ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-3.0/src/brains/SimInfo.cpp
Revision: 2097
Committed: Wed Mar 9 17:30:29 2005 UTC (19 years, 4 months ago) by tim
File size: 28564 byte(s)
Log Message:
adding IndexFinder which is used to select the molecules; Seperate ElectrostaticAtomTypesSectionParser into
ChargeAtomTypesSectionParser and MultipoleAtomTypesSectionParser;remove print dipole option from Dump2XYZ;

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Acknowledgement of the program authors must be made in any
10 * publication of scientific results based in part on use of the
11 * program. An acceptable form of acknowledgement is citation of
12 * the article in which the program was described (Matthew
13 * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 * Parallel Simulation Engine for Molecular Dynamics,"
16 * J. Comput. Chem. 26, pp. 252-271 (2005))
17 *
18 * 2. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 *
21 * 3. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the
24 * distribution.
25 *
26 * This software is provided "AS IS," without a warranty of any
27 * kind. All express or implied conditions, representations and
28 * warranties, including any implied warranty of merchantability,
29 * fitness for a particular purpose or non-infringement, are hereby
30 * excluded. The University of Notre Dame and its licensors shall not
31 * be liable for any damages suffered by licensee as a result of
32 * using, modifying or distributing the software or its
33 * derivatives. In no event will the University of Notre Dame or its
34 * licensors be liable for any lost revenue, profit or data, or for
35 * direct, indirect, special, consequential, incidental or punitive
36 * damages, however caused and regardless of the theory of liability,
37 * arising out of the use of or inability to use software, even if the
38 * University of Notre Dame has been advised of the possibility of
39 * such damages.
40 */
41
42 /**
43 * @file SimInfo.cpp
44 * @author tlin
45 * @date 11/02/2004
46 * @version 1.0
47 */
48
49 #include <algorithm>
50 #include <set>
51
52 #include "brains/SimInfo.hpp"
53 #include "math/Vector3.hpp"
54 #include "primitives/Molecule.hpp"
55 #include "UseTheForce/doForces_interface.h"
56 #include "UseTheForce/notifyCutoffs_interface.h"
57 #include "utils/MemoryUtils.hpp"
58 #include "utils/simError.h"
59 #include "selection/SelectionManager.hpp"
60
61 #ifdef IS_MPI
62 #include "UseTheForce/mpiComponentPlan.h"
63 #include "UseTheForce/DarkSide/simParallel_interface.h"
64 #endif
65
66 namespace oopse {
67
68 SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
69 ForceField* ff, Globals* simParams) :
70 forceField_(ff), simParams_(simParams),
71 ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
72 nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
73 nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
74 nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nRigidBodies_(0),
75 nIntegrableObjects_(0), nCutoffGroups_(0), nConstraints_(0),
76 sman_(NULL), fortranInitialized_(false) {
77
78
79 std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
80 MoleculeStamp* molStamp;
81 int nMolWithSameStamp;
82 int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
83 int nGroups = 0; //total cutoff groups defined in meta-data file
84 CutoffGroupStamp* cgStamp;
85 RigidBodyStamp* rbStamp;
86 int nRigidAtoms = 0;
87
88 for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
89 molStamp = i->first;
90 nMolWithSameStamp = i->second;
91
92 addMoleculeStamp(molStamp, nMolWithSameStamp);
93
94 //calculate atoms in molecules
95 nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;
96
97
98 //calculate atoms in cutoff groups
99 int nAtomsInGroups = 0;
100 int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
101
102 for (int j=0; j < nCutoffGroupsInStamp; j++) {
103 cgStamp = molStamp->getCutoffGroup(j);
104 nAtomsInGroups += cgStamp->getNMembers();
105 }
106
107 nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
108 nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;
109
110 //calculate atoms in rigid bodies
111 int nAtomsInRigidBodies = 0;
112 int nRigidBodiesInStamp = molStamp->getNRigidBodies();
113
114 for (int j=0; j < nRigidBodiesInStamp; j++) {
115 rbStamp = molStamp->getRigidBody(j);
116 nAtomsInRigidBodies += rbStamp->getNMembers();
117 }
118
119 nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
120 nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;
121
122 }
123
124 //every free atom (atom does not belong to cutoff groups) is a cutoff group
125 //therefore the total number of cutoff groups in the system is equal to
126 //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
127 //file plus the number of cutoff groups defined in meta-data file
128 nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
129
130 //every free atom (atom does not belong to rigid bodies) is an integrable object
131 //therefore the total number of integrable objects in the system is equal to
132 //the total number of atoms minus number of atoms belong to rigid body defined in meta-data
133 //file plus the number of rigid bodies defined in meta-data file
134 nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
135
136 nGlobalMols_ = molStampIds_.size();
137
138 #ifdef IS_MPI
139 molToProcMap_.resize(nGlobalMols_);
140 #endif
141
142 }
143
144 SimInfo::~SimInfo() {
145 std::map<int, Molecule*>::iterator i;
146 for (i = molecules_.begin(); i != molecules_.end(); ++i) {
147 delete i->second;
148 }
149 molecules_.clear();
150
151 MemoryUtils::deletePointers(moleculeStamps_);
152
153 delete sman_;
154 delete simParams_;
155 delete forceField_;
156 }
157
158 int SimInfo::getNGlobalConstraints() {
159 int nGlobalConstraints;
160 #ifdef IS_MPI
161 MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
162 MPI_COMM_WORLD);
163 #else
164 nGlobalConstraints = nConstraints_;
165 #endif
166 return nGlobalConstraints;
167 }
168
169 bool SimInfo::addMolecule(Molecule* mol) {
170 MoleculeIterator i;
171
172 i = molecules_.find(mol->getGlobalIndex());
173 if (i == molecules_.end() ) {
174
175 molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
176
177 nAtoms_ += mol->getNAtoms();
178 nBonds_ += mol->getNBonds();
179 nBends_ += mol->getNBends();
180 nTorsions_ += mol->getNTorsions();
181 nRigidBodies_ += mol->getNRigidBodies();
182 nIntegrableObjects_ += mol->getNIntegrableObjects();
183 nCutoffGroups_ += mol->getNCutoffGroups();
184 nConstraints_ += mol->getNConstraintPairs();
185
186 addExcludePairs(mol);
187
188 return true;
189 } else {
190 return false;
191 }
192 }
193
194 bool SimInfo::removeMolecule(Molecule* mol) {
195 MoleculeIterator i;
196 i = molecules_.find(mol->getGlobalIndex());
197
198 if (i != molecules_.end() ) {
199
200 assert(mol == i->second);
201
202 nAtoms_ -= mol->getNAtoms();
203 nBonds_ -= mol->getNBonds();
204 nBends_ -= mol->getNBends();
205 nTorsions_ -= mol->getNTorsions();
206 nRigidBodies_ -= mol->getNRigidBodies();
207 nIntegrableObjects_ -= mol->getNIntegrableObjects();
208 nCutoffGroups_ -= mol->getNCutoffGroups();
209 nConstraints_ -= mol->getNConstraintPairs();
210
211 removeExcludePairs(mol);
212 molecules_.erase(mol->getGlobalIndex());
213
214 delete mol;
215
216 return true;
217 } else {
218 return false;
219 }
220
221
222 }
223
224
225 Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
226 i = molecules_.begin();
227 return i == molecules_.end() ? NULL : i->second;
228 }
229
230 Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
231 ++i;
232 return i == molecules_.end() ? NULL : i->second;
233 }
234
235
236 void SimInfo::calcNdf() {
237 int ndf_local;
238 MoleculeIterator i;
239 std::vector<StuntDouble*>::iterator j;
240 Molecule* mol;
241 StuntDouble* integrableObject;
242
243 ndf_local = 0;
244
245 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
246 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
247 integrableObject = mol->nextIntegrableObject(j)) {
248
249 ndf_local += 3;
250
251 if (integrableObject->isDirectional()) {
252 if (integrableObject->isLinear()) {
253 ndf_local += 2;
254 } else {
255 ndf_local += 3;
256 }
257 }
258
259 }//end for (integrableObject)
260 }// end for (mol)
261
262 // n_constraints is local, so subtract them on each processor
263 ndf_local -= nConstraints_;
264
265 #ifdef IS_MPI
266 MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
267 #else
268 ndf_ = ndf_local;
269 #endif
270
271 // nZconstraints_ is global, as are the 3 COM translations for the
272 // entire system:
273 ndf_ = ndf_ - 3 - nZconstraint_;
274
275 }
276
277 void SimInfo::calcNdfRaw() {
278 int ndfRaw_local;
279
280 MoleculeIterator i;
281 std::vector<StuntDouble*>::iterator j;
282 Molecule* mol;
283 StuntDouble* integrableObject;
284
285 // Raw degrees of freedom that we have to set
286 ndfRaw_local = 0;
287
288 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
289 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
290 integrableObject = mol->nextIntegrableObject(j)) {
291
292 ndfRaw_local += 3;
293
294 if (integrableObject->isDirectional()) {
295 if (integrableObject->isLinear()) {
296 ndfRaw_local += 2;
297 } else {
298 ndfRaw_local += 3;
299 }
300 }
301
302 }
303 }
304
305 #ifdef IS_MPI
306 MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
307 #else
308 ndfRaw_ = ndfRaw_local;
309 #endif
310 }
311
312 void SimInfo::calcNdfTrans() {
313 int ndfTrans_local;
314
315 ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
316
317
318 #ifdef IS_MPI
319 MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
320 #else
321 ndfTrans_ = ndfTrans_local;
322 #endif
323
324 ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
325
326 }
327
328 void SimInfo::addExcludePairs(Molecule* mol) {
329 std::vector<Bond*>::iterator bondIter;
330 std::vector<Bend*>::iterator bendIter;
331 std::vector<Torsion*>::iterator torsionIter;
332 Bond* bond;
333 Bend* bend;
334 Torsion* torsion;
335 int a;
336 int b;
337 int c;
338 int d;
339
340 for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
341 a = bond->getAtomA()->getGlobalIndex();
342 b = bond->getAtomB()->getGlobalIndex();
343 exclude_.addPair(a, b);
344 }
345
346 for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
347 a = bend->getAtomA()->getGlobalIndex();
348 b = bend->getAtomB()->getGlobalIndex();
349 c = bend->getAtomC()->getGlobalIndex();
350
351 exclude_.addPair(a, b);
352 exclude_.addPair(a, c);
353 exclude_.addPair(b, c);
354 }
355
356 for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
357 a = torsion->getAtomA()->getGlobalIndex();
358 b = torsion->getAtomB()->getGlobalIndex();
359 c = torsion->getAtomC()->getGlobalIndex();
360 d = torsion->getAtomD()->getGlobalIndex();
361
362 exclude_.addPair(a, b);
363 exclude_.addPair(a, c);
364 exclude_.addPair(a, d);
365 exclude_.addPair(b, c);
366 exclude_.addPair(b, d);
367 exclude_.addPair(c, d);
368 }
369
370
371 }
372
373 void SimInfo::removeExcludePairs(Molecule* mol) {
374 std::vector<Bond*>::iterator bondIter;
375 std::vector<Bend*>::iterator bendIter;
376 std::vector<Torsion*>::iterator torsionIter;
377 Bond* bond;
378 Bend* bend;
379 Torsion* torsion;
380 int a;
381 int b;
382 int c;
383 int d;
384
385 for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
386 a = bond->getAtomA()->getGlobalIndex();
387 b = bond->getAtomB()->getGlobalIndex();
388 exclude_.removePair(a, b);
389 }
390
391 for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
392 a = bend->getAtomA()->getGlobalIndex();
393 b = bend->getAtomB()->getGlobalIndex();
394 c = bend->getAtomC()->getGlobalIndex();
395
396 exclude_.removePair(a, b);
397 exclude_.removePair(a, c);
398 exclude_.removePair(b, c);
399 }
400
401 for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
402 a = torsion->getAtomA()->getGlobalIndex();
403 b = torsion->getAtomB()->getGlobalIndex();
404 c = torsion->getAtomC()->getGlobalIndex();
405 d = torsion->getAtomD()->getGlobalIndex();
406
407 exclude_.removePair(a, b);
408 exclude_.removePair(a, c);
409 exclude_.removePair(a, d);
410 exclude_.removePair(b, c);
411 exclude_.removePair(b, d);
412 exclude_.removePair(c, d);
413 }
414
415 }
416
417
418 void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
419 int curStampId;
420
421 //index from 0
422 curStampId = moleculeStamps_.size();
423
424 moleculeStamps_.push_back(molStamp);
425 molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
426 }
427
428 void SimInfo::update() {
429
430 setupSimType();
431
432 #ifdef IS_MPI
433 setupFortranParallel();
434 #endif
435
436 setupFortranSim();
437
438 //setup fortran force field
439 /** @deprecate */
440 int isError = 0;
441 initFortranFF( &fInfo_.SIM_uses_RF , &isError );
442 if(isError){
443 sprintf( painCave.errMsg,
444 "ForceField error: There was an error initializing the forceField in fortran.\n" );
445 painCave.isFatal = 1;
446 simError();
447 }
448
449
450 setupCutoff();
451
452 calcNdf();
453 calcNdfRaw();
454 calcNdfTrans();
455
456 fortranInitialized_ = true;
457 }
458
459 std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
460 SimInfo::MoleculeIterator mi;
461 Molecule* mol;
462 Molecule::AtomIterator ai;
463 Atom* atom;
464 std::set<AtomType*> atomTypes;
465
466 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
467
468 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
469 atomTypes.insert(atom->getAtomType());
470 }
471
472 }
473
474 return atomTypes;
475 }
476
477 void SimInfo::setupSimType() {
478 std::set<AtomType*>::iterator i;
479 std::set<AtomType*> atomTypes;
480 atomTypes = getUniqueAtomTypes();
481
482 int useLennardJones = 0;
483 int useElectrostatic = 0;
484 int useEAM = 0;
485 int useCharge = 0;
486 int useDirectional = 0;
487 int useDipole = 0;
488 int useGayBerne = 0;
489 int useSticky = 0;
490 int useShape = 0;
491 int useFLARB = 0; //it is not in AtomType yet
492 int useDirectionalAtom = 0;
493 int useElectrostatics = 0;
494 //usePBC and useRF are from simParams
495 int usePBC = simParams_->getPBC();
496 int useRF = simParams_->getUseRF();
497
498 //loop over all of the atom types
499 for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
500 useLennardJones |= (*i)->isLennardJones();
501 useElectrostatic |= (*i)->isElectrostatic();
502 useEAM |= (*i)->isEAM();
503 useCharge |= (*i)->isCharge();
504 useDirectional |= (*i)->isDirectional();
505 useDipole |= (*i)->isDipole();
506 useGayBerne |= (*i)->isGayBerne();
507 useSticky |= (*i)->isSticky();
508 useShape |= (*i)->isShape();
509 }
510
511 if (useSticky || useDipole || useGayBerne || useShape) {
512 useDirectionalAtom = 1;
513 }
514
515 if (useCharge || useDipole) {
516 useElectrostatics = 1;
517 }
518
519 #ifdef IS_MPI
520 int temp;
521
522 temp = usePBC;
523 MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
524
525 temp = useDirectionalAtom;
526 MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
527
528 temp = useLennardJones;
529 MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
530
531 temp = useElectrostatics;
532 MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
533
534 temp = useCharge;
535 MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
536
537 temp = useDipole;
538 MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
539
540 temp = useSticky;
541 MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
542
543 temp = useGayBerne;
544 MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
545
546 temp = useEAM;
547 MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
548
549 temp = useShape;
550 MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
551
552 temp = useFLARB;
553 MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
554
555 temp = useRF;
556 MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
557
558 #endif
559
560 fInfo_.SIM_uses_PBC = usePBC;
561 fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
562 fInfo_.SIM_uses_LennardJones = useLennardJones;
563 fInfo_.SIM_uses_Electrostatics = useElectrostatics;
564 fInfo_.SIM_uses_Charges = useCharge;
565 fInfo_.SIM_uses_Dipoles = useDipole;
566 fInfo_.SIM_uses_Sticky = useSticky;
567 fInfo_.SIM_uses_GayBerne = useGayBerne;
568 fInfo_.SIM_uses_EAM = useEAM;
569 fInfo_.SIM_uses_Shapes = useShape;
570 fInfo_.SIM_uses_FLARB = useFLARB;
571 fInfo_.SIM_uses_RF = useRF;
572
573 if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
574
575 if (simParams_->haveDielectric()) {
576 fInfo_.dielect = simParams_->getDielectric();
577 } else {
578 sprintf(painCave.errMsg,
579 "SimSetup Error: No Dielectric constant was set.\n"
580 "\tYou are trying to use Reaction Field without"
581 "\tsetting a dielectric constant!\n");
582 painCave.isFatal = 1;
583 simError();
584 }
585
586 } else {
587 fInfo_.dielect = 0.0;
588 }
589
590 }
591
592 void SimInfo::setupFortranSim() {
593 int isError;
594 int nExclude;
595 std::vector<int> fortranGlobalGroupMembership;
596
597 nExclude = exclude_.getSize();
598 isError = 0;
599
600 //globalGroupMembership_ is filled by SimCreator
601 for (int i = 0; i < nGlobalAtoms_; i++) {
602 fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
603 }
604
605 //calculate mass ratio of cutoff group
606 std::vector<double> mfact;
607 SimInfo::MoleculeIterator mi;
608 Molecule* mol;
609 Molecule::CutoffGroupIterator ci;
610 CutoffGroup* cg;
611 Molecule::AtomIterator ai;
612 Atom* atom;
613 double totalMass;
614
615 //to avoid memory reallocation, reserve enough space for mfact
616 mfact.reserve(getNCutoffGroups());
617
618 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
619 for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
620
621 totalMass = cg->getMass();
622 for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
623 mfact.push_back(atom->getMass()/totalMass);
624 }
625
626 }
627 }
628
629 //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
630 std::vector<int> identArray;
631
632 //to avoid memory reallocation, reserve enough space identArray
633 identArray.reserve(getNAtoms());
634
635 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
636 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
637 identArray.push_back(atom->getIdent());
638 }
639 }
640
641 //fill molMembershipArray
642 //molMembershipArray is filled by SimCreator
643 std::vector<int> molMembershipArray(nGlobalAtoms_);
644 for (int i = 0; i < nGlobalAtoms_; i++) {
645 molMembershipArray[i] = globalMolMembership_[i] + 1;
646 }
647
648 //setup fortran simulation
649 //gloalExcludes and molMembershipArray should go away (They are never used)
650 //why the hell fortran need to know molecule?
651 //OOPSE = Object-Obfuscated Parallel Simulation Engine
652 int nGlobalExcludes = 0;
653 int* globalExcludes = NULL;
654 int* excludeList = exclude_.getExcludeList();
655 setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
656 &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
657 &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
658
659 if( isError ){
660
661 sprintf( painCave.errMsg,
662 "There was an error setting the simulation information in fortran.\n" );
663 painCave.isFatal = 1;
664 painCave.severity = OOPSE_ERROR;
665 simError();
666 }
667
668 #ifdef IS_MPI
669 sprintf( checkPointMsg,
670 "succesfully sent the simulation information to fortran.\n");
671 MPIcheckPoint();
672 #endif // is_mpi
673 }
674
675
676 #ifdef IS_MPI
677 void SimInfo::setupFortranParallel() {
678
679 //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
680 std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
681 std::vector<int> localToGlobalCutoffGroupIndex;
682 SimInfo::MoleculeIterator mi;
683 Molecule::AtomIterator ai;
684 Molecule::CutoffGroupIterator ci;
685 Molecule* mol;
686 Atom* atom;
687 CutoffGroup* cg;
688 mpiSimData parallelData;
689 int isError;
690
691 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
692
693 //local index(index in DataStorge) of atom is important
694 for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
695 localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
696 }
697
698 //local index of cutoff group is trivial, it only depends on the order of travesing
699 for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
700 localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
701 }
702
703 }
704
705 //fill up mpiSimData struct
706 parallelData.nMolGlobal = getNGlobalMolecules();
707 parallelData.nMolLocal = getNMolecules();
708 parallelData.nAtomsGlobal = getNGlobalAtoms();
709 parallelData.nAtomsLocal = getNAtoms();
710 parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
711 parallelData.nGroupsLocal = getNCutoffGroups();
712 parallelData.myNode = worldRank;
713 MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
714
715 //pass mpiSimData struct and index arrays to fortran
716 setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
717 &localToGlobalAtomIndex[0], &(parallelData.nGroupsLocal),
718 &localToGlobalCutoffGroupIndex[0], &isError);
719
720 if (isError) {
721 sprintf(painCave.errMsg,
722 "mpiRefresh errror: fortran didn't like something we gave it.\n");
723 painCave.isFatal = 1;
724 simError();
725 }
726
727 sprintf(checkPointMsg, " mpiRefresh successful.\n");
728 MPIcheckPoint();
729
730
731 }
732
733 #endif
734
735 double SimInfo::calcMaxCutoffRadius() {
736
737
738 std::set<AtomType*> atomTypes;
739 std::set<AtomType*>::iterator i;
740 std::vector<double> cutoffRadius;
741
742 //get the unique atom types
743 atomTypes = getUniqueAtomTypes();
744
745 //query the max cutoff radius among these atom types
746 for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
747 cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
748 }
749
750 double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
751 #ifdef IS_MPI
752 //pick the max cutoff radius among the processors
753 #endif
754
755 return maxCutoffRadius;
756 }
757
758 void SimInfo::getCutoff(double& rcut, double& rsw) {
759
760 if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
761
762 if (!simParams_->haveRcut()){
763 sprintf(painCave.errMsg,
764 "SimCreator Warning: No value was set for the cutoffRadius.\n"
765 "\tOOPSE will use a default value of 15.0 angstroms"
766 "\tfor the cutoffRadius.\n");
767 painCave.isFatal = 0;
768 simError();
769 rcut = 15.0;
770 } else{
771 rcut = simParams_->getRcut();
772 }
773
774 if (!simParams_->haveRsw()){
775 sprintf(painCave.errMsg,
776 "SimCreator Warning: No value was set for switchingRadius.\n"
777 "\tOOPSE will use a default value of\n"
778 "\t0.95 * cutoffRadius for the switchingRadius\n");
779 painCave.isFatal = 0;
780 simError();
781 rsw = 0.95 * rcut;
782 } else{
783 rsw = simParams_->getRsw();
784 }
785
786 } else {
787 // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
788 //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
789
790 if (simParams_->haveRcut()) {
791 rcut = simParams_->getRcut();
792 } else {
793 //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
794 rcut = calcMaxCutoffRadius();
795 }
796
797 if (simParams_->haveRsw()) {
798 rsw = simParams_->getRsw();
799 } else {
800 rsw = rcut;
801 }
802
803 }
804 }
805
806 void SimInfo::setupCutoff() {
807 getCutoff(rcut_, rsw_);
808 double rnblist = rcut_ + 1; // skin of neighbor list
809
810 //Pass these cutoff radius etc. to fortran. This function should be called once and only once
811 notifyFortranCutoffs(&rcut_, &rsw_, &rnblist);
812 }
813
814 void SimInfo::addProperty(GenericData* genData) {
815 properties_.addProperty(genData);
816 }
817
818 void SimInfo::removeProperty(const std::string& propName) {
819 properties_.removeProperty(propName);
820 }
821
822 void SimInfo::clearProperties() {
823 properties_.clearProperties();
824 }
825
826 std::vector<std::string> SimInfo::getPropertyNames() {
827 return properties_.getPropertyNames();
828 }
829
830 std::vector<GenericData*> SimInfo::getProperties() {
831 return properties_.getProperties();
832 }
833
834 GenericData* SimInfo::getPropertyByName(const std::string& propName) {
835 return properties_.getPropertyByName(propName);
836 }
837
838 void SimInfo::setSnapshotManager(SnapshotManager* sman) {
839 //if (sman_ == sman_) {
840 // return;
841 //}
842
843 //delete sman_;
844 sman_ = sman;
845
846 Molecule* mol;
847 RigidBody* rb;
848 Atom* atom;
849 SimInfo::MoleculeIterator mi;
850 Molecule::RigidBodyIterator rbIter;
851 Molecule::AtomIterator atomIter;;
852
853 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
854
855 for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
856 atom->setSnapshotManager(sman_);
857 }
858
859 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
860 rb->setSnapshotManager(sman_);
861 }
862 }
863
864 }
865
866 Vector3d SimInfo::getComVel(){
867 SimInfo::MoleculeIterator i;
868 Molecule* mol;
869
870 Vector3d comVel(0.0);
871 double totalMass = 0.0;
872
873
874 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
875 double mass = mol->getMass();
876 totalMass += mass;
877 comVel += mass * mol->getComVel();
878 }
879
880 #ifdef IS_MPI
881 double tmpMass = totalMass;
882 Vector3d tmpComVel(comVel);
883 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
884 MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
885 #endif
886
887 comVel /= totalMass;
888
889 return comVel;
890 }
891
892 Vector3d SimInfo::getCom(){
893 SimInfo::MoleculeIterator i;
894 Molecule* mol;
895
896 Vector3d com(0.0);
897 double totalMass = 0.0;
898
899 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
900 double mass = mol->getMass();
901 totalMass += mass;
902 com += mass * mol->getCom();
903 }
904
905 #ifdef IS_MPI
906 double tmpMass = totalMass;
907 Vector3d tmpCom(com);
908 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
909 MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
910 #endif
911
912 com /= totalMass;
913
914 return com;
915
916 }
917
918 std::ostream& operator <<(std::ostream& o, SimInfo& info) {
919
920 return o;
921 }
922
923 }//end namespace oopse
924