ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-3.0/src/brains/SimInfo.cpp
(Generate patch)

Comparing trunk/OOPSE-3.0/src/brains/SimInfo.cpp (file contents):
Revision 1636 by chrisfen, Fri Oct 22 22:54:01 2004 UTC vs.
Revision 2279 by chrisfen, Tue Aug 30 18:23:50 2005 UTC

# Line 1 | Line 1
1 < #include <stdlib.h>
2 < #include <string.h>
3 < #include <math.h>
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Acknowledgement of the program authors must be made in any
10 > *    publication of scientific results based in part on use of the
11 > *    program.  An acceptable form of acknowledgement is citation of
12 > *    the article in which the program was described (Matthew
13 > *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 > *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 > *    Parallel Simulation Engine for Molecular Dynamics,"
16 > *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 > *
18 > * 2. Redistributions of source code must retain the above copyright
19 > *    notice, this list of conditions and the following disclaimer.
20 > *
21 > * 3. Redistributions in binary form must reproduce the above copyright
22 > *    notice, this list of conditions and the following disclaimer in the
23 > *    documentation and/or other materials provided with the
24 > *    distribution.
25 > *
26 > * This software is provided "AS IS," without a warranty of any
27 > * kind. All express or implied conditions, representations and
28 > * warranties, including any implied warranty of merchantability,
29 > * fitness for a particular purpose or non-infringement, are hereby
30 > * excluded.  The University of Notre Dame and its licensors shall not
31 > * be liable for any damages suffered by licensee as a result of
32 > * using, modifying or distributing the software or its
33 > * derivatives. In no event will the University of Notre Dame or its
34 > * licensors be liable for any lost revenue, profit or data, or for
35 > * direct, indirect, special, consequential, incidental or punitive
36 > * damages, however caused and regardless of the theory of liability,
37 > * arising out of the use of or inability to use software, even if the
38 > * University of Notre Dame has been advised of the possibility of
39 > * such damages.
40 > */
41 >
42 > /**
43 > * @file SimInfo.cpp
44 > * @author    tlin
45 > * @date  11/02/2004
46 > * @version 1.0
47 > */
48  
49 < #include <iostream>
50 < using namespace std;
49 > #include <algorithm>
50 > #include <set>
51  
52   #include "brains/SimInfo.hpp"
53 < #define __C
54 < #include "brains/fSimulation.h"
55 < #include "utils/simError.h"
12 < #include "UseTheForce/DarkSide/simulation_interface.h"
53 > #include "math/Vector3.hpp"
54 > #include "primitives/Molecule.hpp"
55 > #include "UseTheForce/doForces_interface.h"
56   #include "UseTheForce/notifyCutoffs_interface.h"
57 + #include "utils/MemoryUtils.hpp"
58 + #include "utils/simError.h"
59 + #include "selection/SelectionManager.hpp"
60  
15 //#include "UseTheForce/fortranWrappers.hpp"
16
17 #include "math/MatVec3.h"
18
61   #ifdef IS_MPI
62 < #include "brains/mpiSimulation.hpp"
63 < #endif
62 > #include "UseTheForce/mpiComponentPlan.h"
63 > #include "UseTheForce/DarkSide/simParallel_interface.h"
64 > #endif
65  
66 < inline double roundMe( double x ){
24 <  return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
25 < }
26 <          
27 < inline double min( double a, double b ){
28 <  return (a < b ) ? a : b;
29 < }
66 > namespace oopse {
67  
68 < SimInfo* currentInfo;
68 >  SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
69 >                   ForceField* ff, Globals* simParams) :
70 >    stamps_(stamps), forceField_(ff), simParams_(simParams),
71 >    ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
72 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
73 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
74 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
75 >    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
76 >    sman_(NULL), fortranInitialized_(false) {
77  
78 < SimInfo::SimInfo(){
78 >            
79 >      std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
80 >      MoleculeStamp* molStamp;
81 >      int nMolWithSameStamp;
82 >      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
83 >      int nGroups = 0;          //total cutoff groups defined in meta-data file
84 >      CutoffGroupStamp* cgStamp;    
85 >      RigidBodyStamp* rbStamp;
86 >      int nRigidAtoms = 0;
87 >    
88 >      for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
89 >        molStamp = i->first;
90 >        nMolWithSameStamp = i->second;
91 >        
92 >        addMoleculeStamp(molStamp, nMolWithSameStamp);
93  
94 <  n_constraints = 0;
95 <  nZconstraints = 0;
37 <  n_oriented = 0;
38 <  n_dipoles = 0;
39 <  ndf = 0;
40 <  ndfRaw = 0;
41 <  nZconstraints = 0;
42 <  the_integrator = NULL;
43 <  setTemp = 0;
44 <  thermalTime = 0.0;
45 <  currentTime = 0.0;
46 <  rCut = 0.0;
47 <  rSw = 0.0;
94 >        //calculate atoms in molecules
95 >        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
96  
49  haveRcut = 0;
50  haveRsw = 0;
51  boxIsInit = 0;
52  
53  resetTime = 1e99;
97  
98 <  orthoRhombic = 0;
99 <  orthoTolerance = 1E-6;
100 <  useInitXSstate = true;
98 >        //calculate atoms in cutoff groups
99 >        int nAtomsInGroups = 0;
100 >        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
101 >        
102 >        for (int j=0; j < nCutoffGroupsInStamp; j++) {
103 >          cgStamp = molStamp->getCutoffGroup(j);
104 >          nAtomsInGroups += cgStamp->getNMembers();
105 >        }
106  
107 <  usePBC = 0;
108 <  useDirectionalAtoms = 0;
61 <  useLennardJones = 0;
62 <  useElectrostatics = 0;
63 <  useCharges = 0;
64 <  useDipoles = 0;
65 <  useSticky = 0;
66 <  useGayBerne = 0;
67 <  useEAM = 0;
68 <  useShapes = 0;
69 <  useFLARB = 0;
107 >        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
108 >        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
109  
110 <  useSolidThermInt = 0;
111 <  useLiquidThermInt = 0;
110 >        //calculate atoms in rigid bodies
111 >        int nAtomsInRigidBodies = 0;
112 >        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
113 >        
114 >        for (int j=0; j < nRigidBodiesInStamp; j++) {
115 >          rbStamp = molStamp->getRigidBody(j);
116 >          nAtomsInRigidBodies += rbStamp->getNMembers();
117 >        }
118  
119 <  haveCutoffGroups = false;
119 >        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
120 >        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
121 >        
122 >      }
123  
124 <  excludes = Exclude::Instance();
124 >      //every free atom (atom does not belong to cutoff groups) is a cutoff group
125 >      //therefore the total number of cutoff groups in the system is equal to
126 >      //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
127 >      //file plus the number of cutoff groups defined in meta-data file
128 >      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
129  
130 <  myConfiguration = new SimState();
130 >      //every free atom (atom does not belong to rigid bodies) is an integrable object
131 >      //therefore the total number of  integrable objects in the system is equal to
132 >      //the total number of atoms minus number of atoms belong to  rigid body defined in meta-data
133 >      //file plus the number of  rigid bodies defined in meta-data file
134 >      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
135  
136 <  has_minimizer = false;
81 <  the_minimizer =NULL;
136 >      nGlobalMols_ = molStampIds_.size();
137  
138 <  ngroup = 0;
138 > #ifdef IS_MPI    
139 >      molToProcMap_.resize(nGlobalMols_);
140 > #endif
141  
142 < }
142 >    }
143  
144 +  SimInfo::~SimInfo() {
145 +    std::map<int, Molecule*>::iterator i;
146 +    for (i = molecules_.begin(); i != molecules_.end(); ++i) {
147 +      delete i->second;
148 +    }
149 +    molecules_.clear();
150 +      
151 +    delete stamps_;
152 +    delete sman_;
153 +    delete simParams_;
154 +    delete forceField_;
155 +  }
156  
157 < SimInfo::~SimInfo(){
157 >  int SimInfo::getNGlobalConstraints() {
158 >    int nGlobalConstraints;
159 > #ifdef IS_MPI
160 >    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
161 >                  MPI_COMM_WORLD);    
162 > #else
163 >    nGlobalConstraints =  nConstraints_;
164 > #endif
165 >    return nGlobalConstraints;
166 >  }
167  
168 <  delete myConfiguration;
168 >  bool SimInfo::addMolecule(Molecule* mol) {
169 >    MoleculeIterator i;
170  
171 <  map<string, GenericData*>::iterator i;
172 <  
94 <  for(i = properties.begin(); i != properties.end(); i++)
95 <    delete (*i).second;
171 >    i = molecules_.find(mol->getGlobalIndex());
172 >    if (i == molecules_.end() ) {
173  
174 < }
175 <
176 < void SimInfo::setBox(double newBox[3]) {
177 <  
178 <  int i, j;
179 <  double tempMat[3][3];
180 <
181 <  for(i=0; i<3; i++)
182 <    for (j=0; j<3; j++) tempMat[i][j] = 0.0;;
174 >      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
175 >        
176 >      nAtoms_ += mol->getNAtoms();
177 >      nBonds_ += mol->getNBonds();
178 >      nBends_ += mol->getNBends();
179 >      nTorsions_ += mol->getNTorsions();
180 >      nRigidBodies_ += mol->getNRigidBodies();
181 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
182 >      nCutoffGroups_ += mol->getNCutoffGroups();
183 >      nConstraints_ += mol->getNConstraintPairs();
184  
185 <  tempMat[0][0] = newBox[0];
186 <  tempMat[1][1] = newBox[1];
187 <  tempMat[2][2] = newBox[2];
185 >      addExcludePairs(mol);
186 >        
187 >      return true;
188 >    } else {
189 >      return false;
190 >    }
191 >  }
192  
193 <  setBoxM( tempMat );
193 >  bool SimInfo::removeMolecule(Molecule* mol) {
194 >    MoleculeIterator i;
195 >    i = molecules_.find(mol->getGlobalIndex());
196  
197 < }
197 >    if (i != molecules_.end() ) {
198  
199 < void SimInfo::setBoxM( double theBox[3][3] ){
200 <  
201 <  int i, j;
202 <  double FortranHmat[9]; // to preserve compatibility with Fortran the
203 <                         // ordering in the array is as follows:
204 <                         // [ 0 3 6 ]
205 <                         // [ 1 4 7 ]
206 <                         // [ 2 5 8 ]
207 <  double FortranHmatInv[9]; // the inverted Hmat (for Fortran);
199 >      assert(mol == i->second);
200 >        
201 >      nAtoms_ -= mol->getNAtoms();
202 >      nBonds_ -= mol->getNBonds();
203 >      nBends_ -= mol->getNBends();
204 >      nTorsions_ -= mol->getNTorsions();
205 >      nRigidBodies_ -= mol->getNRigidBodies();
206 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
207 >      nCutoffGroups_ -= mol->getNCutoffGroups();
208 >      nConstraints_ -= mol->getNConstraintPairs();
209  
210 <  if( !boxIsInit ) boxIsInit = 1;
210 >      removeExcludePairs(mol);
211 >      molecules_.erase(mol->getGlobalIndex());
212  
213 <  for(i=0; i < 3; i++)
214 <    for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j];
215 <  
216 <  calcBoxL();
217 <  calcHmatInv();
132 <
133 <  for(i=0; i < 3; i++) {
134 <    for (j=0; j < 3; j++) {
135 <      FortranHmat[3*j + i] = Hmat[i][j];
136 <      FortranHmatInv[3*j + i] = HmatInv[i][j];
213 >      delete mol;
214 >        
215 >      return true;
216 >    } else {
217 >      return false;
218      }
138  }
219  
140  setFortranBox(FortranHmat, FortranHmatInv, &orthoRhombic);
141
142 }
143
220  
221 < void SimInfo::getBoxM (double theBox[3][3]) {
221 >  }    
222  
223 <  int i, j;
224 <  for(i=0; i<3; i++)
225 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j];
226 < }
223 >        
224 >  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
225 >    i = molecules_.begin();
226 >    return i == molecules_.end() ? NULL : i->second;
227 >  }    
228  
229 +  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
230 +    ++i;
231 +    return i == molecules_.end() ? NULL : i->second;    
232 +  }
233  
153 void SimInfo::scaleBox(double scale) {
154  double theBox[3][3];
155  int i, j;
234  
235 <  // cerr << "Scaling box by " << scale << "\n";
235 >  void SimInfo::calcNdf() {
236 >    int ndf_local;
237 >    MoleculeIterator i;
238 >    std::vector<StuntDouble*>::iterator j;
239 >    Molecule* mol;
240 >    StuntDouble* integrableObject;
241  
242 <  for(i=0; i<3; i++)
243 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale;
242 >    ndf_local = 0;
243 >    
244 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
245 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
246 >           integrableObject = mol->nextIntegrableObject(j)) {
247  
248 <  setBoxM(theBox);
248 >        ndf_local += 3;
249  
250 < }
250 >        if (integrableObject->isDirectional()) {
251 >          if (integrableObject->isLinear()) {
252 >            ndf_local += 2;
253 >          } else {
254 >            ndf_local += 3;
255 >          }
256 >        }
257 >            
258 >      }//end for (integrableObject)
259 >    }// end for (mol)
260 >    
261 >    // n_constraints is local, so subtract them on each processor
262 >    ndf_local -= nConstraints_;
263  
264 < void SimInfo::calcHmatInv( void ) {
265 <  
266 <  int oldOrtho;
267 <  int i,j;
268 <  double smallDiag;
171 <  double tol;
172 <  double sanity[3][3];
264 > #ifdef IS_MPI
265 >    MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
266 > #else
267 >    ndf_ = ndf_local;
268 > #endif
269  
270 <  invertMat3( Hmat, HmatInv );
270 >    // nZconstraints_ is global, as are the 3 COM translations for the
271 >    // entire system:
272 >    ndf_ = ndf_ - 3 - nZconstraint_;
273  
274 <  // check to see if Hmat is orthorhombic
177 <  
178 <  oldOrtho = orthoRhombic;
274 >  }
275  
276 <  smallDiag = fabs(Hmat[0][0]);
277 <  if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]);
182 <  if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]);
183 <  tol = smallDiag * orthoTolerance;
276 >  void SimInfo::calcNdfRaw() {
277 >    int ndfRaw_local;
278  
279 <  orthoRhombic = 1;
280 <  
281 <  for (i = 0; i < 3; i++ ) {
282 <    for (j = 0 ; j < 3; j++) {
283 <      if (i != j) {
284 <        if (orthoRhombic) {
285 <          if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0;
286 <        }        
279 >    MoleculeIterator i;
280 >    std::vector<StuntDouble*>::iterator j;
281 >    Molecule* mol;
282 >    StuntDouble* integrableObject;
283 >
284 >    // Raw degrees of freedom that we have to set
285 >    ndfRaw_local = 0;
286 >    
287 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
288 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
289 >           integrableObject = mol->nextIntegrableObject(j)) {
290 >
291 >        ndfRaw_local += 3;
292 >
293 >        if (integrableObject->isDirectional()) {
294 >          if (integrableObject->isLinear()) {
295 >            ndfRaw_local += 2;
296 >          } else {
297 >            ndfRaw_local += 3;
298 >          }
299 >        }
300 >            
301        }
302      }
303 +    
304 + #ifdef IS_MPI
305 +    MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
306 + #else
307 +    ndfRaw_ = ndfRaw_local;
308 + #endif
309    }
310  
311 <  if( oldOrtho != orthoRhombic ){
312 <    
199 <    if( orthoRhombic ) {
200 <      sprintf( painCave.errMsg,
201 <               "OOPSE is switching from the default Non-Orthorhombic\n"
202 <               "\tto the faster Orthorhombic periodic boundary computations.\n"
203 <               "\tThis is usually a good thing, but if you wan't the\n"
204 <               "\tNon-Orthorhombic computations, make the orthoBoxTolerance\n"
205 <               "\tvariable ( currently set to %G ) smaller.\n",
206 <               orthoTolerance);
207 <      painCave.severity = OOPSE_INFO;
208 <      simError();
209 <    }
210 <    else {
211 <      sprintf( painCave.errMsg,
212 <               "OOPSE is switching from the faster Orthorhombic to the more\n"
213 <               "\tflexible Non-Orthorhombic periodic boundary computations.\n"
214 <               "\tThis is usually because the box has deformed under\n"
215 <               "\tNPTf integration. If you wan't to live on the edge with\n"
216 <               "\tthe Orthorhombic computations, make the orthoBoxTolerance\n"
217 <               "\tvariable ( currently set to %G ) larger.\n",
218 <               orthoTolerance);
219 <      painCave.severity = OOPSE_WARNING;
220 <      simError();
221 <    }
222 <  }
223 < }
311 >  void SimInfo::calcNdfTrans() {
312 >    int ndfTrans_local;
313  
314 < void SimInfo::calcBoxL( void ){
314 >    ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
315  
227  double dx, dy, dz, dsq;
316  
317 <  // boxVol = Determinant of Hmat
317 > #ifdef IS_MPI
318 >    MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
319 > #else
320 >    ndfTrans_ = ndfTrans_local;
321 > #endif
322  
323 <  boxVol = matDet3( Hmat );
323 >    ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
324 >
325 >  }
326  
327 <  // boxLx
328 <  
329 <  dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0];
330 <  dsq = dx*dx + dy*dy + dz*dz;
331 <  boxL[0] = sqrt( dsq );
332 <  //maxCutoff = 0.5 * boxL[0];
327 >  void SimInfo::addExcludePairs(Molecule* mol) {
328 >    std::vector<Bond*>::iterator bondIter;
329 >    std::vector<Bend*>::iterator bendIter;
330 >    std::vector<Torsion*>::iterator torsionIter;
331 >    Bond* bond;
332 >    Bend* bend;
333 >    Torsion* torsion;
334 >    int a;
335 >    int b;
336 >    int c;
337 >    int d;
338 >    
339 >    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
340 >      a = bond->getAtomA()->getGlobalIndex();
341 >      b = bond->getAtomB()->getGlobalIndex();        
342 >      exclude_.addPair(a, b);
343 >    }
344  
345 <  // boxLy
346 <  
347 <  dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1];
348 <  dsq = dx*dx + dy*dy + dz*dz;
244 <  boxL[1] = sqrt( dsq );
245 <  //if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1];
345 >    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
346 >      a = bend->getAtomA()->getGlobalIndex();
347 >      b = bend->getAtomB()->getGlobalIndex();        
348 >      c = bend->getAtomC()->getGlobalIndex();
349  
350 +      exclude_.addPair(a, b);
351 +      exclude_.addPair(a, c);
352 +      exclude_.addPair(b, c);        
353 +    }
354  
355 <  // boxLz
356 <  
357 <  dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2];
358 <  dsq = dx*dx + dy*dy + dz*dz;
359 <  boxL[2] = sqrt( dsq );
253 <  //if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2];
355 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
356 >      a = torsion->getAtomA()->getGlobalIndex();
357 >      b = torsion->getAtomB()->getGlobalIndex();        
358 >      c = torsion->getAtomC()->getGlobalIndex();        
359 >      d = torsion->getAtomD()->getGlobalIndex();        
360  
361 <  //calculate the max cutoff
362 <  maxCutoff =  calcMaxCutOff();
363 <  
364 <  checkCutOffs();
361 >      exclude_.addPair(a, b);
362 >      exclude_.addPair(a, c);
363 >      exclude_.addPair(a, d);
364 >      exclude_.addPair(b, c);
365 >      exclude_.addPair(b, d);
366 >      exclude_.addPair(c, d);        
367 >    }
368  
369 < }
369 >    Molecule::RigidBodyIterator rbIter;
370 >    RigidBody* rb;
371 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
372 >      std::vector<Atom*> atoms = rb->getAtoms();
373 >      for (int i = 0; i < atoms.size() -1 ; ++i) {
374 >        for (int j = i + 1; j < atoms.size(); ++j) {
375 >          a = atoms[i]->getGlobalIndex();
376 >          b = atoms[j]->getGlobalIndex();
377 >          exclude_.addPair(a, b);
378 >        }
379 >      }
380 >    }        
381  
382 +  }
383  
384 < double SimInfo::calcMaxCutOff(){
385 <
386 <  double ri[3], rj[3], rk[3];
387 <  double rij[3], rjk[3], rki[3];
388 <  double minDist;
389 <
390 <  ri[0] = Hmat[0][0];
391 <  ri[1] = Hmat[1][0];
392 <  ri[2] = Hmat[2][0];
393 <
394 <  rj[0] = Hmat[0][1];
274 <  rj[1] = Hmat[1][1];
275 <  rj[2] = Hmat[2][1];
276 <
277 <  rk[0] = Hmat[0][2];
278 <  rk[1] = Hmat[1][2];
279 <  rk[2] = Hmat[2][2];
384 >  void SimInfo::removeExcludePairs(Molecule* mol) {
385 >    std::vector<Bond*>::iterator bondIter;
386 >    std::vector<Bend*>::iterator bendIter;
387 >    std::vector<Torsion*>::iterator torsionIter;
388 >    Bond* bond;
389 >    Bend* bend;
390 >    Torsion* torsion;
391 >    int a;
392 >    int b;
393 >    int c;
394 >    int d;
395      
396 <  crossProduct3(ri, rj, rij);
397 <  distXY = dotProduct3(rk,rij) / norm3(rij);
396 >    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
397 >      a = bond->getAtomA()->getGlobalIndex();
398 >      b = bond->getAtomB()->getGlobalIndex();        
399 >      exclude_.removePair(a, b);
400 >    }
401  
402 <  crossProduct3(rj,rk, rjk);
403 <  distYZ = dotProduct3(ri,rjk) / norm3(rjk);
402 >    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
403 >      a = bend->getAtomA()->getGlobalIndex();
404 >      b = bend->getAtomB()->getGlobalIndex();        
405 >      c = bend->getAtomC()->getGlobalIndex();
406  
407 <  crossProduct3(rk,ri, rki);
408 <  distZX = dotProduct3(rj,rki) / norm3(rki);
407 >      exclude_.removePair(a, b);
408 >      exclude_.removePair(a, c);
409 >      exclude_.removePair(b, c);        
410 >    }
411  
412 <  minDist = min(min(distXY, distYZ), distZX);
413 <  return minDist/2;
414 <  
415 < }
412 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
413 >      a = torsion->getAtomA()->getGlobalIndex();
414 >      b = torsion->getAtomB()->getGlobalIndex();        
415 >      c = torsion->getAtomC()->getGlobalIndex();        
416 >      d = torsion->getAtomD()->getGlobalIndex();        
417  
418 < void SimInfo::wrapVector( double thePos[3] ){
418 >      exclude_.removePair(a, b);
419 >      exclude_.removePair(a, c);
420 >      exclude_.removePair(a, d);
421 >      exclude_.removePair(b, c);
422 >      exclude_.removePair(b, d);
423 >      exclude_.removePair(c, d);        
424 >    }
425  
426 <  int i;
427 <  double scaled[3];
426 >    Molecule::RigidBodyIterator rbIter;
427 >    RigidBody* rb;
428 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
429 >      std::vector<Atom*> atoms = rb->getAtoms();
430 >      for (int i = 0; i < atoms.size() -1 ; ++i) {
431 >        for (int j = i + 1; j < atoms.size(); ++j) {
432 >          a = atoms[i]->getGlobalIndex();
433 >          b = atoms[j]->getGlobalIndex();
434 >          exclude_.removePair(a, b);
435 >        }
436 >      }
437 >    }        
438  
300  if( !orthoRhombic ){
301    // calc the scaled coordinates.
302  
303
304    matVecMul3(HmatInv, thePos, scaled);
305    
306    for(i=0; i<3; i++)
307      scaled[i] -= roundMe(scaled[i]);
308    
309    // calc the wrapped real coordinates from the wrapped scaled coordinates
310    
311    matVecMul3(Hmat, scaled, thePos);
312
439    }
314  else{
315    // calc the scaled coordinates.
316    
317    for(i=0; i<3; i++)
318      scaled[i] = thePos[i]*HmatInv[i][i];
319    
320    // wrap the scaled coordinates
321    
322    for(i=0; i<3; i++)
323      scaled[i] -= roundMe(scaled[i]);
324    
325    // calc the wrapped real coordinates from the wrapped scaled coordinates
326    
327    for(i=0; i<3; i++)
328      thePos[i] = scaled[i]*Hmat[i][i];
329  }
330    
331 }
440  
441  
442 < int SimInfo::getNDF(){
443 <  int ndf_local;
442 >  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
443 >    int curStampId;
444  
445 <  ndf_local = 0;
446 <  
447 <  for(int i = 0; i < integrableObjects.size(); i++){
448 <    ndf_local += 3;
449 <    if (integrableObjects[i]->isDirectional()) {
342 <      if (integrableObjects[i]->isLinear())
343 <        ndf_local += 2;
344 <      else
345 <        ndf_local += 3;
346 <    }
445 >    //index from 0
446 >    curStampId = moleculeStamps_.size();
447 >
448 >    moleculeStamps_.push_back(molStamp);
449 >    molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
450    }
451  
452 <  // n_constraints is local, so subtract them on each processor:
452 >  void SimInfo::update() {
453  
454 <  ndf_local -= n_constraints;
454 >    setupSimType();
455  
456   #ifdef IS_MPI
457 <  MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
355 < #else
356 <  ndf = ndf_local;
457 >    setupFortranParallel();
458   #endif
459  
460 <  // nZconstraints is global, as are the 3 COM translations for the
360 <  // entire system:
460 >    setupFortranSim();
461  
462 <  ndf = ndf - 3 - nZconstraints;
462 >    //setup fortran force field
463 >    /** @deprecate */    
464 >    int isError = 0;
465 >    initFortranFF( &fInfo_.SIM_uses_RF, &fInfo_.SIM_uses_UW,
466 >                   &fInfo_.SIM_uses_DW, &isError );
467 >    if(isError){
468 >      sprintf( painCave.errMsg,
469 >               "ForceField error: There was an error initializing the forceField in fortran.\n" );
470 >      painCave.isFatal = 1;
471 >      simError();
472 >    }
473 >  
474 >    
475 >    setupCutoff();
476  
477 <  return ndf;
478 < }
477 >    calcNdf();
478 >    calcNdfRaw();
479 >    calcNdfTrans();
480  
481 < int SimInfo::getNDFraw() {
482 <  int ndfRaw_local;
481 >    fortranInitialized_ = true;
482 >  }
483  
484 <  // Raw degrees of freedom that we have to set
485 <  ndfRaw_local = 0;
484 >  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
485 >    SimInfo::MoleculeIterator mi;
486 >    Molecule* mol;
487 >    Molecule::AtomIterator ai;
488 >    Atom* atom;
489 >    std::set<AtomType*> atomTypes;
490  
491 <  for(int i = 0; i < integrableObjects.size(); i++){
492 <    ndfRaw_local += 3;
493 <    if (integrableObjects[i]->isDirectional()) {
494 <       if (integrableObjects[i]->isLinear())
495 <        ndfRaw_local += 2;
496 <      else
379 <        ndfRaw_local += 3;
491 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
492 >
493 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
494 >        atomTypes.insert(atom->getAtomType());
495 >      }
496 >        
497      }
498 +
499 +    return atomTypes;        
500    }
501 +
502 +  void SimInfo::setupSimType() {
503 +    std::set<AtomType*>::iterator i;
504 +    std::set<AtomType*> atomTypes;
505 +    atomTypes = getUniqueAtomTypes();
506      
507 < #ifdef IS_MPI
508 <  MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
509 < #else
510 <  ndfRaw = ndfRaw_local;
511 < #endif
507 >    int useLennardJones = 0;
508 >    int useElectrostatic = 0;
509 >    int useEAM = 0;
510 >    int useCharge = 0;
511 >    int useDirectional = 0;
512 >    int useDipole = 0;
513 >    int useGayBerne = 0;
514 >    int useSticky = 0;
515 >    int useStickyPower = 0;
516 >    int useShape = 0;
517 >    int useFLARB = 0; //it is not in AtomType yet
518 >    int useDirectionalAtom = 0;    
519 >    int useElectrostatics = 0;
520 >    //usePBC and useRF are from simParams
521 >    int usePBC = simParams_->getPBC();
522 >    int useRF = simParams_->getUseRF();
523 >    int useUW = simParams_->getUseUndampedWolf();
524 >    int useDW = simParams_->getUseDampedWolf();
525  
526 <  return ndfRaw;
527 < }
526 >    //loop over all of the atom types
527 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
528 >      useLennardJones |= (*i)->isLennardJones();
529 >      useElectrostatic |= (*i)->isElectrostatic();
530 >      useEAM |= (*i)->isEAM();
531 >      useCharge |= (*i)->isCharge();
532 >      useDirectional |= (*i)->isDirectional();
533 >      useDipole |= (*i)->isDipole();
534 >      useGayBerne |= (*i)->isGayBerne();
535 >      useSticky |= (*i)->isSticky();
536 >      useStickyPower |= (*i)->isStickyPower();
537 >      useShape |= (*i)->isShape();
538 >    }
539  
540 < int SimInfo::getNDFtranslational() {
541 <  int ndfTrans_local;
540 >    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
541 >      useDirectionalAtom = 1;
542 >    }
543  
544 <  ndfTrans_local = 3 * integrableObjects.size() - n_constraints;
544 >    if (useCharge || useDipole) {
545 >      useElectrostatics = 1;
546 >    }
547  
548 + #ifdef IS_MPI    
549 +    int temp;
550  
551 < #ifdef IS_MPI
552 <  MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
400 < #else
401 <  ndfTrans = ndfTrans_local;
402 < #endif
551 >    temp = usePBC;
552 >    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
553  
554 <  ndfTrans = ndfTrans - 3 - nZconstraints;
554 >    temp = useDirectionalAtom;
555 >    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
556  
557 <  return ndfTrans;
558 < }
557 >    temp = useLennardJones;
558 >    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
559 >
560 >    temp = useElectrostatics;
561 >    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
562  
563 < int SimInfo::getTotIntegrableObjects() {
564 <  int nObjs_local;
411 <  int nObjs;
563 >    temp = useCharge;
564 >    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
565  
566 <  nObjs_local =  integrableObjects.size();
566 >    temp = useDipole;
567 >    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
568  
569 +    temp = useSticky;
570 +    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
571  
572 < #ifdef IS_MPI
573 <  MPI_Allreduce(&nObjs_local,&nObjs,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
574 < #else
575 <  nObjs = nObjs_local;
576 < #endif
572 >    temp = useStickyPower;
573 >    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
574 >    
575 >    temp = useGayBerne;
576 >    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
577  
578 +    temp = useEAM;
579 +    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
580  
581 <  return nObjs;
582 < }
581 >    temp = useShape;
582 >    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
583  
584 < void SimInfo::refreshSim(){
584 >    temp = useFLARB;
585 >    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
586  
587 <  simtype fInfo;
588 <  int isError;
430 <  int n_global;
431 <  int* excl;
587 >    temp = useRF;
588 >    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
589  
590 <  fInfo.dielect = 0.0;
590 >    temp = useUW;
591 >    MPI_Allreduce(&temp, &useUW, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
592  
593 <  if( useDipoles ){
594 <    if( useReactionField )fInfo.dielect = dielectric;
595 <  }
593 >    temp = useDW;
594 >    MPI_Allreduce(&temp, &useDW, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
595 >    
596 > #endif
597  
598 <  fInfo.SIM_uses_PBC = usePBC;
598 >    fInfo_.SIM_uses_PBC = usePBC;    
599 >    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
600 >    fInfo_.SIM_uses_LennardJones = useLennardJones;
601 >    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
602 >    fInfo_.SIM_uses_Charges = useCharge;
603 >    fInfo_.SIM_uses_Dipoles = useDipole;
604 >    fInfo_.SIM_uses_Sticky = useSticky;
605 >    fInfo_.SIM_uses_StickyPower = useStickyPower;
606 >    fInfo_.SIM_uses_GayBerne = useGayBerne;
607 >    fInfo_.SIM_uses_EAM = useEAM;
608 >    fInfo_.SIM_uses_Shapes = useShape;
609 >    fInfo_.SIM_uses_FLARB = useFLARB;
610 >    fInfo_.SIM_uses_RF = useRF;
611 >    fInfo_.SIM_uses_UW = useUW;
612 >    fInfo_.SIM_uses_DW = useDW;
613  
614 <  if (useSticky || useDipoles || useGayBerne || useShapes) {
442 <    useDirectionalAtoms = 1;
443 <    fInfo.SIM_uses_DirectionalAtoms = useDirectionalAtoms;
444 <  }
614 >    if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
615  
616 <  fInfo.SIM_uses_LennardJones = useLennardJones;
616 >      if (simParams_->haveDielectric()) {
617 >        fInfo_.dielect = simParams_->getDielectric();
618 >      } else {
619 >        sprintf(painCave.errMsg,
620 >                "SimSetup Error: No Dielectric constant was set.\n"
621 >                "\tYou are trying to use Reaction Field without"
622 >                "\tsetting a dielectric constant!\n");
623 >        painCave.isFatal = 1;
624 >        simError();
625 >      }
626 >        
627 >    } else {
628 >      fInfo_.dielect = 0.0;
629 >    }
630  
448  if (useCharges || useDipoles) {
449    useElectrostatics = 1;
450    fInfo.SIM_uses_Electrostatics = useElectrostatics;
631    }
632  
633 <  fInfo.SIM_uses_Charges = useCharges;
634 <  fInfo.SIM_uses_Dipoles = useDipoles;
635 <  fInfo.SIM_uses_Sticky = useSticky;
636 <  fInfo.SIM_uses_GayBerne = useGayBerne;
637 <  fInfo.SIM_uses_EAM = useEAM;
638 <  fInfo.SIM_uses_Shapes = useShapes;
639 <  fInfo.SIM_uses_FLARB = useFLARB;
460 <  fInfo.SIM_uses_RF = useReactionField;
633 >  void SimInfo::setupFortranSim() {
634 >    int isError;
635 >    int nExclude;
636 >    std::vector<int> fortranGlobalGroupMembership;
637 >    
638 >    nExclude = exclude_.getSize();
639 >    isError = 0;
640  
641 <  n_exclude = excludes->getSize();
642 <  excl = excludes->getFortranArray();
643 <  
644 < #ifdef IS_MPI
466 <  n_global = mpiSim->getNAtomsGlobal();
467 < #else
468 <  n_global = n_atoms;
469 < #endif
470 <  
471 <  isError = 0;
472 <  
473 <  getFortranGroupArrays(this, FglobalGroupMembership, mfact);
474 <  //it may not be a good idea to pass the address of first element in vector
475 <  //since c++ standard does not require vector to be stored continuously in meomory
476 <  //Most of the compilers will organize the memory of vector continuously
477 <  setFortranSim( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl,
478 <                  &nGlobalExcludes, globalExcludes, molMembershipArray,
479 <                  &mfact[0], &ngroup, &FglobalGroupMembership[0], &isError);
641 >    //globalGroupMembership_ is filled by SimCreator    
642 >    for (int i = 0; i < nGlobalAtoms_; i++) {
643 >      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
644 >    }
645  
646 <  if( isError ){
646 >    //calculate mass ratio of cutoff group
647 >    std::vector<double> mfact;
648 >    SimInfo::MoleculeIterator mi;
649 >    Molecule* mol;
650 >    Molecule::CutoffGroupIterator ci;
651 >    CutoffGroup* cg;
652 >    Molecule::AtomIterator ai;
653 >    Atom* atom;
654 >    double totalMass;
655 >
656 >    //to avoid memory reallocation, reserve enough space for mfact
657 >    mfact.reserve(getNCutoffGroups());
658      
659 <    sprintf( painCave.errMsg,
660 <             "There was an error setting the simulation information in fortran.\n" );
485 <    painCave.isFatal = 1;
486 <    painCave.severity = OOPSE_ERROR;
487 <    simError();
488 <  }
489 <  
490 < #ifdef IS_MPI
491 <  sprintf( checkPointMsg,
492 <           "succesfully sent the simulation information to fortran.\n");
493 <  MPIcheckPoint();
494 < #endif // is_mpi
495 <  
496 <  this->ndf = this->getNDF();
497 <  this->ndfRaw = this->getNDFraw();
498 <  this->ndfTrans = this->getNDFtranslational();
499 < }
659 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
660 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
661  
662 < void SimInfo::setDefaultRcut( double theRcut ){
663 <  
664 <  haveRcut = 1;
665 <  rCut = theRcut;
505 <  rList = rCut + 1.0;
506 <  
507 <  notifyFortranCutoffs( &rCut, &rSw, &rList );
508 < }
662 >        totalMass = cg->getMass();
663 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
664 >          mfact.push_back(atom->getMass()/totalMass);
665 >        }
666  
667 < void SimInfo::setDefaultRcut( double theRcut, double theRsw ){
667 >      }      
668 >    }
669  
670 <  rSw = theRsw;
671 <  setDefaultRcut( theRcut );
514 < }
670 >    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
671 >    std::vector<int> identArray;
672  
673 +    //to avoid memory reallocation, reserve enough space identArray
674 +    identArray.reserve(getNAtoms());
675 +    
676 +    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
677 +      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
678 +        identArray.push_back(atom->getIdent());
679 +      }
680 +    }    
681  
682 < void SimInfo::checkCutOffs( void ){
683 <  
684 <  if( boxIsInit ){
682 >    //fill molMembershipArray
683 >    //molMembershipArray is filled by SimCreator    
684 >    std::vector<int> molMembershipArray(nGlobalAtoms_);
685 >    for (int i = 0; i < nGlobalAtoms_; i++) {
686 >      molMembershipArray[i] = globalMolMembership_[i] + 1;
687 >    }
688      
689 <    //we need to check cutOffs against the box
690 <    
691 <    if( rCut > maxCutoff ){
689 >    //setup fortran simulation
690 >    int nGlobalExcludes = 0;
691 >    int* globalExcludes = NULL;
692 >    int* excludeList = exclude_.getExcludeList();
693 >    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
694 >                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
695 >                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
696 >
697 >    if( isError ){
698 >
699        sprintf( painCave.errMsg,
700 <               "cutoffRadius is too large for the current periodic box.\n"
526 <               "\tCurrent Value of cutoffRadius = %G at time %G\n "
527 <               "\tThis is larger than half of at least one of the\n"
528 <               "\tperiodic box vectors.  Right now, the Box matrix is:\n"
529 <               "\n"
530 <               "\t[ %G %G %G ]\n"
531 <               "\t[ %G %G %G ]\n"
532 <               "\t[ %G %G %G ]\n",
533 <               rCut, currentTime,
534 <               Hmat[0][0], Hmat[0][1], Hmat[0][2],
535 <               Hmat[1][0], Hmat[1][1], Hmat[1][2],
536 <               Hmat[2][0], Hmat[2][1], Hmat[2][2]);
537 <      painCave.severity = OOPSE_ERROR;
700 >               "There was an error setting the simulation information in fortran.\n" );
701        painCave.isFatal = 1;
702 +      painCave.severity = OOPSE_ERROR;
703        simError();
704 <    }    
541 <  } else {
542 <    // initialize this stuff before using it, OK?
543 <    sprintf( painCave.errMsg,
544 <             "Trying to check cutoffs without a box.\n"
545 <             "\tOOPSE should have better programmers than that.\n" );
546 <    painCave.severity = OOPSE_ERROR;
547 <    painCave.isFatal = 1;
548 <    simError();      
549 <  }
550 <  
551 < }
704 >    }
705  
706 < void SimInfo::addProperty(GenericData* prop){
707 <
708 <  map<string, GenericData*>::iterator result;
709 <  result = properties.find(prop->getID());
710 <  
558 <  //we can't simply use  properties[prop->getID()] = prop,
559 <  //it will cause memory leak if we already contain a propery which has the same name of prop
560 <  
561 <  if(result != properties.end()){
562 <    
563 <    delete (*result).second;
564 <    (*result).second = prop;
565 <      
706 > #ifdef IS_MPI
707 >    sprintf( checkPointMsg,
708 >             "succesfully sent the simulation information to fortran.\n");
709 >    MPIcheckPoint();
710 > #endif // is_mpi
711    }
567  else{
712  
569    properties[prop->getID()] = prop;
713  
714 <  }
714 > #ifdef IS_MPI
715 >  void SimInfo::setupFortranParallel() {
716      
717 < }
717 >    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
718 >    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
719 >    std::vector<int> localToGlobalCutoffGroupIndex;
720 >    SimInfo::MoleculeIterator mi;
721 >    Molecule::AtomIterator ai;
722 >    Molecule::CutoffGroupIterator ci;
723 >    Molecule* mol;
724 >    Atom* atom;
725 >    CutoffGroup* cg;
726 >    mpiSimData parallelData;
727 >    int isError;
728  
729 < GenericData* SimInfo::getProperty(const string& propName){
576 <
577 <  map<string, GenericData*>::iterator result;
578 <  
579 <  //string lowerCaseName = ();
580 <  
581 <  result = properties.find(propName);
582 <  
583 <  if(result != properties.end())
584 <    return (*result).second;  
585 <  else  
586 <    return NULL;  
587 < }
729 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
730  
731 +      //local index(index in DataStorge) of atom is important
732 +      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
733 +        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
734 +      }
735  
736 < void SimInfo::getFortranGroupArrays(SimInfo* info,
737 <                                    vector<int>& FglobalGroupMembership,
738 <                                    vector<double>& mfact){
739 <  
740 <  Molecule* myMols;
741 <  Atom** myAtoms;
596 <  int numAtom;
597 <  double mtot;
598 <  int numMol;
599 <  int numCutoffGroups;
600 <  CutoffGroup* myCutoffGroup;
601 <  vector<CutoffGroup*>::iterator iterCutoff;
602 <  Atom* cutoffAtom;
603 <  vector<Atom*>::iterator iterAtom;
604 <  int atomIndex;
605 <  double totalMass;
606 <  
607 <  mfact.clear();
608 <  FglobalGroupMembership.clear();
609 <  
736 >      //local index of cutoff group is trivial, it only depends on the order of travesing
737 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
738 >        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
739 >      }        
740 >        
741 >    }
742  
743 <  // Fix the silly fortran indexing problem
744 < #ifdef IS_MPI
745 <  numAtom = mpiSim->getNAtomsGlobal();
746 < #else
747 <  numAtom = n_atoms;
748 < #endif
749 <  for (int i = 0; i < numAtom; i++)
750 <    FglobalGroupMembership.push_back(globalGroupMembership[i] + 1);
751 <  
743 >    //fill up mpiSimData struct
744 >    parallelData.nMolGlobal = getNGlobalMolecules();
745 >    parallelData.nMolLocal = getNMolecules();
746 >    parallelData.nAtomsGlobal = getNGlobalAtoms();
747 >    parallelData.nAtomsLocal = getNAtoms();
748 >    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
749 >    parallelData.nGroupsLocal = getNCutoffGroups();
750 >    parallelData.myNode = worldRank;
751 >    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
752  
753 <  myMols = info->molecules;
754 <  numMol = info->n_mol;
755 <  for(int i  = 0; i < numMol; i++){
756 <    numCutoffGroups = myMols[i].getNCutoffGroups();
757 <    for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff);
758 <        myCutoffGroup != NULL;
759 <        myCutoffGroup =myMols[i].nextCutoffGroup(iterCutoff)){
760 <
761 <      totalMass = myCutoffGroup->getMass();
762 <      
631 <      for(cutoffAtom = myCutoffGroup->beginAtom(iterAtom);
632 <          cutoffAtom != NULL;
633 <          cutoffAtom = myCutoffGroup->nextAtom(iterAtom)){
634 <        mfact.push_back(cutoffAtom->getMass()/totalMass);
635 <      }  
753 >    //pass mpiSimData struct and index arrays to fortran
754 >    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
755 >                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
756 >                    &localToGlobalCutoffGroupIndex[0], &isError);
757 >
758 >    if (isError) {
759 >      sprintf(painCave.errMsg,
760 >              "mpiRefresh errror: fortran didn't like something we gave it.\n");
761 >      painCave.isFatal = 1;
762 >      simError();
763      }
764 +
765 +    sprintf(checkPointMsg, " mpiRefresh successful.\n");
766 +    MPIcheckPoint();
767 +
768 +
769    }
770  
771 < }
771 > #endif
772 >
773 >  double SimInfo::calcMaxCutoffRadius() {
774 >
775 >
776 >    std::set<AtomType*> atomTypes;
777 >    std::set<AtomType*>::iterator i;
778 >    std::vector<double> cutoffRadius;
779 >
780 >    //get the unique atom types
781 >    atomTypes = getUniqueAtomTypes();
782 >
783 >    //query the max cutoff radius among these atom types
784 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
785 >      cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
786 >    }
787 >
788 >    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
789 > #ifdef IS_MPI
790 >    //pick the max cutoff radius among the processors
791 > #endif
792 >
793 >    return maxCutoffRadius;
794 >  }
795 >
796 >  void SimInfo::getCutoff(double& rcut, double& rsw) {
797 >    
798 >    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
799 >        
800 >      if (!simParams_->haveRcut()){
801 >        sprintf(painCave.errMsg,
802 >                "SimCreator Warning: No value was set for the cutoffRadius.\n"
803 >                "\tOOPSE will use a default value of 15.0 angstroms"
804 >                "\tfor the cutoffRadius.\n");
805 >        painCave.isFatal = 0;
806 >        simError();
807 >        rcut = 15.0;
808 >      } else{
809 >        rcut = simParams_->getRcut();
810 >      }
811 >
812 >      if (!simParams_->haveRsw()){
813 >        sprintf(painCave.errMsg,
814 >                "SimCreator Warning: No value was set for switchingRadius.\n"
815 >                "\tOOPSE will use a default value of\n"
816 >                "\t0.95 * cutoffRadius for the switchingRadius\n");
817 >        painCave.isFatal = 0;
818 >        simError();
819 >        rsw = 0.95 * rcut;
820 >      } else{
821 >        rsw = simParams_->getRsw();
822 >      }
823 >
824 >    } else {
825 >      // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
826 >      //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
827 >        
828 >      if (simParams_->haveRcut()) {
829 >        rcut = simParams_->getRcut();
830 >      } else {
831 >        //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
832 >        rcut = calcMaxCutoffRadius();
833 >      }
834 >
835 >      if (simParams_->haveRsw()) {
836 >        rsw  = simParams_->getRsw();
837 >      } else {
838 >        rsw = rcut;
839 >      }
840 >    
841 >    }
842 >  }
843 >
844 >  void SimInfo::setupCutoff() {
845 >    getCutoff(rcut_, rsw_);    
846 >    double rnblist = rcut_ + 1; // skin of neighbor list
847 >
848 >    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
849 >    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist);
850 >  }
851 >
852 >  void SimInfo::addProperty(GenericData* genData) {
853 >    properties_.addProperty(genData);  
854 >  }
855 >
856 >  void SimInfo::removeProperty(const std::string& propName) {
857 >    properties_.removeProperty(propName);  
858 >  }
859 >
860 >  void SimInfo::clearProperties() {
861 >    properties_.clearProperties();
862 >  }
863 >
864 >  std::vector<std::string> SimInfo::getPropertyNames() {
865 >    return properties_.getPropertyNames();  
866 >  }
867 >      
868 >  std::vector<GenericData*> SimInfo::getProperties() {
869 >    return properties_.getProperties();
870 >  }
871 >
872 >  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
873 >    return properties_.getPropertyByName(propName);
874 >  }
875 >
876 >  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
877 >    if (sman_ == sman) {
878 >      return;
879 >    }    
880 >    delete sman_;
881 >    sman_ = sman;
882 >
883 >    Molecule* mol;
884 >    RigidBody* rb;
885 >    Atom* atom;
886 >    SimInfo::MoleculeIterator mi;
887 >    Molecule::RigidBodyIterator rbIter;
888 >    Molecule::AtomIterator atomIter;;
889 >
890 >    for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
891 >        
892 >      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
893 >        atom->setSnapshotManager(sman_);
894 >      }
895 >        
896 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
897 >        rb->setSnapshotManager(sman_);
898 >      }
899 >    }    
900 >    
901 >  }
902 >
903 >  Vector3d SimInfo::getComVel(){
904 >    SimInfo::MoleculeIterator i;
905 >    Molecule* mol;
906 >
907 >    Vector3d comVel(0.0);
908 >    double totalMass = 0.0;
909 >    
910 >
911 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
912 >      double mass = mol->getMass();
913 >      totalMass += mass;
914 >      comVel += mass * mol->getComVel();
915 >    }  
916 >
917 > #ifdef IS_MPI
918 >    double tmpMass = totalMass;
919 >    Vector3d tmpComVel(comVel);    
920 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
921 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
922 > #endif
923 >
924 >    comVel /= totalMass;
925 >
926 >    return comVel;
927 >  }
928 >
929 >  Vector3d SimInfo::getCom(){
930 >    SimInfo::MoleculeIterator i;
931 >    Molecule* mol;
932 >
933 >    Vector3d com(0.0);
934 >    double totalMass = 0.0;
935 >    
936 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
937 >      double mass = mol->getMass();
938 >      totalMass += mass;
939 >      com += mass * mol->getCom();
940 >    }  
941 >
942 > #ifdef IS_MPI
943 >    double tmpMass = totalMass;
944 >    Vector3d tmpCom(com);    
945 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
946 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
947 > #endif
948 >
949 >    com /= totalMass;
950 >
951 >    return com;
952 >
953 >  }        
954 >
955 >  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
956 >
957 >    return o;
958 >  }
959 >  
960 >  
961 >   /*
962 >   Returns center of mass and center of mass velocity in one function call.
963 >   */
964 >  
965 >   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
966 >      SimInfo::MoleculeIterator i;
967 >      Molecule* mol;
968 >      
969 >    
970 >      double totalMass = 0.0;
971 >    
972 >
973 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
974 >         double mass = mol->getMass();
975 >         totalMass += mass;
976 >         com += mass * mol->getCom();
977 >         comVel += mass * mol->getComVel();          
978 >      }  
979 >      
980 > #ifdef IS_MPI
981 >      double tmpMass = totalMass;
982 >      Vector3d tmpCom(com);  
983 >      Vector3d tmpComVel(comVel);
984 >      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
985 >      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
986 >      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
987 > #endif
988 >      
989 >      com /= totalMass;
990 >      comVel /= totalMass;
991 >   }        
992 >  
993 >   /*
994 >   Return intertia tensor for entire system and angular momentum Vector.
995 >
996 >
997 >       [  Ixx -Ixy  -Ixz ]
998 >  J =| -Iyx  Iyy  -Iyz |
999 >       [ -Izx -Iyz   Izz ]
1000 >    */
1001 >
1002 >   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1003 >      
1004 >
1005 >      double xx = 0.0;
1006 >      double yy = 0.0;
1007 >      double zz = 0.0;
1008 >      double xy = 0.0;
1009 >      double xz = 0.0;
1010 >      double yz = 0.0;
1011 >      Vector3d com(0.0);
1012 >      Vector3d comVel(0.0);
1013 >      
1014 >      getComAll(com, comVel);
1015 >      
1016 >      SimInfo::MoleculeIterator i;
1017 >      Molecule* mol;
1018 >      
1019 >      Vector3d thisq(0.0);
1020 >      Vector3d thisv(0.0);
1021 >
1022 >      double thisMass = 0.0;
1023 >    
1024 >      
1025 >      
1026 >  
1027 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1028 >        
1029 >         thisq = mol->getCom()-com;
1030 >         thisv = mol->getComVel()-comVel;
1031 >         thisMass = mol->getMass();
1032 >         // Compute moment of intertia coefficients.
1033 >         xx += thisq[0]*thisq[0]*thisMass;
1034 >         yy += thisq[1]*thisq[1]*thisMass;
1035 >         zz += thisq[2]*thisq[2]*thisMass;
1036 >        
1037 >         // compute products of intertia
1038 >         xy += thisq[0]*thisq[1]*thisMass;
1039 >         xz += thisq[0]*thisq[2]*thisMass;
1040 >         yz += thisq[1]*thisq[2]*thisMass;
1041 >            
1042 >         angularMomentum += cross( thisq, thisv ) * thisMass;
1043 >            
1044 >      }  
1045 >      
1046 >      
1047 >      inertiaTensor(0,0) = yy + zz;
1048 >      inertiaTensor(0,1) = -xy;
1049 >      inertiaTensor(0,2) = -xz;
1050 >      inertiaTensor(1,0) = -xy;
1051 >      inertiaTensor(1,1) = xx + zz;
1052 >      inertiaTensor(1,2) = -yz;
1053 >      inertiaTensor(2,0) = -xz;
1054 >      inertiaTensor(2,1) = -yz;
1055 >      inertiaTensor(2,2) = xx + yy;
1056 >      
1057 > #ifdef IS_MPI
1058 >      Mat3x3d tmpI(inertiaTensor);
1059 >      Vector3d tmpAngMom;
1060 >      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1061 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1062 > #endif
1063 >              
1064 >      return;
1065 >   }
1066 >
1067 >   //Returns the angular momentum of the system
1068 >   Vector3d SimInfo::getAngularMomentum(){
1069 >      
1070 >      Vector3d com(0.0);
1071 >      Vector3d comVel(0.0);
1072 >      Vector3d angularMomentum(0.0);
1073 >      
1074 >      getComAll(com,comVel);
1075 >      
1076 >      SimInfo::MoleculeIterator i;
1077 >      Molecule* mol;
1078 >      
1079 >      Vector3d thisr(0.0);
1080 >      Vector3d thisp(0.0);
1081 >      
1082 >      double thisMass;
1083 >      
1084 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1085 >        thisMass = mol->getMass();
1086 >        thisr = mol->getCom()-com;
1087 >        thisp = (mol->getComVel()-comVel)*thisMass;
1088 >        
1089 >        angularMomentum += cross( thisr, thisp );
1090 >        
1091 >      }  
1092 >      
1093 > #ifdef IS_MPI
1094 >      Vector3d tmpAngMom;
1095 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1096 > #endif
1097 >      
1098 >      return angularMomentum;
1099 >   }
1100 >  
1101 >  
1102 > }//end namespace oopse
1103 >

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines