ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-3.0/src/brains/SimInfo.cpp
Revision: 2252
Committed: Mon May 30 14:01:52 2005 UTC (19 years, 1 month ago) by chuckv
File size: 32276 byte(s)
Log Message:
Added method to remove system angular momentum to velocitizer and added method to calculate system angular momentum to siminfo.

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Acknowledgement of the program authors must be made in any
10 * publication of scientific results based in part on use of the
11 * program. An acceptable form of acknowledgement is citation of
12 * the article in which the program was described (Matthew
13 * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 * Parallel Simulation Engine for Molecular Dynamics,"
16 * J. Comput. Chem. 26, pp. 252-271 (2005))
17 *
18 * 2. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 *
21 * 3. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the
24 * distribution.
25 *
26 * This software is provided "AS IS," without a warranty of any
27 * kind. All express or implied conditions, representations and
28 * warranties, including any implied warranty of merchantability,
29 * fitness for a particular purpose or non-infringement, are hereby
30 * excluded. The University of Notre Dame and its licensors shall not
31 * be liable for any damages suffered by licensee as a result of
32 * using, modifying or distributing the software or its
33 * derivatives. In no event will the University of Notre Dame or its
34 * licensors be liable for any lost revenue, profit or data, or for
35 * direct, indirect, special, consequential, incidental or punitive
36 * damages, however caused and regardless of the theory of liability,
37 * arising out of the use of or inability to use software, even if the
38 * University of Notre Dame has been advised of the possibility of
39 * such damages.
40 */
41
42 /**
43 * @file SimInfo.cpp
44 * @author tlin
45 * @date 11/02/2004
46 * @version 1.0
47 */
48
49 #include <algorithm>
50 #include <set>
51
52 #include "brains/SimInfo.hpp"
53 #include "math/Vector3.hpp"
54 #include "primitives/Molecule.hpp"
55 #include "UseTheForce/doForces_interface.h"
56 #include "UseTheForce/notifyCutoffs_interface.h"
57 #include "utils/MemoryUtils.hpp"
58 #include "utils/simError.h"
59 #include "selection/SelectionManager.hpp"
60
61 #ifdef IS_MPI
62 #include "UseTheForce/mpiComponentPlan.h"
63 #include "UseTheForce/DarkSide/simParallel_interface.h"
64 #endif
65
66 namespace oopse {
67
68 SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
69 ForceField* ff, Globals* simParams) :
70 stamps_(stamps), forceField_(ff), simParams_(simParams),
71 ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
72 nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
73 nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
74 nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nRigidBodies_(0),
75 nIntegrableObjects_(0), nCutoffGroups_(0), nConstraints_(0),
76 sman_(NULL), fortranInitialized_(false) {
77
78
79 std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
80 MoleculeStamp* molStamp;
81 int nMolWithSameStamp;
82 int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
83 int nGroups = 0; //total cutoff groups defined in meta-data file
84 CutoffGroupStamp* cgStamp;
85 RigidBodyStamp* rbStamp;
86 int nRigidAtoms = 0;
87
88 for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
89 molStamp = i->first;
90 nMolWithSameStamp = i->second;
91
92 addMoleculeStamp(molStamp, nMolWithSameStamp);
93
94 //calculate atoms in molecules
95 nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;
96
97
98 //calculate atoms in cutoff groups
99 int nAtomsInGroups = 0;
100 int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
101
102 for (int j=0; j < nCutoffGroupsInStamp; j++) {
103 cgStamp = molStamp->getCutoffGroup(j);
104 nAtomsInGroups += cgStamp->getNMembers();
105 }
106
107 nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
108 nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;
109
110 //calculate atoms in rigid bodies
111 int nAtomsInRigidBodies = 0;
112 int nRigidBodiesInStamp = molStamp->getNRigidBodies();
113
114 for (int j=0; j < nRigidBodiesInStamp; j++) {
115 rbStamp = molStamp->getRigidBody(j);
116 nAtomsInRigidBodies += rbStamp->getNMembers();
117 }
118
119 nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
120 nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;
121
122 }
123
124 //every free atom (atom does not belong to cutoff groups) is a cutoff group
125 //therefore the total number of cutoff groups in the system is equal to
126 //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
127 //file plus the number of cutoff groups defined in meta-data file
128 nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
129
130 //every free atom (atom does not belong to rigid bodies) is an integrable object
131 //therefore the total number of integrable objects in the system is equal to
132 //the total number of atoms minus number of atoms belong to rigid body defined in meta-data
133 //file plus the number of rigid bodies defined in meta-data file
134 nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
135
136 nGlobalMols_ = molStampIds_.size();
137
138 #ifdef IS_MPI
139 molToProcMap_.resize(nGlobalMols_);
140 #endif
141
142 }
143
144 SimInfo::~SimInfo() {
145 std::map<int, Molecule*>::iterator i;
146 for (i = molecules_.begin(); i != molecules_.end(); ++i) {
147 delete i->second;
148 }
149 molecules_.clear();
150
151 delete stamps_;
152 delete sman_;
153 delete simParams_;
154 delete forceField_;
155 }
156
157 int SimInfo::getNGlobalConstraints() {
158 int nGlobalConstraints;
159 #ifdef IS_MPI
160 MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
161 MPI_COMM_WORLD);
162 #else
163 nGlobalConstraints = nConstraints_;
164 #endif
165 return nGlobalConstraints;
166 }
167
168 bool SimInfo::addMolecule(Molecule* mol) {
169 MoleculeIterator i;
170
171 i = molecules_.find(mol->getGlobalIndex());
172 if (i == molecules_.end() ) {
173
174 molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
175
176 nAtoms_ += mol->getNAtoms();
177 nBonds_ += mol->getNBonds();
178 nBends_ += mol->getNBends();
179 nTorsions_ += mol->getNTorsions();
180 nRigidBodies_ += mol->getNRigidBodies();
181 nIntegrableObjects_ += mol->getNIntegrableObjects();
182 nCutoffGroups_ += mol->getNCutoffGroups();
183 nConstraints_ += mol->getNConstraintPairs();
184
185 addExcludePairs(mol);
186
187 return true;
188 } else {
189 return false;
190 }
191 }
192
193 bool SimInfo::removeMolecule(Molecule* mol) {
194 MoleculeIterator i;
195 i = molecules_.find(mol->getGlobalIndex());
196
197 if (i != molecules_.end() ) {
198
199 assert(mol == i->second);
200
201 nAtoms_ -= mol->getNAtoms();
202 nBonds_ -= mol->getNBonds();
203 nBends_ -= mol->getNBends();
204 nTorsions_ -= mol->getNTorsions();
205 nRigidBodies_ -= mol->getNRigidBodies();
206 nIntegrableObjects_ -= mol->getNIntegrableObjects();
207 nCutoffGroups_ -= mol->getNCutoffGroups();
208 nConstraints_ -= mol->getNConstraintPairs();
209
210 removeExcludePairs(mol);
211 molecules_.erase(mol->getGlobalIndex());
212
213 delete mol;
214
215 return true;
216 } else {
217 return false;
218 }
219
220
221 }
222
223
224 Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
225 i = molecules_.begin();
226 return i == molecules_.end() ? NULL : i->second;
227 }
228
229 Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
230 ++i;
231 return i == molecules_.end() ? NULL : i->second;
232 }
233
234
235 void SimInfo::calcNdf() {
236 int ndf_local;
237 MoleculeIterator i;
238 std::vector<StuntDouble*>::iterator j;
239 Molecule* mol;
240 StuntDouble* integrableObject;
241
242 ndf_local = 0;
243
244 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
245 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
246 integrableObject = mol->nextIntegrableObject(j)) {
247
248 ndf_local += 3;
249
250 if (integrableObject->isDirectional()) {
251 if (integrableObject->isLinear()) {
252 ndf_local += 2;
253 } else {
254 ndf_local += 3;
255 }
256 }
257
258 }//end for (integrableObject)
259 }// end for (mol)
260
261 // n_constraints is local, so subtract them on each processor
262 ndf_local -= nConstraints_;
263
264 #ifdef IS_MPI
265 MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
266 #else
267 ndf_ = ndf_local;
268 #endif
269
270 // nZconstraints_ is global, as are the 3 COM translations for the
271 // entire system:
272 ndf_ = ndf_ - 3 - nZconstraint_;
273
274 }
275
276 void SimInfo::calcNdfRaw() {
277 int ndfRaw_local;
278
279 MoleculeIterator i;
280 std::vector<StuntDouble*>::iterator j;
281 Molecule* mol;
282 StuntDouble* integrableObject;
283
284 // Raw degrees of freedom that we have to set
285 ndfRaw_local = 0;
286
287 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
288 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
289 integrableObject = mol->nextIntegrableObject(j)) {
290
291 ndfRaw_local += 3;
292
293 if (integrableObject->isDirectional()) {
294 if (integrableObject->isLinear()) {
295 ndfRaw_local += 2;
296 } else {
297 ndfRaw_local += 3;
298 }
299 }
300
301 }
302 }
303
304 #ifdef IS_MPI
305 MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
306 #else
307 ndfRaw_ = ndfRaw_local;
308 #endif
309 }
310
311 void SimInfo::calcNdfTrans() {
312 int ndfTrans_local;
313
314 ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
315
316
317 #ifdef IS_MPI
318 MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
319 #else
320 ndfTrans_ = ndfTrans_local;
321 #endif
322
323 ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
324
325 }
326
327 void SimInfo::addExcludePairs(Molecule* mol) {
328 std::vector<Bond*>::iterator bondIter;
329 std::vector<Bend*>::iterator bendIter;
330 std::vector<Torsion*>::iterator torsionIter;
331 Bond* bond;
332 Bend* bend;
333 Torsion* torsion;
334 int a;
335 int b;
336 int c;
337 int d;
338
339 for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
340 a = bond->getAtomA()->getGlobalIndex();
341 b = bond->getAtomB()->getGlobalIndex();
342 exclude_.addPair(a, b);
343 }
344
345 for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
346 a = bend->getAtomA()->getGlobalIndex();
347 b = bend->getAtomB()->getGlobalIndex();
348 c = bend->getAtomC()->getGlobalIndex();
349
350 exclude_.addPair(a, b);
351 exclude_.addPair(a, c);
352 exclude_.addPair(b, c);
353 }
354
355 for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
356 a = torsion->getAtomA()->getGlobalIndex();
357 b = torsion->getAtomB()->getGlobalIndex();
358 c = torsion->getAtomC()->getGlobalIndex();
359 d = torsion->getAtomD()->getGlobalIndex();
360
361 exclude_.addPair(a, b);
362 exclude_.addPair(a, c);
363 exclude_.addPair(a, d);
364 exclude_.addPair(b, c);
365 exclude_.addPair(b, d);
366 exclude_.addPair(c, d);
367 }
368
369 Molecule::RigidBodyIterator rbIter;
370 RigidBody* rb;
371 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
372 std::vector<Atom*> atoms = rb->getAtoms();
373 for (int i = 0; i < atoms.size() -1 ; ++i) {
374 for (int j = i + 1; j < atoms.size(); ++j) {
375 a = atoms[i]->getGlobalIndex();
376 b = atoms[j]->getGlobalIndex();
377 exclude_.addPair(a, b);
378 }
379 }
380 }
381
382 }
383
384 void SimInfo::removeExcludePairs(Molecule* mol) {
385 std::vector<Bond*>::iterator bondIter;
386 std::vector<Bend*>::iterator bendIter;
387 std::vector<Torsion*>::iterator torsionIter;
388 Bond* bond;
389 Bend* bend;
390 Torsion* torsion;
391 int a;
392 int b;
393 int c;
394 int d;
395
396 for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
397 a = bond->getAtomA()->getGlobalIndex();
398 b = bond->getAtomB()->getGlobalIndex();
399 exclude_.removePair(a, b);
400 }
401
402 for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
403 a = bend->getAtomA()->getGlobalIndex();
404 b = bend->getAtomB()->getGlobalIndex();
405 c = bend->getAtomC()->getGlobalIndex();
406
407 exclude_.removePair(a, b);
408 exclude_.removePair(a, c);
409 exclude_.removePair(b, c);
410 }
411
412 for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
413 a = torsion->getAtomA()->getGlobalIndex();
414 b = torsion->getAtomB()->getGlobalIndex();
415 c = torsion->getAtomC()->getGlobalIndex();
416 d = torsion->getAtomD()->getGlobalIndex();
417
418 exclude_.removePair(a, b);
419 exclude_.removePair(a, c);
420 exclude_.removePair(a, d);
421 exclude_.removePair(b, c);
422 exclude_.removePair(b, d);
423 exclude_.removePair(c, d);
424 }
425
426 Molecule::RigidBodyIterator rbIter;
427 RigidBody* rb;
428 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
429 std::vector<Atom*> atoms = rb->getAtoms();
430 for (int i = 0; i < atoms.size() -1 ; ++i) {
431 for (int j = i + 1; j < atoms.size(); ++j) {
432 a = atoms[i]->getGlobalIndex();
433 b = atoms[j]->getGlobalIndex();
434 exclude_.removePair(a, b);
435 }
436 }
437 }
438
439 }
440
441
442 void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
443 int curStampId;
444
445 //index from 0
446 curStampId = moleculeStamps_.size();
447
448 moleculeStamps_.push_back(molStamp);
449 molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
450 }
451
452 void SimInfo::update() {
453
454 setupSimType();
455
456 #ifdef IS_MPI
457 setupFortranParallel();
458 #endif
459
460 setupFortranSim();
461
462 //setup fortran force field
463 /** @deprecate */
464 int isError = 0;
465 initFortranFF( &fInfo_.SIM_uses_RF , &isError );
466 if(isError){
467 sprintf( painCave.errMsg,
468 "ForceField error: There was an error initializing the forceField in fortran.\n" );
469 painCave.isFatal = 1;
470 simError();
471 }
472
473
474 setupCutoff();
475
476 calcNdf();
477 calcNdfRaw();
478 calcNdfTrans();
479
480 fortranInitialized_ = true;
481 }
482
483 std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
484 SimInfo::MoleculeIterator mi;
485 Molecule* mol;
486 Molecule::AtomIterator ai;
487 Atom* atom;
488 std::set<AtomType*> atomTypes;
489
490 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
491
492 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
493 atomTypes.insert(atom->getAtomType());
494 }
495
496 }
497
498 return atomTypes;
499 }
500
501 void SimInfo::setupSimType() {
502 std::set<AtomType*>::iterator i;
503 std::set<AtomType*> atomTypes;
504 atomTypes = getUniqueAtomTypes();
505
506 int useLennardJones = 0;
507 int useElectrostatic = 0;
508 int useEAM = 0;
509 int useCharge = 0;
510 int useDirectional = 0;
511 int useDipole = 0;
512 int useGayBerne = 0;
513 int useSticky = 0;
514 int useStickyPower = 0;
515 int useShape = 0;
516 int useFLARB = 0; //it is not in AtomType yet
517 int useDirectionalAtom = 0;
518 int useElectrostatics = 0;
519 //usePBC and useRF are from simParams
520 int usePBC = simParams_->getPBC();
521 int useRF = simParams_->getUseRF();
522
523 //loop over all of the atom types
524 for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
525 useLennardJones |= (*i)->isLennardJones();
526 useElectrostatic |= (*i)->isElectrostatic();
527 useEAM |= (*i)->isEAM();
528 useCharge |= (*i)->isCharge();
529 useDirectional |= (*i)->isDirectional();
530 useDipole |= (*i)->isDipole();
531 useGayBerne |= (*i)->isGayBerne();
532 useSticky |= (*i)->isSticky();
533 useStickyPower |= (*i)->isStickyPower();
534 useShape |= (*i)->isShape();
535 }
536
537 if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
538 useDirectionalAtom = 1;
539 }
540
541 if (useCharge || useDipole) {
542 useElectrostatics = 1;
543 }
544
545 #ifdef IS_MPI
546 int temp;
547
548 temp = usePBC;
549 MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
550
551 temp = useDirectionalAtom;
552 MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
553
554 temp = useLennardJones;
555 MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
556
557 temp = useElectrostatics;
558 MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
559
560 temp = useCharge;
561 MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
562
563 temp = useDipole;
564 MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
565
566 temp = useSticky;
567 MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
568
569 temp = useStickyPower;
570 MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
571
572 temp = useGayBerne;
573 MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
574
575 temp = useEAM;
576 MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
577
578 temp = useShape;
579 MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
580
581 temp = useFLARB;
582 MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
583
584 temp = useRF;
585 MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
586
587 #endif
588
589 fInfo_.SIM_uses_PBC = usePBC;
590 fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
591 fInfo_.SIM_uses_LennardJones = useLennardJones;
592 fInfo_.SIM_uses_Electrostatics = useElectrostatics;
593 fInfo_.SIM_uses_Charges = useCharge;
594 fInfo_.SIM_uses_Dipoles = useDipole;
595 fInfo_.SIM_uses_Sticky = useSticky;
596 fInfo_.SIM_uses_StickyPower = useStickyPower;
597 fInfo_.SIM_uses_GayBerne = useGayBerne;
598 fInfo_.SIM_uses_EAM = useEAM;
599 fInfo_.SIM_uses_Shapes = useShape;
600 fInfo_.SIM_uses_FLARB = useFLARB;
601 fInfo_.SIM_uses_RF = useRF;
602
603 if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
604
605 if (simParams_->haveDielectric()) {
606 fInfo_.dielect = simParams_->getDielectric();
607 } else {
608 sprintf(painCave.errMsg,
609 "SimSetup Error: No Dielectric constant was set.\n"
610 "\tYou are trying to use Reaction Field without"
611 "\tsetting a dielectric constant!\n");
612 painCave.isFatal = 1;
613 simError();
614 }
615
616 } else {
617 fInfo_.dielect = 0.0;
618 }
619
620 }
621
622 void SimInfo::setupFortranSim() {
623 int isError;
624 int nExclude;
625 std::vector<int> fortranGlobalGroupMembership;
626
627 nExclude = exclude_.getSize();
628 isError = 0;
629
630 //globalGroupMembership_ is filled by SimCreator
631 for (int i = 0; i < nGlobalAtoms_; i++) {
632 fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
633 }
634
635 //calculate mass ratio of cutoff group
636 std::vector<double> mfact;
637 SimInfo::MoleculeIterator mi;
638 Molecule* mol;
639 Molecule::CutoffGroupIterator ci;
640 CutoffGroup* cg;
641 Molecule::AtomIterator ai;
642 Atom* atom;
643 double totalMass;
644
645 //to avoid memory reallocation, reserve enough space for mfact
646 mfact.reserve(getNCutoffGroups());
647
648 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
649 for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
650
651 totalMass = cg->getMass();
652 for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
653 mfact.push_back(atom->getMass()/totalMass);
654 }
655
656 }
657 }
658
659 //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
660 std::vector<int> identArray;
661
662 //to avoid memory reallocation, reserve enough space identArray
663 identArray.reserve(getNAtoms());
664
665 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
666 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
667 identArray.push_back(atom->getIdent());
668 }
669 }
670
671 //fill molMembershipArray
672 //molMembershipArray is filled by SimCreator
673 std::vector<int> molMembershipArray(nGlobalAtoms_);
674 for (int i = 0; i < nGlobalAtoms_; i++) {
675 molMembershipArray[i] = globalMolMembership_[i] + 1;
676 }
677
678 //setup fortran simulation
679 int nGlobalExcludes = 0;
680 int* globalExcludes = NULL;
681 int* excludeList = exclude_.getExcludeList();
682 setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
683 &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
684 &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
685
686 if( isError ){
687
688 sprintf( painCave.errMsg,
689 "There was an error setting the simulation information in fortran.\n" );
690 painCave.isFatal = 1;
691 painCave.severity = OOPSE_ERROR;
692 simError();
693 }
694
695 #ifdef IS_MPI
696 sprintf( checkPointMsg,
697 "succesfully sent the simulation information to fortran.\n");
698 MPIcheckPoint();
699 #endif // is_mpi
700 }
701
702
703 #ifdef IS_MPI
704 void SimInfo::setupFortranParallel() {
705
706 //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
707 std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
708 std::vector<int> localToGlobalCutoffGroupIndex;
709 SimInfo::MoleculeIterator mi;
710 Molecule::AtomIterator ai;
711 Molecule::CutoffGroupIterator ci;
712 Molecule* mol;
713 Atom* atom;
714 CutoffGroup* cg;
715 mpiSimData parallelData;
716 int isError;
717
718 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
719
720 //local index(index in DataStorge) of atom is important
721 for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
722 localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
723 }
724
725 //local index of cutoff group is trivial, it only depends on the order of travesing
726 for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
727 localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
728 }
729
730 }
731
732 //fill up mpiSimData struct
733 parallelData.nMolGlobal = getNGlobalMolecules();
734 parallelData.nMolLocal = getNMolecules();
735 parallelData.nAtomsGlobal = getNGlobalAtoms();
736 parallelData.nAtomsLocal = getNAtoms();
737 parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
738 parallelData.nGroupsLocal = getNCutoffGroups();
739 parallelData.myNode = worldRank;
740 MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
741
742 //pass mpiSimData struct and index arrays to fortran
743 setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
744 &localToGlobalAtomIndex[0], &(parallelData.nGroupsLocal),
745 &localToGlobalCutoffGroupIndex[0], &isError);
746
747 if (isError) {
748 sprintf(painCave.errMsg,
749 "mpiRefresh errror: fortran didn't like something we gave it.\n");
750 painCave.isFatal = 1;
751 simError();
752 }
753
754 sprintf(checkPointMsg, " mpiRefresh successful.\n");
755 MPIcheckPoint();
756
757
758 }
759
760 #endif
761
762 double SimInfo::calcMaxCutoffRadius() {
763
764
765 std::set<AtomType*> atomTypes;
766 std::set<AtomType*>::iterator i;
767 std::vector<double> cutoffRadius;
768
769 //get the unique atom types
770 atomTypes = getUniqueAtomTypes();
771
772 //query the max cutoff radius among these atom types
773 for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
774 cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
775 }
776
777 double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
778 #ifdef IS_MPI
779 //pick the max cutoff radius among the processors
780 #endif
781
782 return maxCutoffRadius;
783 }
784
785 void SimInfo::getCutoff(double& rcut, double& rsw) {
786
787 if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
788
789 if (!simParams_->haveRcut()){
790 sprintf(painCave.errMsg,
791 "SimCreator Warning: No value was set for the cutoffRadius.\n"
792 "\tOOPSE will use a default value of 15.0 angstroms"
793 "\tfor the cutoffRadius.\n");
794 painCave.isFatal = 0;
795 simError();
796 rcut = 15.0;
797 } else{
798 rcut = simParams_->getRcut();
799 }
800
801 if (!simParams_->haveRsw()){
802 sprintf(painCave.errMsg,
803 "SimCreator Warning: No value was set for switchingRadius.\n"
804 "\tOOPSE will use a default value of\n"
805 "\t0.95 * cutoffRadius for the switchingRadius\n");
806 painCave.isFatal = 0;
807 simError();
808 rsw = 0.95 * rcut;
809 } else{
810 rsw = simParams_->getRsw();
811 }
812
813 } else {
814 // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
815 //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
816
817 if (simParams_->haveRcut()) {
818 rcut = simParams_->getRcut();
819 } else {
820 //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
821 rcut = calcMaxCutoffRadius();
822 }
823
824 if (simParams_->haveRsw()) {
825 rsw = simParams_->getRsw();
826 } else {
827 rsw = rcut;
828 }
829
830 }
831 }
832
833 void SimInfo::setupCutoff() {
834 getCutoff(rcut_, rsw_);
835 double rnblist = rcut_ + 1; // skin of neighbor list
836
837 //Pass these cutoff radius etc. to fortran. This function should be called once and only once
838 notifyFortranCutoffs(&rcut_, &rsw_, &rnblist);
839 }
840
841 void SimInfo::addProperty(GenericData* genData) {
842 properties_.addProperty(genData);
843 }
844
845 void SimInfo::removeProperty(const std::string& propName) {
846 properties_.removeProperty(propName);
847 }
848
849 void SimInfo::clearProperties() {
850 properties_.clearProperties();
851 }
852
853 std::vector<std::string> SimInfo::getPropertyNames() {
854 return properties_.getPropertyNames();
855 }
856
857 std::vector<GenericData*> SimInfo::getProperties() {
858 return properties_.getProperties();
859 }
860
861 GenericData* SimInfo::getPropertyByName(const std::string& propName) {
862 return properties_.getPropertyByName(propName);
863 }
864
865 void SimInfo::setSnapshotManager(SnapshotManager* sman) {
866 if (sman_ == sman) {
867 return;
868 }
869 delete sman_;
870 sman_ = sman;
871
872 Molecule* mol;
873 RigidBody* rb;
874 Atom* atom;
875 SimInfo::MoleculeIterator mi;
876 Molecule::RigidBodyIterator rbIter;
877 Molecule::AtomIterator atomIter;;
878
879 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
880
881 for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
882 atom->setSnapshotManager(sman_);
883 }
884
885 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
886 rb->setSnapshotManager(sman_);
887 }
888 }
889
890 }
891
892 Vector3d SimInfo::getComVel(){
893 SimInfo::MoleculeIterator i;
894 Molecule* mol;
895
896 Vector3d comVel(0.0);
897 double totalMass = 0.0;
898
899
900 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
901 double mass = mol->getMass();
902 totalMass += mass;
903 comVel += mass * mol->getComVel();
904 }
905
906 #ifdef IS_MPI
907 double tmpMass = totalMass;
908 Vector3d tmpComVel(comVel);
909 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
910 MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
911 #endif
912
913 comVel /= totalMass;
914
915 return comVel;
916 }
917
918 Vector3d SimInfo::getCom(){
919 SimInfo::MoleculeIterator i;
920 Molecule* mol;
921
922 Vector3d com(0.0);
923 double totalMass = 0.0;
924
925 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
926 double mass = mol->getMass();
927 totalMass += mass;
928 com += mass * mol->getCom();
929 }
930
931 #ifdef IS_MPI
932 double tmpMass = totalMass;
933 Vector3d tmpCom(com);
934 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
935 MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
936 #endif
937
938 com /= totalMass;
939
940 return com;
941
942 }
943
944 std::ostream& operator <<(std::ostream& o, SimInfo& info) {
945
946 return o;
947 }
948
949
950 /*
951 Returns center of mass and center of mass velocity in one function call.
952 */
953
954 void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
955 SimInfo::MoleculeIterator i;
956 Molecule* mol;
957
958
959 double totalMass = 0.0;
960
961
962 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
963 double mass = mol->getMass();
964 totalMass += mass;
965 com += mass * mol->getCom();
966 comVel += mass * mol->getComVel();
967 }
968
969 #ifdef IS_MPI
970 double tmpMass = totalMass;
971 Vector3d tmpCom(com);
972 Vector3d tmpComVel(comVel);
973 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
974 MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
975 MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
976 #endif
977
978 com /= totalMass;
979 comVel /= totalMass;
980 }
981
982 /*
983 Return intertia tensor for entire system and angular momentum Vector.
984 */
985
986 void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
987
988
989 double xx = 0.0;
990 double yy = 0.0;
991 double zz = 0.0;
992 double xy = 0.0;
993 double xz = 0.0;
994 double yz = 0.0;
995 Vector3d com(0.0);
996 Vector3d comVel(0.0);
997
998 getComAll(com, comVel);
999
1000 SimInfo::MoleculeIterator i;
1001 Molecule* mol;
1002
1003 Vector3d thisq(0.0);
1004 Vector3d thisv(0.0);
1005
1006 double thisMass = 0.0;
1007
1008
1009
1010
1011 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1012
1013 thisq = mol->getCom()-com;
1014 thisv = mol->getComVel()-comVel;
1015 thisMass = mol->getMass();
1016 // Compute moment of intertia coefficients.
1017 xx += thisq[0]*thisq[0]*thisMass;
1018 yy += thisq[1]*thisq[1]*thisMass;
1019 zz += thisq[2]*thisq[2]*thisMass;
1020
1021 // compute products of intertia
1022 xy += thisq[0]*thisq[1]*thisMass;
1023 xz += thisq[0]*thisq[2]*thisMass;
1024 yz += thisq[1]*thisq[2]*thisMass;
1025
1026 angularMomentum += cross( thisq, thisv ) * thisMass;
1027
1028 }
1029
1030
1031 inertiaTensor(0,0) = yy + zz;
1032 inertiaTensor(0,1) = -xy;
1033 inertiaTensor(0,2) = -xz;
1034 inertiaTensor(1,0) = -xy;
1035 inertiaTensor(2,0) = xx + zz;
1036 inertiaTensor(1,2) = -yz;
1037 inertiaTensor(2,0) = -xz;
1038 inertiaTensor(2,1) = -yz;
1039 inertiaTensor(2,2) = xx + yy;
1040
1041 #ifdef IS_MPI
1042 Mat3x3d tmpI(inertiaTensor);
1043 Vector3d tmpAngMom;
1044 MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1045 MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1046 #endif
1047
1048 return;
1049 }
1050
1051 //Returns the angular momentum of the system
1052 Vector3d SimInfo::getAngularMomentum(){
1053
1054 Vector3d com(0.0);
1055 Vector3d comVel(0.0);
1056 Vector3d angularMomentum(0.0);
1057
1058 getComAll(com,comVel);
1059
1060 SimInfo::MoleculeIterator i;
1061 Molecule* mol;
1062
1063 Vector3d thisq(0.0);
1064 Vector3d thisv(0.0);
1065
1066 double thisMass = 0.0;
1067
1068 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1069 thisq = mol->getCom()-com;
1070 thisv = mol->getComVel()-comVel;
1071 thisMass = mol->getMass();
1072 angularMomentum += cross( thisq, thisv ) * thisMass;
1073
1074 }
1075
1076 #ifdef IS_MPI
1077 Vector3d tmpAngMom;
1078 MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1079 #endif
1080
1081 return angularMomentum;
1082 }
1083
1084
1085 }//end namespace oopse
1086