(iHash, STICKYPOWER_PAIR)
235 endif
236
237 if (i_is_EAM .and. j_is_EAM) then
238 iHash = ior(iHash, EAM_PAIR)
239 endif
240
241 if (i_is_GB .and. j_is_GB) iHash = ior(iHash, GAYBERNE_PAIR)
242 if (i_is_GB .and. j_is_LJ) iHash = ior(iHash, GAYBERNE_LJ)
243 if (i_is_LJ .and. j_is_GB) iHash = ior(iHash, GAYBERNE_LJ)
244
245 if (i_is_Shape .and. j_is_Shape) iHash = ior(iHash, SHAPE_PAIR)
246 if (i_is_Shape .and. j_is_LJ) iHash = ior(iHash, SHAPE_LJ)
247 if (i_is_LJ .and. j_is_Shape) iHash = ior(iHash, SHAPE_LJ)
248
249
250 InteractionHash(i,j) = iHash
251 InteractionHash(j,i) = iHash
252
253 end do
254
255 end do
256
257 haveInteractionHash = .true.
258 end subroutine createInteractionHash
259
260 subroutine createGtypeCutoffMap(stat)
261
262 integer, intent(out), optional :: stat
263 logical :: i_is_LJ
264 logical :: i_is_Elect
265 logical :: i_is_Sticky
266 logical :: i_is_StickyP
267 logical :: i_is_GB
268 logical :: i_is_EAM
269 logical :: i_is_Shape
270 logical :: GtypeFound
271
272 integer :: myStatus, nAtypes, i, j, istart, iend, jstart, jend
273 integer :: n_in_i, me_i, ia, g, atom1, ja, n_in_j,me_j
274 integer :: nGroupsInRow
275 integer :: nGroupsInCol
276 integer :: nGroupTypesRow,nGroupTypesCol
277 real(kind=dp):: thisSigma, bigSigma, thisRcut, tradRcut, tol, skin
278 real(kind=dp) :: biggestAtypeCutoff
279
280 stat = 0
281 if (.not. haveInteractionHash) then
282 call createInteractionHash(myStatus)
283 if (myStatus .ne. 0) then
284 write(default_error, *) 'createInteractionHash failed in doForces!'
285 stat = -1
286 return
287 endif
288 endif
289 #ifdef IS_MPI
290 nGroupsInRow = getNgroupsInRow(plan_group_row)
291 nGroupsInCol = getNgroupsInCol(plan_group_col)
292 #endif
293 nAtypes = getSize(atypes)
294 ! Set all of the initial cutoffs to zero.
295 atypeMaxCutoff = 0.0_dp
296 do i = 1, nAtypes
297 if (SimHasAtype(i)) then
298 call getElementProperty(atypes, i, "is_LennardJones", i_is_LJ)
299 call getElementProperty(atypes, i, "is_Electrostatic", i_is_Elect)
300 call getElementProperty(atypes, i, "is_Sticky", i_is_Sticky)
301 call getElementProperty(atypes, i, "is_StickyPower", i_is_StickyP)
302 call getElementProperty(atypes, i, "is_GayBerne", i_is_GB)
303 call getElementProperty(atypes, i, "is_EAM", i_is_EAM)
304 call getElementProperty(atypes, i, "is_Shape", i_is_Shape)
305
306
307 if (haveDefaultCutoffs) then
308 atypeMaxCutoff(i) = defaultRcut
309 else
310 if (i_is_LJ) then
311 thisRcut = getSigma(i) * 2.5_dp
312 if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
313 endif
314 if (i_is_Elect) then
315 thisRcut = defaultRcut
316 if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
317 endif
318 if (i_is_Sticky) then
319 thisRcut = getStickyCut(i)
320 if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
321 endif
322 if (i_is_StickyP) then
323 thisRcut = getStickyPowerCut(i)
324 if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
325 endif
326 if (i_is_GB) then
327 thisRcut = getGayBerneCut(i)
328 if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
329 endif
330 if (i_is_EAM) then
331 thisRcut = getEAMCut(i)
332 if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
333 endif
334 if (i_is_Shape) then
335 thisRcut = getShapeCut(i)
336 if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
337 endif
338 endif
339
340
341 if (atypeMaxCutoff(i).gt.biggestAtypeCutoff) then
342 biggestAtypeCutoff = atypeMaxCutoff(i)
343 endif
344
345 endif
346 enddo
347
348
349
350 istart = 1
351 jstart = 1
352 #ifdef IS_MPI
353 iend = nGroupsInRow
354 jend = nGroupsInCol
355 #else
356 iend = nGroups
357 jend = nGroups
358 #endif
359
360 !! allocate the groupToGtype and gtypeMaxCutoff here.
361 if(.not.allocated(groupToGtypeRow)) then
362 ! allocate(groupToGtype(iend))
363 allocate(groupToGtypeRow(iend))
364 else
365 deallocate(groupToGtypeRow)
366 allocate(groupToGtypeRow(iend))
367 endif
368 if(.not.allocated(groupMaxCutoffRow)) then
369 allocate(groupMaxCutoffRow(iend))
370 else
371 deallocate(groupMaxCutoffRow)
372 allocate(groupMaxCutoffRow(iend))
373 end if
374
375 if(.not.allocated(gtypeMaxCutoffRow)) then
376 allocate(gtypeMaxCutoffRow(iend))
377 else
378 deallocate(gtypeMaxCutoffRow)
379 allocate(gtypeMaxCutoffRow(iend))
380 endif
381
382
383 #ifdef IS_MPI
384 ! We only allocate new storage if we are in MPI because Ncol /= Nrow
385 if(.not.associated(groupToGtypeCol)) then
386 allocate(groupToGtypeCol(jend))
387 else
388 deallocate(groupToGtypeCol)
389 allocate(groupToGtypeCol(jend))
390 end if
391
392 if(.not.associated(groupToGtypeCol)) then
393 allocate(groupToGtypeCol(jend))
394 else
395 deallocate(groupToGtypeCol)
396 allocate(groupToGtypeCol(jend))
397 end if
398 if(.not.associated(gtypeMaxCutoffCol)) then
399 allocate(gtypeMaxCutoffCol(jend))
400 else
401 deallocate(gtypeMaxCutoffCol)
402 allocate(gtypeMaxCutoffCol(jend))
403 end if
404
405 groupMaxCutoffCol = 0.0_dp
406 gtypeMaxCutoffCol = 0.0_dp
407
408 #endif
409 groupMaxCutoffRow = 0.0_dp
410 gtypeMaxCutoffRow = 0.0_dp
411
412
413 !! first we do a single loop over the cutoff groups to find the
414 !! largest cutoff for any atypes present in this group. We also
415 !! create gtypes at this point.
416
417 tol = 1.0d-6
418 nGroupTypesRow = 0
419
420 do i = istart, iend
421 n_in_i = groupStartRow(i+1) - groupStartRow(i)
422 groupMaxCutoffRow(i) = 0.0_dp
423 do ia = groupStartRow(i), groupStartRow(i+1)-1
424 atom1 = groupListRow(ia)
425 #ifdef IS_MPI
426 me_i = atid_row(atom1)
427 #else
428 me_i = atid(atom1)
429 #endif
430 if (atypeMaxCutoff(me_i).gt.groupMaxCutoffRow(i)) then
431 groupMaxCutoffRow(i)=atypeMaxCutoff(me_i)
432 endif
433 enddo
434
435 if (nGroupTypesRow.eq.0) then
436 nGroupTypesRow = nGroupTypesRow + 1
437 gtypeMaxCutoffRow(nGroupTypesRow) = groupMaxCutoffRow(i)
438 groupToGtypeRow(i) = nGroupTypesRow
439 else
440 GtypeFound = .false.
441 do g = 1, nGroupTypesRow
442 if ( abs(groupMaxCutoffRow(i) - gtypeMaxCutoffRow(g)).lt.tol) then
443 groupToGtypeRow(i) = g
444 GtypeFound = .true.
445 endif
446 enddo
447 if (.not.GtypeFound) then
448 nGroupTypesRow = nGroupTypesRow + 1
449 gtypeMaxCutoffRow(nGroupTypesRow) = groupMaxCutoffRow(i)
450 groupToGtypeRow(i) = nGroupTypesRow
451 endif
452 endif
453 enddo
454
455 #ifdef IS_MPI
456 do j = jstart, jend
457 n_in_j = groupStartCol(j+1) - groupStartCol(j)
458 groupMaxCutoffCol(j) = 0.0_dp
459 do ja = groupStartCol(j), groupStartCol(j+1)-1
460 atom1 = groupListCol(ja)
461
462 me_j = atid_col(atom1)
463
464 if (atypeMaxCutoff(me_j).gt.groupMaxCutoffCol(j)) then
465 groupMaxCutoffCol(j)=atypeMaxCutoff(me_j)
466 endif
467 enddo
468
469 if (nGroupTypesCol.eq.0) then
470 nGroupTypesCol = nGroupTypesCol + 1
471 gtypeMaxCutoffCol(nGroupTypesCol) = groupMaxCutoffCol(j)
472 groupToGtypeCol(j) = nGroupTypesCol
473 else
474 GtypeFound = .false.
475 do g = 1, nGroupTypesCol
476 if ( abs(groupMaxCutoffCol(j) - gtypeMaxCutoffCol(g)).lt.tol) then
477 groupToGtypeCol(j) = g
478 GtypeFound = .true.
479 endif
480 enddo
481 if (.not.GtypeFound) then
482 nGroupTypesCol = nGroupTypesCol + 1
483 gtypeMaxCutoffCol(nGroupTypesCol) = groupMaxCutoffCol(j)
484 groupToGtypeCol(j) = nGroupTypesCol
485 endif
486 endif
487 enddo
488
489 #else
490 ! Set pointers to information we just found
491 nGroupTypesCol = nGroupTypesRow
492 groupToGtypeCol => groupToGtypeRow
493 gtypeMaxCutoffCol => gtypeMaxCutoffRow
494 groupMaxCutoffCol => groupMaxCutoffRow
495 #endif
496
497
498
499
500
501 !! allocate the gtypeCutoffMap here.
502 allocate(gtypeCutoffMap(nGroupTypesRow,nGroupTypesCol))
503 !! then we do a double loop over all the group TYPES to find the cutoff
504 !! map between groups of two types
505 tradRcut = max(maxval(gtypeMaxCutoffRow),maxval(gtypeMaxCutoffCol))
506
507 do i = 1, nGroupTypesRow
508 do j = 1, nGroupTypesCol
509
510 select case(cutoffPolicy)
511 case(TRADITIONAL_CUTOFF_POLICY)
512 thisRcut = tradRcut
513 case(MIX_CUTOFF_POLICY)
514 thisRcut = 0.5_dp * (gtypeMaxCutoffRow(i) + gtypeMaxCutoffCol(j))
515 case(MAX_CUTOFF_POLICY)
516 thisRcut = max(gtypeMaxCutoffRow(i), gtypeMaxCutoffCol(j))
517 case default
518 call handleError("createGtypeCutoffMap", "Unknown Cutoff Policy")
519 return
520 end select
521 gtypeCutoffMap(i,j)%rcut = thisRcut
522 gtypeCutoffMap(i,j)%rcutsq = thisRcut*thisRcut
523 skin = defaultRlist - defaultRcut
524 listSkin = skin ! set neighbor list skin thickness
525 gtypeCutoffMap(i,j)%rlistsq = (thisRcut + skin)**2
526
527 ! sanity check
528
529 if (haveDefaultCutoffs) then
530 if (abs(gtypeCutoffMap(i,j)%rcut - defaultRcut).gt.0.0001) then
531 call handleError("createGtypeCutoffMap", "user-specified rCut does not match computed group Cutoff")
532 endif
533 endif
534 enddo
535 enddo
536 if(allocated(gtypeMaxCutoffRow)) deallocate(gtypeMaxCutoffRow)
537 if(allocated(groupMaxCutoffRow)) deallocate(groupMaxCutoffRow)
538 if(allocated(atypeMaxCutoff)) deallocate(atypeMaxCutoff)
539 #ifdef IS_MPI
540 if(associated(groupMaxCutoffCol)) deallocate(groupMaxCutoffCol)
541 if(associated(gtypeMaxCutoffCol)) deallocate(gtypeMaxCutoffCol)
542 #endif
543 groupMaxCutoffCol => null()
544 gtypeMaxCutoffCol => null()
545
546 haveGtypeCutoffMap = .true.
547 end subroutine createGtypeCutoffMap
548
549 subroutine setDefaultCutoffs(defRcut, defRsw, defRlist, cutPolicy)
550 real(kind=dp),intent(in) :: defRcut, defRsw, defRlist
551 integer, intent(in) :: cutPolicy
552
553 defaultRcut = defRcut
554 defaultRsw = defRsw
555 defaultRlist = defRlist
556 cutoffPolicy = cutPolicy
557
558 haveDefaultCutoffs = .true.
559 end subroutine setDefaultCutoffs
560
561 subroutine setCutoffPolicy(cutPolicy)
562
563 integer, intent(in) :: cutPolicy
564 cutoffPolicy = cutPolicy
565 call createGtypeCutoffMap()
566 end subroutine setCutoffPolicy
567
568
569 subroutine setSimVariables()
570 SIM_uses_DirectionalAtoms = SimUsesDirectionalAtoms()
571 SIM_uses_EAM = SimUsesEAM()
572 SIM_requires_postpair_calc = SimRequiresPostpairCalc()
573 SIM_requires_prepair_calc = SimRequiresPrepairCalc()
574 SIM_uses_PBC = SimUsesPBC()
575
576 haveSIMvariables = .true.
577
578 return
579 end subroutine setSimVariables
580
581 subroutine doReadyCheck(error)
582 integer, intent(out) :: error
583
584 integer :: myStatus
585
586 error = 0
587
588 if (.not. haveInteractionHash) then
589 myStatus = 0
590 call createInteractionHash(myStatus)
591 if (myStatus .ne. 0) then
592 write(default_error, *) 'createInteractionHash failed in doForces!'
593 error = -1
594 return
595 endif
596 endif
597
598 if (.not. haveGtypeCutoffMap) then
599 myStatus = 0
600 call createGtypeCutoffMap(myStatus)
601 if (myStatus .ne. 0) then
602 write(default_error, *) 'createGtypeCutoffMap failed in doForces!'
603 error = -1
604 return
605 endif
606 endif
607
608 if (.not. haveSIMvariables) then
609 call setSimVariables()
610 endif
611
612 ! if (.not. haveRlist) then
613 ! write(default_error, *) 'rList has not been set in doForces!'
614 ! error = -1
615 ! return
616 ! endif
617
618 if (.not. haveNeighborList) then
619 write(default_error, *) 'neighbor list has not been initialized in doForces!'
620 error = -1
621 return
622 end if
623
624 if (.not. haveSaneForceField) then
625 write(default_error, *) 'Force Field is not sane in doForces!'
626 error = -1
627 return
628 end if
629
630 #ifdef IS_MPI
631 if (.not. isMPISimSet()) then
632 write(default_error,*) "ERROR: mpiSimulation has not been initialized!"
633 error = -1
634 return
635 endif
636 #endif
637 return
638 end subroutine doReadyCheck
639
640
641 subroutine init_FF(thisESM, thisStat)
642
643 integer, intent(in) :: thisESM
644 integer, intent(out) :: thisStat
645 integer :: my_status, nMatches
646 integer, pointer :: MatchList(:) => null()
647 real(kind=dp) :: rcut, rrf, rt, dielect
648
649 !! assume things are copacetic, unless they aren't
650 thisStat = 0
651
652 electrostaticSummationMethod = thisESM
653
654 !! init_FF is called *after* all of the atom types have been
655 !! defined in atype_module using the new_atype subroutine.
656 !!
657 !! this will scan through the known atypes and figure out what
658 !! interactions are used by the force field.
659
660 FF_uses_DirectionalAtoms = .false.
661 FF_uses_Dipoles = .false.
662 FF_uses_GayBerne = .false.
663 FF_uses_EAM = .false.
664
665 call getMatchingElementList(atypes, "is_Directional", .true., &
666 nMatches, MatchList)
667 if (nMatches .gt. 0) FF_uses_DirectionalAtoms = .true.
668
669 call getMatchingElementList(atypes, "is_Dipole", .true., &
670 nMatches, MatchList)
671 if (nMatches .gt. 0) FF_uses_Dipoles = .true.
672
673 call getMatchingElementList(atypes, "is_GayBerne", .true., &
674 nMatches, MatchList)
675 if (nMatches .gt. 0) FF_uses_GayBerne = .true.
676
677 call getMatchingElementList(atypes, "is_EAM", .true., nMatches, MatchList)
678 if (nMatches .gt. 0) FF_uses_EAM = .true.
679
680
681 haveSaneForceField = .true.
682
683 if (FF_uses_EAM) then
684 call init_EAM_FF(my_status)
685 if (my_status /= 0) then
686 write(default_error, *) "init_EAM_FF returned a bad status"
687 thisStat = -1
688 haveSaneForceField = .false.
689 return
690 end if
691 endif
692
693 if (.not. haveNeighborList) then
694 !! Create neighbor lists
695 call expandNeighborList(nLocal, my_status)
696 if (my_Status /= 0) then
697 write(default_error,*) "SimSetup: ExpandNeighborList returned error."
698 thisStat = -1
699 return
700 endif
701 haveNeighborList = .true.
702 endif
703
704 end subroutine init_FF
705
706
707 !! Does force loop over i,j pairs. Calls do_pair to calculates forces.
708 !------------------------------------------------------------->
709 subroutine do_force_loop(q, q_group, A, eFrame, f, t, tau, pot, &
710 do_pot_c, do_stress_c, error)
711 !! Position array provided by C, dimensioned by getNlocal
712 real ( kind = dp ), dimension(3, nLocal) :: q
713 !! molecular center-of-mass position array
714 real ( kind = dp ), dimension(3, nGroups) :: q_group
715 !! Rotation Matrix for each long range particle in simulation.
716 real( kind = dp), dimension(9, nLocal) :: A
717 !! Unit vectors for dipoles (lab frame)
718 real( kind = dp ), dimension(9,nLocal) :: eFrame
719 !! Force array provided by C, dimensioned by getNlocal
720 real ( kind = dp ), dimension(3,nLocal) :: f
721 !! Torsion array provided by C, dimensioned by getNlocal
722 real( kind = dp ), dimension(3,nLocal) :: t
723
724 !! Stress Tensor
725 real( kind = dp), dimension(9) :: tau
726 real ( kind = dp ),dimension(LR_POT_TYPES) :: pot
727 logical ( kind = 2) :: do_pot_c, do_stress_c
728 logical :: do_pot
729 logical :: do_stress
730 logical :: in_switching_region
731 #ifdef IS_MPI
732 real( kind = DP ), dimension(LR_POT_TYPES) :: pot_local
733 integer :: nAtomsInRow
734 integer :: nAtomsInCol
735 integer :: nprocs
736 integer :: nGroupsInRow
737 integer :: nGroupsInCol
738 #endif
739 integer :: natoms
740 logical :: update_nlist
741 integer :: i, j, jstart, jend, jnab
742 integer :: istart, iend
743 integer :: ia, jb, atom1, atom2
744 integer :: nlist
745 real( kind = DP ) :: ratmsq, rgrpsq, rgrp, vpair, vij
746 real( kind = DP ) :: sw, dswdr, swderiv, mf
747 real(kind=dp),dimension(3) :: d_atm, d_grp, fpair, fij
748 real(kind=dp) :: rfpot, mu_i, virial
749 integer :: me_i, me_j, n_in_i, n_in_j
750 logical :: is_dp_i
751 integer :: neighborListSize
752 integer :: listerror, error
753 integer :: localError
754 integer :: propPack_i, propPack_j
755 integer :: loopStart, loopEnd, loop
756 integer :: iHash
757
758
759 !! initialize local variables
760
761 #ifdef IS_MPI
762 pot_local = 0.0_dp
763 nAtomsInRow = getNatomsInRow(plan_atom_row)
764 nAtomsInCol = getNatomsInCol(plan_atom_col)
765 nGroupsInRow = getNgroupsInRow(plan_group_row)
766 nGroupsInCol = getNgroupsInCol(plan_group_col)
767 #else
768 natoms = nlocal
769 #endif
770
771 call doReadyCheck(localError)
772 if ( localError .ne. 0 ) then
773 call handleError("do_force_loop", "Not Initialized")
774 error = -1
775 return
776 end if
777 call zero_work_arrays()
778
779 do_pot = do_pot_c
780 do_stress = do_stress_c
781
782 ! Gather all information needed by all force loops:
783
784 #ifdef IS_MPI
785
786 call gather(q, q_Row, plan_atom_row_3d)
787 call gather(q, q_Col, plan_atom_col_3d)
788
789 call gather(q_group, q_group_Row, plan_group_row_3d)
790 call gather(q_group, q_group_Col, plan_group_col_3d)
791
792 if (FF_UsesDirectionalAtoms() .and. SIM_uses_DirectionalAtoms) then
793 call gather(eFrame, eFrame_Row, plan_atom_row_rotation)
794 call gather(eFrame, eFrame_Col, plan_atom_col_rotation)
795
796 call gather(A, A_Row, plan_atom_row_rotation)
797 call gather(A, A_Col, plan_atom_col_rotation)
798 endif
799
800 #endif
801
802 !! Begin force loop timing:
803 #ifdef PROFILE
804 call cpu_time(forceTimeInitial)
805 nloops = nloops + 1
806 #endif
807
808 loopEnd = PAIR_LOOP
809 if (FF_RequiresPrepairCalc() .and. SIM_requires_prepair_calc) then
810 loopStart = PREPAIR_LOOP
811 else
812 loopStart = PAIR_LOOP
813 endif
814
815 do loop = loopStart, loopEnd
816
817 ! See if we need to update neighbor lists
818 ! (but only on the first time through):
819 if (loop .eq. loopStart) then
820 #ifdef IS_MPI
821 call checkNeighborList(nGroupsInRow, q_group_row, listSkin, &
822 update_nlist)
823 #else
824 call checkNeighborList(nGroups, q_group, listSkin, &
825 update_nlist)
826 #endif
827 endif
828
829 if (update_nlist) then
830 !! save current configuration and construct neighbor list
831 #ifdef IS_MPI
832 call saveNeighborList(nGroupsInRow, q_group_row)
833 #else
834 call saveNeighborList(nGroups, q_group)
835 #endif
836 neighborListSize = size(list)
837 nlist = 0
838 endif
839
840 istart = 1
841 #ifdef IS_MPI
842 iend = nGroupsInRow
843 #else
844 iend = nGroups - 1
845 #endif
846 outer: do i = istart, iend
847
848 if (update_nlist) point(i) = nlist + 1
849
850 n_in_i = groupStartRow(i+1) - groupStartRow(i)
851
852 if (update_nlist) then
853 #ifdef IS_MPI
854 jstart = 1
855 jend = nGroupsInCol
856 #else
857 jstart = i+1
858 jend = nGroups
859 #endif
860 else
861 jstart = point(i)
862 jend = point(i+1) - 1
863 ! make sure group i has neighbors
864 if (jstart .gt. jend) cycle outer
865 endif
866
867 do jnab = jstart, jend
868 if (update_nlist) then
869 j = jnab
870 else
871 j = list(jnab)
872 endif
873
874 #ifdef IS_MPI
875 me_j = atid_col(j)
876 call get_interatomic_vector(q_group_Row(:,i), &
877 q_group_Col(:,j), d_grp, rgrpsq)
878 #else
879 me_j = atid(j)
880 call get_interatomic_vector(q_group(:,i), &
881 q_group(:,j), d_grp, rgrpsq)
882 #endif
883
884 if (rgrpsq < gtypeCutoffMap(groupToGtypeRow(i),groupToGtypeCol(j))%rListsq) then
885 if (update_nlist) then
886 nlist = nlist + 1
887
888 if (nlist > neighborListSize) then
889 #ifdef IS_MPI
890 call expandNeighborList(nGroupsInRow, listerror)
891 #else
892 call expandNeighborList(nGroups, listerror)
893 #endif
894 if (listerror /= 0) then
895 error = -1
896 write(DEFAULT_ERROR,*) "ERROR: nlist > list size and max allocations exceeded."
897 return
898 end if
899 neighborListSize = size(list)
900 endif
901
902 list(nlist) = j
903 endif
904
905 if (loop .eq. PAIR_LOOP) then
906 vij = 0.0d0
907 fij(1:3) = 0.0d0
908 endif
909
910 call get_switch(rgrpsq, sw, dswdr, rgrp, group_switch, &
911 in_switching_region)
912
913 n_in_j = groupStartCol(j+1) - groupStartCol(j)
914
915 do ia = groupStartRow(i), groupStartRow(i+1)-1
916
917 atom1 = groupListRow(ia)
918
919 inner: do jb = groupStartCol(j), groupStartCol(j+1)-1
920
921 atom2 = groupListCol(jb)
922
923 if (skipThisPair(atom1, atom2)) cycle inner
924
925 if ((n_in_i .eq. 1).and.(n_in_j .eq. 1)) then
926 d_atm(1:3) = d_grp(1:3)
927 ratmsq = rgrpsq
928 else
929 #ifdef IS_MPI
930 call get_interatomic_vector(q_Row(:,atom1), &
931 q_Col(:,atom2), d_atm, ratmsq)
932 #else
933 call get_interatomic_vector(q(:,atom1), &
934 q(:,atom2), d_atm, ratmsq)
935 #endif
936 endif
937
938 if (loop .eq. PREPAIR_LOOP) then
939 #ifdef IS_MPI
940 call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
941 rgrpsq, d_grp, do_pot, do_stress, &
942 eFrame, A, f, t, pot_local)
943 #else
944 call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
945 rgrpsq, d_grp, do_pot, do_stress, &
946 eFrame, A, f, t, pot)
947 #endif
948 else
949 #ifdef IS_MPI
950 call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
951 do_pot, &
952 eFrame, A, f, t, pot_local, vpair, fpair)
953 #else
954 call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
955 do_pot, &
956 eFrame, A, f, t, pot, vpair, fpair)
957 #endif
958
959 vij = vij + vpair
960 fij(1:3) = fij(1:3) + fpair(1:3)
961 endif
962 enddo inner
963 enddo
964
965 if (loop .eq. PAIR_LOOP) then
966 if (in_switching_region) then
967 swderiv = vij*dswdr/rgrp
968 fij(1) = fij(1) + swderiv*d_grp(1)
969 fij(2) = fij(2) + swderiv*d_grp(2)
970 fij(3) = fij(3) + swderiv*d_grp(3)
971
972 do ia=groupStartRow(i), groupStartRow(i+1)-1
973 atom1=groupListRow(ia)
974 mf = mfactRow(atom1)
975 #ifdef IS_MPI
976 f_Row(1,atom1) = f_Row(1,atom1) + swderiv*d_grp(1)*mf
977 f_Row(2,atom1) = f_Row(2,atom1) + swderiv*d_grp(2)*mf
978 f_Row(3,atom1) = f_Row(3,atom1) + swderiv*d_grp(3)*mf
979 #else
980 f(1,atom1) = f(1,atom1) + swderiv*d_grp(1)*mf
981 f(2,atom1) = f(2,atom1) + swderiv*d_grp(2)*mf
982 f(3,atom1) = f(3,atom1) + swderiv*d_grp(3)*mf
983 #endif
984 enddo
985
986 do jb=groupStartCol(j), groupStartCol(j+1)-1
987 atom2=groupListCol(jb)
988 mf = mfactCol(atom2)
989 #ifdef IS_MPI
990 f_Col(1,atom2) = f_Col(1,atom2) - swderiv*d_grp(1)*mf
991 f_Col(2,atom2) = f_Col(2,atom2) - swderiv*d_grp(2)*mf
992 f_Col(3,atom2) = f_Col(3,atom2) - swderiv*d_grp(3)*mf
993 #else
994 f(1,atom2) = f(1,atom2) - swderiv*d_grp(1)*mf
995 f(2,atom2) = f(2,atom2) - swderiv*d_grp(2)*mf
996 f(3,atom2) = f(3,atom2) - swderiv*d_grp(3)*mf
997 #endif
998 enddo
999 endif
1000
1001 if (do_stress) call add_stress_tensor(d_grp, fij)
1002 endif
1003 end if
1004 enddo
1005
1006 enddo outer
1007
1008 if (update_nlist) then
1009 #ifdef IS_MPI
1010 point(nGroupsInRow + 1) = nlist + 1
1011 #else
1012 point(nGroups) = nlist + 1
1013 #endif
1014 if (loop .eq. PREPAIR_LOOP) then
1015 ! we just did the neighbor list update on the first
1016 ! pass, so we don't need to do it
1017 ! again on the second pass
1018 update_nlist = .false.
1019 endif
1020 endif
1021
1022 if (loop .eq. PREPAIR_LOOP) then
1023 call do_preforce(nlocal, pot)
1024 endif
1025
1026 enddo
1027
1028 !! Do timing
1029 #ifdef PROFILE
1030 call cpu_time(forceTimeFinal)
1031 forceTime = forceTime + forceTimeFinal - forceTimeInitial
1032 #endif
1033
1034 #ifdef IS_MPI
1035 !!distribute forces
1036
1037 f_temp = 0.0_dp
1038 call scatter(f_Row,f_temp,plan_atom_row_3d)
1039 do i = 1,nlocal
1040 f(1:3,i) = f(1:3,i) + f_temp(1:3,i)
1041 end do
1042
1043 f_temp = 0.0_dp
1044 call scatter(f_Col,f_temp,plan_atom_col_3d)
1045 do i = 1,nlocal
1046 f(1:3,i) = f(1:3,i) + f_temp(1:3,i)
1047 end do
1048
1049 if (FF_UsesDirectionalAtoms() .and. SIM_uses_DirectionalAtoms) then
1050 t_temp = 0.0_dp
1051 call scatter(t_Row,t_temp,plan_atom_row_3d)
1052 do i = 1,nlocal
1053 t(1:3,i) = t(1:3,i) + t_temp(1:3,i)
1054 end do
1055 t_temp = 0.0_dp
1056 call scatter(t_Col,t_temp,plan_atom_col_3d)
1057
1058 do i = 1,nlocal
1059 t(1:3,i) = t(1:3,i) + t_temp(1:3,i)
1060 end do
1061 endif
1062
1063 if (do_pot) then
1064 ! scatter/gather pot_row into the members of my column
1065 do i = 1,LR_POT_TYPES
1066 call scatter(pot_Row(i,:), pot_Temp(i,:), plan_atom_row)
1067 end do
1068 ! scatter/gather pot_local into all other procs
1069 ! add resultant to get total pot
1070 do i = 1, nlocal
1071 pot_local(1:LR_POT_TYPES) = pot_local(1:LR_POT_TYPES) &
1072 + pot_Temp(1:LR_POT_TYPES,i)
1073 enddo
1074
1075 pot_Temp = 0.0_DP
1076 do i = 1,LR_POT_TYPES
1077 call scatter(pot_Col(i,:), pot_Temp(i,:), plan_atom_col)
1078 end do
1079 do i = 1, nlocal
1080 pot_local(1:LR_POT_TYPES) = pot_local(1:LR_POT_TYPES)&
1081 + pot_Temp(1:LR_POT_TYPES,i)
1082 enddo
1083
1084 endif
1085 #endif
1086
1087 if (FF_RequiresPostpairCalc() .and. SIM_requires_postpair_calc) then
1088
1089 if (electrostaticSummationMethod == REACTION_FIELD) then
1090
1091 #ifdef IS_MPI
1092 call scatter(rf_Row,rf,plan_atom_row_3d)
1093 call scatter(rf_Col,rf_Temp,plan_atom_col_3d)
1094 do i = 1,nlocal
1095 rf(1:3,i) = rf(1:3,i) + rf_Temp(1:3,i)
1096 end do
1097 #endif
1098
1099 do i = 1, nLocal
1100
1101 rfpot = 0.0_DP
1102 #ifdef IS_MPI
1103 me_i = atid_row(i)
1104 #else
1105 me_i = atid(i)
1106 #endif
1107 iHash = InteractionHash(me_i,me_j)
1108
1109 if ( iand(iHash, ELECTROSTATIC_PAIR).ne.0 ) then
1110
1111 mu_i = getDipoleMoment(me_i)
1112
1113 !! The reaction field needs to include a self contribution
1114 !! to the field:
1115 call accumulate_self_rf(i, mu_i, eFrame)
1116 !! Get the reaction field contribution to the
1117 !! potential and torques:
1118 call reaction_field_final(i, mu_i, eFrame, rfpot, t, do_pot)
1119 #ifdef IS_MPI
1120 pot_local(ELECTROSTATIC_POT) = pot_local(ELECTROSTATIC_POT) + rfpot
1121 #else
1122 pot(ELECTROSTATIC_POT) = pot(ELECTROSTATIC_POT) + rfpot
1123
1124 #endif
1125 endif
1126 enddo
1127 endif
1128 endif
1129
1130
1131 #ifdef IS_MPI
1132
1133 if (do_pot) then
1134 pot(1:LR_POT_TYPES) = pot(1:LR_POT_TYPES) &
1135 + pot_local(1:LR_POT_TYPES)
1136 !! we assume the c code will do the allreduce to get the total potential
1137 !! we could do it right here if we needed to...
1138 endif
1139
1140 if (do_stress) then
1141 call mpi_allreduce(tau_Temp, tau, 9,mpi_double_precision,mpi_sum, &
1142 mpi_comm_world,mpi_err)
1143 call mpi_allreduce(virial_Temp, virial,1,mpi_double_precision,mpi_sum, &
1144 mpi_comm_world,mpi_err)
1145 endif
1146
1147 #else
1148
1149 if (do_stress) then
1150 tau = tau_Temp
1151 virial = virial_Temp
1152 endif
1153
1154 #endif
1155
1156 end subroutine do_force_loop
1157
1158 subroutine do_pair(i, j, rijsq, d, sw, do_pot, &
1159 eFrame, A, f, t, pot, vpair, fpair)
1160
1161 real( kind = dp ) :: vpair, sw
1162 real( kind = dp ), dimension(LR_POT_TYPES) :: pot
1163 real( kind = dp ), dimension(3) :: fpair
1164 real( kind = dp ), dimension(nLocal) :: mfact
1165 real( kind = dp ), dimension(9,nLocal) :: eFrame
1166 real( kind = dp ), dimension(9,nLocal) :: A
1167 real( kind = dp ), dimension(3,nLocal) :: f
1168 real( kind = dp ), dimension(3,nLocal) :: t
1169
1170 logical, intent(inout) :: do_pot
1171 integer, intent(in) :: i, j
1172 real ( kind = dp ), intent(inout) :: rijsq
1173 real ( kind = dp ) :: r
1174 real ( kind = dp ), intent(inout) :: d(3)
1175 integer :: me_i, me_j
1176
1177 integer :: iHash
1178
1179 r = sqrt(rijsq)
1180 vpair = 0.0d0
1181 fpair(1:3) = 0.0d0
1182
1183 #ifdef IS_MPI
1184 me_i = atid_row(i)
1185 me_j = atid_col(j)
1186 #else
1187 me_i = atid(i)
1188 me_j = atid(j)
1189 #endif
1190
1191 iHash = InteractionHash(me_i, me_j)
1192
1193 if ( iand(iHash, LJ_PAIR).ne.0 ) then
1194 call do_lj_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1195 pot(VDW_POT), f, do_pot)
1196 endif
1197
1198 if ( iand(iHash, ELECTROSTATIC_PAIR).ne.0 ) then
1199 call doElectrostaticPair(i, j, d, r, rijsq, sw, vpair, fpair, &
1200 pot(ELECTROSTATIC_POT), eFrame, f, t, do_pot)
1201
1202 if (electrostaticSummationMethod == REACTION_FIELD) then
1203
1204 ! CHECK ME (RF needs to know about all electrostatic types)
1205 call accumulate_rf(i, j, r, eFrame, sw)
1206 call rf_correct_forces(i, j, d, r, eFrame, sw, f, fpair)
1207 endif
1208
1209 endif
1210
1211 if ( iand(iHash, STICKY_PAIR).ne.0 ) then
1212 call do_sticky_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1213 pot(HB_POT), A, f, t, do_pot)
1214 endif
1215
1216 if ( iand(iHash, STICKYPOWER_PAIR).ne.0 ) then
1217 call do_sticky_power_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1218 pot(HB_POT), A, f, t, do_pot)
1219 endif
1220
1221 if ( iand(iHash, GAYBERNE_PAIR).ne.0 ) then
1222 call do_gb_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1223 pot(VDW_POT), A, f, t, do_pot)
1224 endif
1225
1226 if ( iand(iHash, GAYBERNE_LJ).ne.0 ) then
1227 call do_gb_lj_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1228 pot(VDW_POT), A, f, t, do_pot)
1229 endif
1230
1231 if ( iand(iHash, EAM_PAIR).ne.0 ) then
1232 call do_eam_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1233 pot(METALLIC_POT), f, do_pot)
1234 endif
1235
1236 if ( iand(iHash, SHAPE_PAIR).ne.0 ) then
1237 call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1238 pot(VDW_POT), A, f, t, do_pot)
1239 endif
1240
1241 if ( iand(iHash, SHAPE_LJ).ne.0 ) then
1242 call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1243 pot(VDW_POT), A, f, t, do_pot)
1244 endif
1245
1246 end subroutine do_pair
1247
1248 subroutine do_prepair(i, j, rijsq, d, sw, rcijsq, dc, &
1249 do_pot, do_stress, eFrame, A, f, t, pot)
1250
1251 real( kind = dp ) :: sw
1252 real( kind = dp ), dimension(LR_POT_TYPES) :: pot
1253 real( kind = dp ), dimension(9,nLocal) :: eFrame
1254 real (kind=dp), dimension(9,nLocal) :: A
1255 real (kind=dp), dimension(3,nLocal) :: f
1256 real (kind=dp), dimension(3,nLocal) :: t
1257
1258 logical, intent(inout) :: do_pot, do_stress
1259 integer, intent(in) :: i, j
1260 real ( kind = dp ), intent(inout) :: rijsq, rcijsq
1261 real ( kind = dp ) :: r, rc
1262 real ( kind = dp ), intent(inout) :: d(3), dc(3)
1263
1264 integer :: me_i, me_j, iHash
1265
1266 r = sqrt(rijsq)
1267
1268 #ifdef IS_MPI
1269 me_i = atid_row(i)
1270 me_j = atid_col(j)
1271 #else
1272 me_i = atid(i)
1273 me_j = atid(j)
1274 #endif
1275
1276 iHash = InteractionHash(me_i, me_j)
1277
1278 if ( iand(iHash, EAM_PAIR).ne.0 ) then
1279 call calc_EAM_prepair_rho(i, j, d, r, rijsq )
1280 endif
1281
1282 end subroutine do_prepair
1283
1284
1285 subroutine do_preforce(nlocal,pot)
1286 integer :: nlocal
1287 real( kind = dp ),dimension(LR_POT_TYPES) :: pot
1288
1289 if (FF_uses_EAM .and. SIM_uses_EAM) then
1290 call calc_EAM_preforce_Frho(nlocal,pot(METALLIC_POT))
1291 endif
1292
1293
1294 end subroutine do_preforce
1295
1296
1297 subroutine get_interatomic_vector(q_i, q_j, d, r_sq)
1298
1299 real (kind = dp), dimension(3) :: q_i
1300 real (kind = dp), dimension(3) :: q_j
1301 real ( kind = dp ), intent(out) :: r_sq
1302 real( kind = dp ) :: d(3), scaled(3)
1303 integer i
1304
1305 d(1:3) = q_j(1:3) - q_i(1:3)
1306
1307 ! Wrap back into periodic box if necessary
1308 if ( SIM_uses_PBC ) then
1309
1310 if( .not.boxIsOrthorhombic ) then
1311 ! calc the scaled coordinates.
1312
1313 scaled = matmul(HmatInv, d)
1314
1315 ! wrap the scaled coordinates
1316
1317 scaled = scaled - anint(scaled)
1318
1319
1320 ! calc the wrapped real coordinates from the wrapped scaled
1321 ! coordinates
1322
1323 d = matmul(Hmat,scaled)
1324
1325 else
1326 ! calc the scaled coordinates.
1327
1328 do i = 1, 3
1329 scaled(i) = d(i) * HmatInv(i,i)
1330
1331 ! wrap the scaled coordinates
1332
1333 scaled(i) = scaled(i) - anint(scaled(i))
1334
1335 ! calc the wrapped real coordinates from the wrapped scaled
1336 ! coordinates
1337
1338 d(i) = scaled(i)*Hmat(i,i)
1339 enddo
1340 endif
1341
1342 endif
1343
1344 r_sq = dot_product(d,d)
1345
1346 end subroutine get_interatomic_vector
1347
1348 subroutine zero_work_arrays()
1349
1350 #ifdef IS_MPI
1351
1352 q_Row = 0.0_dp
1353 q_Col = 0.0_dp
1354
1355 q_group_Row = 0.0_dp
1356 q_group_Col = 0.0_dp
1357
1358 eFrame_Row = 0.0_dp
1359 eFrame_Col = 0.0_dp
1360
1361 A_Row = 0.0_dp
1362 A_Col = 0.0_dp
1363
1364 f_Row = 0.0_dp
1365 f_Col = 0.0_dp
1366 f_Temp = 0.0_dp
1367
1368 t_Row = 0.0_dp
1369 t_Col = 0.0_dp
1370 t_Temp = 0.0_dp
1371
1372 pot_Row = 0.0_dp
1373 pot_Col = 0.0_dp
1374 pot_Temp = 0.0_dp
1375
1376 rf_Row = 0.0_dp
1377 rf_Col = 0.0_dp
1378 rf_Temp = 0.0_dp
1379
1380 #endif
1381
1382 if (FF_uses_EAM .and. SIM_uses_EAM) then
1383 call clean_EAM()
1384 endif
1385
1386 rf = 0.0_dp
1387 tau_Temp = 0.0_dp
1388 virial_Temp = 0.0_dp
1389 end subroutine zero_work_arrays
1390
1391 function skipThisPair(atom1, atom2) result(skip_it)
1392 integer, intent(in) :: atom1
1393 integer, intent(in), optional :: atom2
1394 logical :: skip_it
1395 integer :: unique_id_1, unique_id_2
1396 integer :: me_i,me_j
1397 integer :: i
1398
1399 skip_it = .false.
1400
1401 !! there are a number of reasons to skip a pair or a particle
1402 !! mostly we do this to exclude atoms who are involved in short
1403 !! range interactions (bonds, bends, torsions), but we also need
1404 !! to exclude some overcounted interactions that result from
1405 !! the parallel decomposition
1406
1407 #ifdef IS_MPI
1408 !! in MPI, we have to look up the unique IDs for each atom
1409 unique_id_1 = AtomRowToGlobal(atom1)
1410 #else
1411 !! in the normal loop, the atom numbers are unique
1412 unique_id_1 = atom1
1413 #endif
1414
1415 !! We were called with only one atom, so just check the global exclude
1416 !! list for this atom
1417 if (.not. present(atom2)) then
1418 do i = 1, nExcludes_global
1419 if (excludesGlobal(i) == unique_id_1) then
1420 skip_it = .true.
1421 return
1422 end if
1423 end do
1424 return
1425 end if
1426
1427 #ifdef IS_MPI
1428 unique_id_2 = AtomColToGlobal(atom2)
1429 #else
1430 unique_id_2 = atom2
1431 #endif
1432
1433 #ifdef IS_MPI
1434 !! this situation should only arise in MPI simulations
1435 if (unique_id_1 == unique_id_2) then
1436 skip_it = .true.
1437 return
1438 end if
1439
1440 !! this prevents us from doing the pair on multiple processors
1441 if (unique_id_1 < unique_id_2) then
1442 if (mod(unique_id_1 + unique_id_2,2) == 0) then
1443 skip_it = .true.
1444 return
1445 endif
1446 else
1447 if (mod(unique_id_1 + unique_id_2,2) == 1) then
1448 skip_it = .true.
1449 return
1450 endif
1451 endif
1452 #endif
1453
1454 !! the rest of these situations can happen in all simulations:
1455 do i = 1, nExcludes_global
1456 if ((excludesGlobal(i) == unique_id_1) .or. &
1457 (excludesGlobal(i) == unique_id_2)) then
1458 skip_it = .true.
1459 return
1460 endif
1461 enddo
1462
1463 do i = 1, nSkipsForAtom(atom1)
1464 if (skipsForAtom(atom1, i) .eq. unique_id_2) then
1465 skip_it = .true.
1466 return
1467 endif
1468 end do
1469
1470 return
1471 end function skipThisPair
1472
1473 function FF_UsesDirectionalAtoms() result(doesit)
1474 logical :: doesit
1475 doesit = FF_uses_DirectionalAtoms
1476 end function FF_UsesDirectionalAtoms
1477
1478 function FF_RequiresPrepairCalc() result(doesit)
1479 logical :: doesit
1480 doesit = FF_uses_EAM
1481 end function FF_RequiresPrepairCalc
1482
1483 function FF_RequiresPostpairCalc() result(doesit)
1484 logical :: doesit
1485 if (electrostaticSummationMethod == REACTION_FIELD) doesit = .true.
1486 end function FF_RequiresPostpairCalc
1487
1488 #ifdef PROFILE
1489 function getforcetime() result(totalforcetime)
1490 real(kind=dp) :: totalforcetime
1491 totalforcetime = forcetime
1492 end function getforcetime
1493 #endif
1494
1495 !! This cleans componets of force arrays belonging only to fortran
1496
1497 subroutine add_stress_tensor(dpair, fpair)
1498
1499 real( kind = dp ), dimension(3), intent(in) :: dpair, fpair
1500
1501 ! because the d vector is the rj - ri vector, and
1502 ! because fx, fy, fz are the force on atom i, we need a
1503 ! negative sign here:
1504
1505 tau_Temp(1) = tau_Temp(1) - dpair(1) * fpair(1)
1506 tau_Temp(2) = tau_Temp(2) - dpair(1) * fpair(2)
1507 tau_Temp(3) = tau_Temp(3) - dpair(1) * fpair(3)
1508 tau_Temp(4) = tau_Temp(4) - dpair(2) * fpair(1)
1509 tau_Temp(5) = tau_Temp(5) - dpair(2) * fpair(2)
1510 tau_Temp(6) = tau_Temp(6) - dpair(2) * fpair(3)
1511 tau_Temp(7) = tau_Temp(7) - dpair(3) * fpair(1)
1512 tau_Temp(8) = tau_Temp(8) - dpair(3) * fpair(2)
1513 tau_Temp(9) = tau_Temp(9) - dpair(3) * fpair(3)
1514
1515 virial_Temp = virial_Temp + &
1516 (tau_Temp(1) + tau_Temp(5) + tau_Temp(9))
1517
1518 end subroutine add_stress_tensor
1519
1520 end module doForces