ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-3.0/src/brains/SimInfo.cpp
Revision: 2018
Committed: Mon Feb 14 17:57:01 2005 UTC (19 years, 4 months ago) by tim
File size: 28575 byte(s)
Log Message:
begin bug fix

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Acknowledgement of the program authors must be made in any
10 * publication of scientific results based in part on use of the
11 * program. An acceptable form of acknowledgement is citation of
12 * the article in which the program was described (Matthew
13 * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 * Parallel Simulation Engine for Molecular Dynamics,"
16 * J. Comput. Chem. 26, pp. 252-271 (2005))
17 *
18 * 2. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 *
21 * 3. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the
24 * distribution.
25 *
26 * This software is provided "AS IS," without a warranty of any
27 * kind. All express or implied conditions, representations and
28 * warranties, including any implied warranty of merchantability,
29 * fitness for a particular purpose or non-infringement, are hereby
30 * excluded. The University of Notre Dame and its licensors shall not
31 * be liable for any damages suffered by licensee as a result of
32 * using, modifying or distributing the software or its
33 * derivatives. In no event will the University of Notre Dame or its
34 * licensors be liable for any lost revenue, profit or data, or for
35 * direct, indirect, special, consequential, incidental or punitive
36 * damages, however caused and regardless of the theory of liability,
37 * arising out of the use of or inability to use software, even if the
38 * University of Notre Dame has been advised of the possibility of
39 * such damages.
40 */
41
42 /**
43 * @file SimInfo.cpp
44 * @author tlin
45 * @date 11/02/2004
46 * @version 1.0
47 */
48
49 #include <algorithm>
50 #include <set>
51
52 #include "brains/SimInfo.hpp"
53 #include "math/Vector3.hpp"
54 #include "primitives/Molecule.hpp"
55 #include "UseTheForce/doForces_interface.h"
56 #include "UseTheForce/notifyCutoffs_interface.h"
57 #include "utils/MemoryUtils.hpp"
58 #include "utils/simError.h"
59 #include "selection/SelectionManager.hpp"
60
61 #ifdef IS_MPI
62 #include "UseTheForce/mpiComponentPlan.h"
63 #include "UseTheForce/DarkSide/simParallel_interface.h"
64 #endif
65
66 namespace oopse {
67
68 SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
69 ForceField* ff, Globals* simParams) :
70 forceField_(ff), simParams_(simParams),
71 ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
72 nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
73 nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
74 nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nRigidBodies_(0),
75 nIntegrableObjects_(0), nCutoffGroups_(0), nConstraints_(0),
76 sman_(NULL), fortranInitialized_(false), selectMan_(NULL) {
77
78
79 std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
80 MoleculeStamp* molStamp;
81 int nMolWithSameStamp;
82 int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
83 int nGroups = 0; //total cutoff groups defined in meta-data file
84 CutoffGroupStamp* cgStamp;
85 RigidBodyStamp* rbStamp;
86 int nRigidAtoms = 0;
87
88 for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
89 molStamp = i->first;
90 nMolWithSameStamp = i->second;
91
92 addMoleculeStamp(molStamp, nMolWithSameStamp);
93
94 //calculate atoms in molecules
95 nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;
96
97
98 //calculate atoms in cutoff groups
99 int nAtomsInGroups = 0;
100 int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
101
102 for (int j=0; j < nCutoffGroupsInStamp; j++) {
103 cgStamp = molStamp->getCutoffGroup(j);
104 nAtomsInGroups += cgStamp->getNMembers();
105 }
106
107 nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
108 nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;
109
110 //calculate atoms in rigid bodies
111 int nAtomsInRigidBodies = 0;
112 int nRigidBodiesInStamp = molStamp->getNRigidBodies();
113
114 for (int j=0; j < nRigidBodiesInStamp; j++) {
115 rbStamp = molStamp->getRigidBody(j);
116 nAtomsInRigidBodies += rbStamp->getNMembers();
117 }
118
119 nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
120 nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;
121
122 }
123
124 //every free atom (atom does not belong to cutoff groups) is a cutoff group
125 //therefore the total number of cutoff groups in the system is equal to
126 //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
127 //file plus the number of cutoff groups defined in meta-data file
128 nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
129
130 //every free atom (atom does not belong to rigid bodies) is an integrable object
131 //therefore the total number of integrable objects in the system is equal to
132 //the total number of atoms minus number of atoms belong to rigid body defined in meta-data
133 //file plus the number of rigid bodies defined in meta-data file
134 nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
135
136 nGlobalMols_ = molStampIds_.size();
137
138 #ifdef IS_MPI
139 molToProcMap_.resize(nGlobalMols_);
140 #endif
141
142 selectMan_ = new SelectionManager(this);
143 selectMan_->selectAll();
144 }
145
146 SimInfo::~SimInfo() {
147 //MemoryUtils::deleteVectorOfPointer(molecules_);
148
149 MemoryUtils::deleteVectorOfPointer(moleculeStamps_);
150
151 delete sman_;
152 delete simParams_;
153 delete forceField_;
154 delete selectMan_;
155 }
156
157 int SimInfo::getNGlobalConstraints() {
158 int nGlobalConstraints;
159 #ifdef IS_MPI
160 MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
161 MPI_COMM_WORLD);
162 #else
163 nGlobalConstraints = nConstraints_;
164 #endif
165 return nGlobalConstraints;
166 }
167
168 bool SimInfo::addMolecule(Molecule* mol) {
169 MoleculeIterator i;
170
171 i = molecules_.find(mol->getGlobalIndex());
172 if (i == molecules_.end() ) {
173
174 molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
175
176 nAtoms_ += mol->getNAtoms();
177 nBonds_ += mol->getNBonds();
178 nBends_ += mol->getNBends();
179 nTorsions_ += mol->getNTorsions();
180 nRigidBodies_ += mol->getNRigidBodies();
181 nIntegrableObjects_ += mol->getNIntegrableObjects();
182 nCutoffGroups_ += mol->getNCutoffGroups();
183 nConstraints_ += mol->getNConstraintPairs();
184
185 addExcludePairs(mol);
186
187 return true;
188 } else {
189 return false;
190 }
191 }
192
193 bool SimInfo::removeMolecule(Molecule* mol) {
194 MoleculeIterator i;
195 i = molecules_.find(mol->getGlobalIndex());
196
197 if (i != molecules_.end() ) {
198
199 assert(mol == i->second);
200
201 nAtoms_ -= mol->getNAtoms();
202 nBonds_ -= mol->getNBonds();
203 nBends_ -= mol->getNBends();
204 nTorsions_ -= mol->getNTorsions();
205 nRigidBodies_ -= mol->getNRigidBodies();
206 nIntegrableObjects_ -= mol->getNIntegrableObjects();
207 nCutoffGroups_ -= mol->getNCutoffGroups();
208 nConstraints_ -= mol->getNConstraintPairs();
209
210 removeExcludePairs(mol);
211 molecules_.erase(mol->getGlobalIndex());
212
213 delete mol;
214
215 return true;
216 } else {
217 return false;
218 }
219
220
221 }
222
223
224 Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
225 i = molecules_.begin();
226 return i == molecules_.end() ? NULL : i->second;
227 }
228
229 Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
230 ++i;
231 return i == molecules_.end() ? NULL : i->second;
232 }
233
234
235 void SimInfo::calcNdf() {
236 int ndf_local;
237 MoleculeIterator i;
238 std::vector<StuntDouble*>::iterator j;
239 Molecule* mol;
240 StuntDouble* integrableObject;
241
242 ndf_local = 0;
243
244 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
245 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
246 integrableObject = mol->nextIntegrableObject(j)) {
247
248 ndf_local += 3;
249
250 if (integrableObject->isDirectional()) {
251 if (integrableObject->isLinear()) {
252 ndf_local += 2;
253 } else {
254 ndf_local += 3;
255 }
256 }
257
258 }//end for (integrableObject)
259 }// end for (mol)
260
261 // n_constraints is local, so subtract them on each processor
262 ndf_local -= nConstraints_;
263
264 #ifdef IS_MPI
265 MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
266 #else
267 ndf_ = ndf_local;
268 #endif
269
270 // nZconstraints_ is global, as are the 3 COM translations for the
271 // entire system:
272 ndf_ = ndf_ - 3 - nZconstraint_;
273
274 }
275
276 void SimInfo::calcNdfRaw() {
277 int ndfRaw_local;
278
279 MoleculeIterator i;
280 std::vector<StuntDouble*>::iterator j;
281 Molecule* mol;
282 StuntDouble* integrableObject;
283
284 // Raw degrees of freedom that we have to set
285 ndfRaw_local = 0;
286
287 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
288 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
289 integrableObject = mol->nextIntegrableObject(j)) {
290
291 ndfRaw_local += 3;
292
293 if (integrableObject->isDirectional()) {
294 if (integrableObject->isLinear()) {
295 ndfRaw_local += 2;
296 } else {
297 ndfRaw_local += 3;
298 }
299 }
300
301 }
302 }
303
304 #ifdef IS_MPI
305 MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
306 #else
307 ndfRaw_ = ndfRaw_local;
308 #endif
309 }
310
311 void SimInfo::calcNdfTrans() {
312 int ndfTrans_local;
313
314 ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
315
316
317 #ifdef IS_MPI
318 MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
319 #else
320 ndfTrans_ = ndfTrans_local;
321 #endif
322
323 ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
324
325 }
326
327 void SimInfo::addExcludePairs(Molecule* mol) {
328 std::vector<Bond*>::iterator bondIter;
329 std::vector<Bend*>::iterator bendIter;
330 std::vector<Torsion*>::iterator torsionIter;
331 Bond* bond;
332 Bend* bend;
333 Torsion* torsion;
334 int a;
335 int b;
336 int c;
337 int d;
338
339 for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
340 a = bond->getAtomA()->getGlobalIndex();
341 b = bond->getAtomB()->getGlobalIndex();
342 exclude_.addPair(a, b);
343 }
344
345 for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
346 a = bend->getAtomA()->getGlobalIndex();
347 b = bend->getAtomB()->getGlobalIndex();
348 c = bend->getAtomC()->getGlobalIndex();
349
350 exclude_.addPair(a, b);
351 exclude_.addPair(a, c);
352 exclude_.addPair(b, c);
353 }
354
355 for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
356 a = torsion->getAtomA()->getGlobalIndex();
357 b = torsion->getAtomB()->getGlobalIndex();
358 c = torsion->getAtomC()->getGlobalIndex();
359 d = torsion->getAtomD()->getGlobalIndex();
360
361 exclude_.addPair(a, b);
362 exclude_.addPair(a, c);
363 exclude_.addPair(a, d);
364 exclude_.addPair(b, c);
365 exclude_.addPair(b, d);
366 exclude_.addPair(c, d);
367 }
368
369
370 }
371
372 void SimInfo::removeExcludePairs(Molecule* mol) {
373 std::vector<Bond*>::iterator bondIter;
374 std::vector<Bend*>::iterator bendIter;
375 std::vector<Torsion*>::iterator torsionIter;
376 Bond* bond;
377 Bend* bend;
378 Torsion* torsion;
379 int a;
380 int b;
381 int c;
382 int d;
383
384 for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
385 a = bond->getAtomA()->getGlobalIndex();
386 b = bond->getAtomB()->getGlobalIndex();
387 exclude_.removePair(a, b);
388 }
389
390 for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
391 a = bend->getAtomA()->getGlobalIndex();
392 b = bend->getAtomB()->getGlobalIndex();
393 c = bend->getAtomC()->getGlobalIndex();
394
395 exclude_.removePair(a, b);
396 exclude_.removePair(a, c);
397 exclude_.removePair(b, c);
398 }
399
400 for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
401 a = torsion->getAtomA()->getGlobalIndex();
402 b = torsion->getAtomB()->getGlobalIndex();
403 c = torsion->getAtomC()->getGlobalIndex();
404 d = torsion->getAtomD()->getGlobalIndex();
405
406 exclude_.removePair(a, b);
407 exclude_.removePair(a, c);
408 exclude_.removePair(a, d);
409 exclude_.removePair(b, c);
410 exclude_.removePair(b, d);
411 exclude_.removePair(c, d);
412 }
413
414 }
415
416
417 void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
418 int curStampId;
419
420 //index from 0
421 curStampId = moleculeStamps_.size();
422
423 moleculeStamps_.push_back(molStamp);
424 molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
425 }
426
427 void SimInfo::update() {
428
429 setupSimType();
430
431 #ifdef IS_MPI
432 setupFortranParallel();
433 #endif
434
435 setupFortranSim();
436
437 //setup fortran force field
438 /** @deprecate */
439 int isError = 0;
440 initFortranFF( &fInfo_.SIM_uses_RF , &isError );
441 if(isError){
442 sprintf( painCave.errMsg,
443 "ForceField error: There was an error initializing the forceField in fortran.\n" );
444 painCave.isFatal = 1;
445 simError();
446 }
447
448
449 setupCutoff();
450
451 calcNdf();
452 calcNdfRaw();
453 calcNdfTrans();
454
455 fortranInitialized_ = true;
456 }
457
458 std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
459 SimInfo::MoleculeIterator mi;
460 Molecule* mol;
461 Molecule::AtomIterator ai;
462 Atom* atom;
463 std::set<AtomType*> atomTypes;
464
465 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
466
467 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
468 atomTypes.insert(atom->getAtomType());
469 }
470
471 }
472
473 return atomTypes;
474 }
475
476 void SimInfo::setupSimType() {
477 std::set<AtomType*>::iterator i;
478 std::set<AtomType*> atomTypes;
479 atomTypes = getUniqueAtomTypes();
480
481 int useLennardJones = 0;
482 int useElectrostatic = 0;
483 int useEAM = 0;
484 int useCharge = 0;
485 int useDirectional = 0;
486 int useDipole = 0;
487 int useGayBerne = 0;
488 int useSticky = 0;
489 int useShape = 0;
490 int useFLARB = 0; //it is not in AtomType yet
491 int useDirectionalAtom = 0;
492 int useElectrostatics = 0;
493 //usePBC and useRF are from simParams
494 int usePBC = simParams_->getPBC();
495 int useRF = simParams_->getUseRF();
496
497 //loop over all of the atom types
498 for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
499 useLennardJones |= (*i)->isLennardJones();
500 useElectrostatic |= (*i)->isElectrostatic();
501 useEAM |= (*i)->isEAM();
502 useCharge |= (*i)->isCharge();
503 useDirectional |= (*i)->isDirectional();
504 useDipole |= (*i)->isDipole();
505 useGayBerne |= (*i)->isGayBerne();
506 useSticky |= (*i)->isSticky();
507 useShape |= (*i)->isShape();
508 }
509
510 if (useSticky || useDipole || useGayBerne || useShape) {
511 useDirectionalAtom = 1;
512 }
513
514 if (useCharge || useDipole) {
515 useElectrostatics = 1;
516 }
517
518 #ifdef IS_MPI
519 int temp;
520
521 temp = usePBC;
522 MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
523
524 temp = useDirectionalAtom;
525 MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
526
527 temp = useLennardJones;
528 MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
529
530 temp = useElectrostatics;
531 MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
532
533 temp = useCharge;
534 MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
535
536 temp = useDipole;
537 MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
538
539 temp = useSticky;
540 MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
541
542 temp = useGayBerne;
543 MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
544
545 temp = useEAM;
546 MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
547
548 temp = useShape;
549 MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
550
551 temp = useFLARB;
552 MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
553
554 temp = useRF;
555 MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
556
557 #endif
558
559 fInfo_.SIM_uses_PBC = usePBC;
560 fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
561 fInfo_.SIM_uses_LennardJones = useLennardJones;
562 fInfo_.SIM_uses_Electrostatics = useElectrostatics;
563 fInfo_.SIM_uses_Charges = useCharge;
564 fInfo_.SIM_uses_Dipoles = useDipole;
565 fInfo_.SIM_uses_Sticky = useSticky;
566 fInfo_.SIM_uses_GayBerne = useGayBerne;
567 fInfo_.SIM_uses_EAM = useEAM;
568 fInfo_.SIM_uses_Shapes = useShape;
569 fInfo_.SIM_uses_FLARB = useFLARB;
570 fInfo_.SIM_uses_RF = useRF;
571
572 if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
573
574 if (simParams_->haveDielectric()) {
575 fInfo_.dielect = simParams_->getDielectric();
576 } else {
577 sprintf(painCave.errMsg,
578 "SimSetup Error: No Dielectric constant was set.\n"
579 "\tYou are trying to use Reaction Field without"
580 "\tsetting a dielectric constant!\n");
581 painCave.isFatal = 1;
582 simError();
583 }
584
585 } else {
586 fInfo_.dielect = 0.0;
587 }
588
589 }
590
591 void SimInfo::setupFortranSim() {
592 int isError;
593 int nExclude;
594 std::vector<int> fortranGlobalGroupMembership;
595
596 nExclude = exclude_.getSize();
597 isError = 0;
598
599 //globalGroupMembership_ is filled by SimCreator
600 for (int i = 0; i < nGlobalAtoms_; i++) {
601 fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
602 }
603
604 //calculate mass ratio of cutoff group
605 std::vector<double> mfact;
606 SimInfo::MoleculeIterator mi;
607 Molecule* mol;
608 Molecule::CutoffGroupIterator ci;
609 CutoffGroup* cg;
610 Molecule::AtomIterator ai;
611 Atom* atom;
612 double totalMass;
613
614 //to avoid memory reallocation, reserve enough space for mfact
615 mfact.reserve(getNCutoffGroups());
616
617 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
618 for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
619
620 totalMass = cg->getMass();
621 for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
622 mfact.push_back(atom->getMass()/totalMass);
623 }
624
625 }
626 }
627
628 //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
629 std::vector<int> identArray;
630
631 //to avoid memory reallocation, reserve enough space identArray
632 identArray.reserve(getNAtoms());
633
634 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
635 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
636 identArray.push_back(atom->getIdent());
637 }
638 }
639
640 //fill molMembershipArray
641 //molMembershipArray is filled by SimCreator
642 std::vector<int> molMembershipArray(nGlobalAtoms_);
643 for (int i = 0; i < nGlobalAtoms_; i++) {
644 molMembershipArray[i] = globalMolMembership_[i] + 1;
645 }
646
647 //setup fortran simulation
648 //gloalExcludes and molMembershipArray should go away (They are never used)
649 //why the hell fortran need to know molecule?
650 //OOPSE = Object-Obfuscated Parallel Simulation Engine
651 int nGlobalExcludes = 0;
652 int* globalExcludes = NULL;
653 int* excludeList = exclude_.getExcludeList();
654 setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
655 &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
656 &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
657
658 if( isError ){
659
660 sprintf( painCave.errMsg,
661 "There was an error setting the simulation information in fortran.\n" );
662 painCave.isFatal = 1;
663 painCave.severity = OOPSE_ERROR;
664 simError();
665 }
666
667 #ifdef IS_MPI
668 sprintf( checkPointMsg,
669 "succesfully sent the simulation information to fortran.\n");
670 MPIcheckPoint();
671 #endif // is_mpi
672 }
673
674
675 #ifdef IS_MPI
676 void SimInfo::setupFortranParallel() {
677
678 //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
679 std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
680 std::vector<int> localToGlobalCutoffGroupIndex;
681 SimInfo::MoleculeIterator mi;
682 Molecule::AtomIterator ai;
683 Molecule::CutoffGroupIterator ci;
684 Molecule* mol;
685 Atom* atom;
686 CutoffGroup* cg;
687 mpiSimData parallelData;
688 int isError;
689
690 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
691
692 //local index(index in DataStorge) of atom is important
693 for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
694 localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
695 }
696
697 //local index of cutoff group is trivial, it only depends on the order of travesing
698 for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
699 localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
700 }
701
702 }
703
704 //fill up mpiSimData struct
705 parallelData.nMolGlobal = getNGlobalMolecules();
706 parallelData.nMolLocal = getNMolecules();
707 parallelData.nAtomsGlobal = getNGlobalAtoms();
708 parallelData.nAtomsLocal = getNAtoms();
709 parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
710 parallelData.nGroupsLocal = getNCutoffGroups();
711 parallelData.myNode = worldRank;
712 MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
713
714 //pass mpiSimData struct and index arrays to fortran
715 setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
716 &localToGlobalAtomIndex[0], &(parallelData.nGroupsLocal),
717 &localToGlobalCutoffGroupIndex[0], &isError);
718
719 if (isError) {
720 sprintf(painCave.errMsg,
721 "mpiRefresh errror: fortran didn't like something we gave it.\n");
722 painCave.isFatal = 1;
723 simError();
724 }
725
726 sprintf(checkPointMsg, " mpiRefresh successful.\n");
727 MPIcheckPoint();
728
729
730 }
731
732 #endif
733
734 double SimInfo::calcMaxCutoffRadius() {
735
736
737 std::set<AtomType*> atomTypes;
738 std::set<AtomType*>::iterator i;
739 std::vector<double> cutoffRadius;
740
741 //get the unique atom types
742 atomTypes = getUniqueAtomTypes();
743
744 //query the max cutoff radius among these atom types
745 for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
746 cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
747 }
748
749 double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
750 #ifdef IS_MPI
751 //pick the max cutoff radius among the processors
752 #endif
753
754 return maxCutoffRadius;
755 }
756
757 void SimInfo::getCutoff(double& rcut, double& rsw) {
758
759 if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
760
761 if (!simParams_->haveRcut()){
762 sprintf(painCave.errMsg,
763 "SimCreator Warning: No value was set for the cutoffRadius.\n"
764 "\tOOPSE will use a default value of 15.0 angstroms"
765 "\tfor the cutoffRadius.\n");
766 painCave.isFatal = 0;
767 simError();
768 rcut = 15.0;
769 } else{
770 rcut = simParams_->getRcut();
771 }
772
773 if (!simParams_->haveRsw()){
774 sprintf(painCave.errMsg,
775 "SimCreator Warning: No value was set for switchingRadius.\n"
776 "\tOOPSE will use a default value of\n"
777 "\t0.95 * cutoffRadius for the switchingRadius\n");
778 painCave.isFatal = 0;
779 simError();
780 rsw = 0.95 * rcut;
781 } else{
782 rsw = simParams_->getRsw();
783 }
784
785 } else {
786 // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
787 //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
788
789 if (simParams_->haveRcut()) {
790 rcut = simParams_->getRcut();
791 } else {
792 //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
793 rcut = calcMaxCutoffRadius();
794 }
795
796 if (simParams_->haveRsw()) {
797 rsw = simParams_->getRsw();
798 } else {
799 rsw = rcut;
800 }
801
802 }
803 }
804
805 void SimInfo::setupCutoff() {
806 getCutoff(rcut_, rsw_);
807 double rnblist = rcut_ + 1; // skin of neighbor list
808
809 //Pass these cutoff radius etc. to fortran. This function should be called once and only once
810 notifyFortranCutoffs(&rcut_, &rsw_, &rnblist);
811 }
812
813 void SimInfo::addProperty(GenericData* genData) {
814 properties_.addProperty(genData);
815 }
816
817 void SimInfo::removeProperty(const std::string& propName) {
818 properties_.removeProperty(propName);
819 }
820
821 void SimInfo::clearProperties() {
822 properties_.clearProperties();
823 }
824
825 std::vector<std::string> SimInfo::getPropertyNames() {
826 return properties_.getPropertyNames();
827 }
828
829 std::vector<GenericData*> SimInfo::getProperties() {
830 return properties_.getProperties();
831 }
832
833 GenericData* SimInfo::getPropertyByName(const std::string& propName) {
834 return properties_.getPropertyByName(propName);
835 }
836
837 void SimInfo::setSnapshotManager(SnapshotManager* sman) {
838 //if (sman_ == sman_) {
839 // return;
840 //}
841
842 //delete sman_;
843 sman_ = sman;
844
845 Molecule* mol;
846 RigidBody* rb;
847 Atom* atom;
848 SimInfo::MoleculeIterator mi;
849 Molecule::RigidBodyIterator rbIter;
850 Molecule::AtomIterator atomIter;;
851
852 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
853
854 for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
855 atom->setSnapshotManager(sman_);
856 }
857
858 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
859 rb->setSnapshotManager(sman_);
860 }
861 }
862
863 }
864
865 Vector3d SimInfo::getComVel(){
866 SimInfo::MoleculeIterator i;
867 Molecule* mol;
868
869 Vector3d comVel(0.0);
870 double totalMass = 0.0;
871
872
873 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
874 double mass = mol->getMass();
875 totalMass += mass;
876 comVel += mass * mol->getComVel();
877 }
878
879 #ifdef IS_MPI
880 double tmpMass = totalMass;
881 Vector3d tmpComVel(comVel);
882 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
883 MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
884 #endif
885
886 comVel /= totalMass;
887
888 return comVel;
889 }
890
891 Vector3d SimInfo::getCom(){
892 SimInfo::MoleculeIterator i;
893 Molecule* mol;
894
895 Vector3d com(0.0);
896 double totalMass = 0.0;
897
898 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
899 double mass = mol->getMass();
900 totalMass += mass;
901 com += mass * mol->getCom();
902 }
903
904 #ifdef IS_MPI
905 double tmpMass = totalMass;
906 Vector3d tmpCom(com);
907 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
908 MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
909 #endif
910
911 com /= totalMass;
912
913 return com;
914
915 }
916
917 std::ostream& operator <<(std::ostream& o, SimInfo& info) {
918
919 return o;
920 }
921
922 }//end namespace oopse
923