ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-3.0/src/brains/SimInfo.hpp
Revision: 1617
Committed: Wed Oct 20 20:46:20 2004 UTC (19 years, 8 months ago) by chuckv
File size: 6655 byte(s)
Log Message:
Fortran/C++ interface de-obfuscation project (It is a very long story)

File Contents

# Content
1 #ifndef __SIMINFO_H__
2 #define __SIMINFO_H__
3
4 #include <map>
5 #include <string>
6 #include <vector>
7
8 #include "primitives/Atom.hpp"
9 #include "primitives/RigidBody.hpp"
10 #include "primitives/Molecule.hpp"
11 #include "brains/Exclude.hpp"
12 #include "brains/SkipList.hpp"
13 #include "primitives/AbstractClasses.hpp"
14 #include "types/MakeStamps.hpp"
15 #include "brains/SimState.hpp"
16 #include "restraints/Restraints.hpp"
17
18 #define __C
19 #include "brains/fSimulation.h"
20 #include "utils/GenericData.hpp"
21
22
23 //#include "Minimizer.hpp"
24 //#include "minimizers/OOPSEMinimizer.hpp"
25
26
27 double roundMe( double x );
28 class OOPSEMinimizer;
29 class SimInfo{
30
31 public:
32
33 SimInfo();
34 ~SimInfo();
35
36 int n_atoms; // the number of atoms
37 Atom **atoms; // the array of atom objects
38
39 vector<RigidBody*> rigidBodies; // A vector of rigid bodies
40 vector<StuntDouble*> integrableObjects;
41
42 double tau[9]; // the stress tensor
43
44 int n_bonds; // number of bends
45 int n_bends; // number of bends
46 int n_torsions; // number of torsions
47 int n_oriented; // number of of atoms with orientation
48 int ndf; // number of actual degrees of freedom
49 int ndfRaw; // number of settable degrees of freedom
50 int ndfTrans; // number of translational degrees of freedom
51 int nZconstraints; // the number of zConstraints
52
53 int setTemp; // boolean to set the temperature at each sampleTime
54 int resetIntegrator; // boolean to reset the integrator
55
56 int n_dipoles; // number of dipoles
57
58 int n_exclude;
59 Exclude* excludes; // the exclude list for ignoring pairs in fortran
60 int nGlobalExcludes;
61 int* globalExcludes; // same as above, but these guys participate in
62 // no long range forces.
63
64 int* identArray; // array of unique identifiers for the atoms
65 int* molMembershipArray; // map of atom numbers onto molecule numbers
66
67 int n_constraints; // the number of constraints on the system
68
69 int n_SRI; // the number of short range interactions
70
71 double lrPot; // the potential energy from the long range calculations.
72
73 double Hmat[3][3]; // the periodic boundry conditions. The Hmat is the
74 // column vectors of the x, y, and z box vectors.
75 // h1 h2 h3
76 // [ Xx Yx Zx ]
77 // [ Xy Yy Zy ]
78 // [ Xz Yz Zz ]
79 //
80 double HmatInv[3][3];
81
82 double boxL[3]; // The Lengths of the 3 column vectors of Hmat
83 double boxVol;
84 int orthoRhombic;
85
86
87 double dielectric; // the dielectric of the medium for reaction field
88
89
90 int usePBC; // whether we use periodic boundry conditions.
91 int useLJ;
92 int useSticky;
93 int useCharges;
94 int useDipoles;
95 int useReactionField;
96 int useGB;
97 int useEAM;
98 bool haveCutoffGroups;
99 bool useInitXSstate;
100 double orthoTolerance;
101
102 double dt, run_time; // the time step and total time
103 double sampleTime, statusTime; // the position and energy dump frequencies
104 double target_temp; // the target temperature of the system
105 double thermalTime; // the temp kick interval
106 double currentTime; // Used primarily for correlation Functions
107 double resetTime; // Use to reset the integrator periodically
108 short int have_target_temp;
109
110 int n_mol; // n_molecules;
111 Molecule* molecules; // the array of molecules
112
113 int nComponents; // the number of components in the system
114 int* componentsNmol; // the number of molecules of each component
115 MoleculeStamp** compStamps;// the stamps matching the components
116 LinkedMolStamp* headStamp; // list of stamps used in the simulation
117
118
119 char ensemble[100]; // the enesemble of the simulation (NVT, NVE, etc. )
120 char mixingRule[100]; // the mixing rules for Lennard jones/van der walls
121 BaseIntegrator *the_integrator; // the integrator of the simulation
122
123 OOPSEMinimizer* the_minimizer; // the energy minimizer
124 Restraints* restraint;
125 bool has_minimizer;
126
127 string finalName; // the name of the eor file to be written
128 string sampleName; // the name of the dump file to be written
129 string statusName; // the name of the stat file to be written
130
131 int seed; //seed for random number generator
132
133 int useSolidThermInt; // is solid-state thermodynamic integration being used
134 int useLiquidThermInt; // is liquid thermodynamic integration being used
135 double thermIntLambda; // lambda for TI
136 double thermIntK; // power of lambda for TI
137 double vRaw; // unperturbed potential for TI
138 double vHarm; // harmonic potential for TI
139 int i; // just an int
140
141 vector<double> mfact;
142 vector<int> FglobalGroupMembership;
143 int ngroup;
144 int* globalGroupMembership;
145
146 // refreshes the sim if things get changed (load balanceing, volume
147 // adjustment, etc.)
148
149 void refreshSim( void );
150
151
152 // sets the internal function pointer to fortran.
153
154
155 int getNDF();
156 int getNDFraw();
157 int getNDFtranslational();
158 int getTotIntegrableObjects();
159 void setBox( double newBox[3] );
160 void setBoxM( double newBox[3][3] );
161 void getBoxM( double theBox[3][3] );
162 void scaleBox( double scale );
163
164 void setDefaultRcut( double theRcut );
165 void setDefaultRcut( double theRcut, double theRsw );
166 void checkCutOffs( void );
167
168 double getRcut( void ) { return rCut; }
169 double getRlist( void ) { return rList; }
170 double getRsw( void ) { return rSw; }
171 double getMaxCutoff( void ) { return maxCutoff; }
172
173 void setTime( double theTime ) { currentTime = theTime; }
174 void incrTime( double the_dt ) { currentTime += the_dt; }
175 void decrTime( double the_dt ) { currentTime -= the_dt; }
176 double getTime( void ) { return currentTime; }
177
178 void wrapVector( double thePos[3] );
179
180 SimState* getConfiguration( void ) { return myConfiguration; }
181
182 void addProperty(GenericData* prop);
183 GenericData* getProperty(const string& propName);
184 //vector<GenericData*>& getProperties() {return properties;}
185
186 int getSeed(void) { return seed; }
187 void setSeed(int theSeed) { seed = theSeed;}
188
189 private:
190
191 SimState* myConfiguration;
192
193 int boxIsInit, haveRcut, haveRsw;
194
195 double rList, rCut; // variables for the neighborlist
196 double rSw; // the switching radius
197
198 double maxCutoff;
199
200 double distXY;
201 double distYZ;
202 double distZX;
203
204 void calcHmatInv( void );
205 void calcBoxL();
206 double calcMaxCutOff();
207
208
209 //Addtional Properties of SimInfo
210 map<string, GenericData*> properties;
211 void getFortranGroupArrays(SimInfo* info,
212 vector<int>& FglobalGroupMembership,
213 vector<double>& mfact);
214
215
216 };
217
218
219 #endif