ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-3.0/src/integrators/NPrT.cpp
Revision: 2235
Committed: Thu May 19 21:31:23 2005 UTC (19 years, 1 month ago) by tim
File size: 9542 byte(s)
Log Message:
NPAT is working

File Contents

# User Rev Content
1 tim 2233 /*
2     * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9     * 1. Acknowledgement of the program authors must be made in any
10     * publication of scientific results based in part on use of the
11     * program. An acceptable form of acknowledgement is citation of
12     * the article in which the program was described (Matthew
13     * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14     * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15     * Parallel Simulation Engine for Molecular Dynamics,"
16     * J. Comput. Chem. 26, pp. 252-271 (2005))
17     *
18     * 2. Redistributions of source code must retain the above copyright
19     * notice, this list of conditions and the following disclaimer.
20     *
21     * 3. Redistributions in binary form must reproduce the above copyright
22     * notice, this list of conditions and the following disclaimer in the
23     * documentation and/or other materials provided with the
24     * distribution.
25     *
26     * This software is provided "AS IS," without a warranty of any
27     * kind. All express or implied conditions, representations and
28     * warranties, including any implied warranty of merchantability,
29     * fitness for a particular purpose or non-infringement, are hereby
30     * excluded. The University of Notre Dame and its licensors shall not
31     * be liable for any damages suffered by licensee as a result of
32     * using, modifying or distributing the software or its
33     * derivatives. In no event will the University of Notre Dame or its
34     * licensors be liable for any lost revenue, profit or data, or for
35     * direct, indirect, special, consequential, incidental or punitive
36     * damages, however caused and regardless of the theory of liability,
37     * arising out of the use of or inability to use software, even if the
38     * University of Notre Dame has been advised of the possibility of
39     * such damages.
40     */
41    
42     #include "brains/SimInfo.hpp"
43     #include "brains/Thermo.hpp"
44     #include "integrators/IntegratorCreator.hpp"
45     #include "integrators/NPrT.hpp"
46     #include "primitives/Molecule.hpp"
47     #include "utils/OOPSEConstant.hpp"
48     #include "utils/simError.h"
49    
50     namespace oopse {
51     NPrT::NPrT(SimInfo* info) : NPT(info) {
52     Globals* simParams = info_->getSimParams();
53 tim 2235 if (!simParams->haveSurfaceTension()) {
54 tim 2233 sprintf(painCave.errMsg,
55     "If you use the NPT integrator, you must set tauBarostat.\n");
56     painCave.severity = OOPSE_ERROR;
57     painCave.isFatal = 1;
58     simError();
59     } else {
60 tim 2235 surfaceTension= simParams->getSurfaceTension();
61 tim 2233 }
62    
63     }
64     void NPrT::evolveEtaA() {
65 tim 2234 Mat3x3d hmat = currentSnapshot_->getHmat();
66     double hz = hmat(2, 2);
67     double Axy = hmat(0,0) * hmat(1, 1);
68 tim 2233 double sx = -hz * (press(0, 0) - targetPressure/OOPSEConstant::pressureConvert);
69     double sy = -hz * (press(1, 1) - targetPressure/OOPSEConstant::pressureConvert);
70 tim 2235 eta(0,0) -= Axy * (sx - surfaceTension) / (NkBT*tb2);
71     eta(1,1) -= Axy * (sy - surfaceTension) / (NkBT*tb2);
72 tim 2233 eta(2,2) += dt2 * instaVol * (press(2, 2) - targetPressure/OOPSEConstant::pressureConvert) / (NkBT*tb2);
73     oldEta = eta;
74     }
75    
76     void NPrT::evolveEtaB() {
77 tim 2234 Mat3x3d hmat = currentSnapshot_->getHmat();
78     double hz = hmat(2, 2);
79     double Axy = hmat(0,0) * hmat(1, 1);
80 tim 2233 prevEta = eta;
81     double sx = -hz * (press(0, 0) - targetPressure/OOPSEConstant::pressureConvert);
82     double sy = -hz * (press(1, 1) - targetPressure/OOPSEConstant::pressureConvert);
83 tim 2235 eta(0,0) = oldEta(0, 0) - Axy * (sx -surfaceTension) / (NkBT*tb2);
84     eta(1,1) = oldEta(1, 1) - Axy * (sy -surfaceTension) / (NkBT*tb2);
85 tim 2233 eta(2,2) = oldEta(2, 2) + dt2 * instaVol *
86     (press(2, 2) - targetPressure/OOPSEConstant::pressureConvert) / (NkBT*tb2);
87     }
88    
89     void NPrT::calcVelScale(){
90    
91     for (int i = 0; i < 3; i++ ) {
92     for (int j = 0; j < 3; j++ ) {
93     vScale(i, j) = eta(i, j);
94    
95     if (i == j) {
96     vScale(i, j) += chi;
97     }
98     }
99     }
100     }
101    
102     void NPrT::getVelScaleA(Vector3d& sc, const Vector3d& vel){
103     sc = vScale * vel;
104     }
105    
106     void NPrT::getVelScaleB(Vector3d& sc, int index ) {
107     sc = vScale * oldVel[index];
108     }
109    
110     void NPrT::getPosScale(const Vector3d& pos, const Vector3d& COM, int index, Vector3d& sc) {
111    
112     /**@todo */
113     Vector3d rj = (oldPos[index] + pos)/2.0 -COM;
114     sc = eta * rj;
115     }
116    
117     void NPrT::scaleSimBox(){
118    
119     int i;
120     int j;
121     int k;
122     Mat3x3d scaleMat;
123     double eta2ij;
124     double bigScale, smallScale, offDiagMax;
125     Mat3x3d hm;
126     Mat3x3d hmnew;
127    
128    
129    
130     // Scale the box after all the positions have been moved:
131    
132     // Use a taylor expansion for eta products: Hmat = Hmat . exp(dt * etaMat)
133     // Hmat = Hmat . ( Ident + dt * etaMat + dt^2 * etaMat*etaMat / 2)
134    
135     bigScale = 1.0;
136     smallScale = 1.0;
137     offDiagMax = 0.0;
138    
139     for(i=0; i<3; i++){
140     for(j=0; j<3; j++){
141    
142     // Calculate the matrix Product of the eta array (we only need
143     // the ij element right now):
144    
145     eta2ij = 0.0;
146     for(k=0; k<3; k++){
147     eta2ij += eta(i, k) * eta(k, j);
148     }
149    
150     scaleMat(i, j) = 0.0;
151     // identity matrix (see above):
152     if (i == j) scaleMat(i, j) = 1.0;
153     // Taylor expansion for the exponential truncated at second order:
154     scaleMat(i, j) += dt*eta(i, j) + 0.5*dt*dt*eta2ij;
155    
156    
157     if (i != j)
158     if (fabs(scaleMat(i, j)) > offDiagMax)
159     offDiagMax = fabs(scaleMat(i, j));
160     }
161    
162     if (scaleMat(i, i) > bigScale) bigScale = scaleMat(i, i);
163     if (scaleMat(i, i) < smallScale) smallScale = scaleMat(i, i);
164     }
165    
166     if ((bigScale > 1.01) || (smallScale < 0.99)) {
167     sprintf( painCave.errMsg,
168     "NPrT error: Attempting a Box scaling of more than 1 percent.\n"
169     " Check your tauBarostat, as it is probably too small!\n\n"
170     " scaleMat = [%lf\t%lf\t%lf]\n"
171     " [%lf\t%lf\t%lf]\n"
172     " [%lf\t%lf\t%lf]\n"
173     " eta = [%lf\t%lf\t%lf]\n"
174     " [%lf\t%lf\t%lf]\n"
175     " [%lf\t%lf\t%lf]\n",
176     scaleMat(0, 0),scaleMat(0, 1),scaleMat(0, 2),
177     scaleMat(1, 0),scaleMat(1, 1),scaleMat(1, 2),
178     scaleMat(2, 0),scaleMat(2, 1),scaleMat(2, 2),
179     eta(0, 0),eta(0, 1),eta(0, 2),
180     eta(1, 0),eta(1, 1),eta(1, 2),
181     eta(2, 0),eta(2, 1),eta(2, 2));
182     painCave.isFatal = 1;
183     simError();
184     } else if (offDiagMax > 0.01) {
185     sprintf( painCave.errMsg,
186     "NPrT error: Attempting an off-diagonal Box scaling of more than 1 percent.\n"
187     " Check your tauBarostat, as it is probably too small!\n\n"
188     " scaleMat = [%lf\t%lf\t%lf]\n"
189     " [%lf\t%lf\t%lf]\n"
190     " [%lf\t%lf\t%lf]\n"
191     " eta = [%lf\t%lf\t%lf]\n"
192     " [%lf\t%lf\t%lf]\n"
193     " [%lf\t%lf\t%lf]\n",
194     scaleMat(0, 0),scaleMat(0, 1),scaleMat(0, 2),
195     scaleMat(1, 0),scaleMat(1, 1),scaleMat(1, 2),
196     scaleMat(2, 0),scaleMat(2, 1),scaleMat(2, 2),
197     eta(0, 0),eta(0, 1),eta(0, 2),
198     eta(1, 0),eta(1, 1),eta(1, 2),
199     eta(2, 0),eta(2, 1),eta(2, 2));
200     painCave.isFatal = 1;
201     simError();
202     } else {
203    
204     Mat3x3d hmat = currentSnapshot_->getHmat();
205     hmat = hmat *scaleMat;
206     currentSnapshot_->setHmat(hmat);
207    
208     }
209     }
210    
211     bool NPrT::etaConverged() {
212     int i;
213     double diffEta, sumEta;
214    
215     sumEta = 0;
216     for(i = 0; i < 3; i++) {
217     sumEta += pow(prevEta(i, i) - eta(i, i), 2);
218     }
219    
220     diffEta = sqrt( sumEta / 3.0 );
221    
222     return ( diffEta <= etaTolerance );
223     }
224    
225     double NPrT::calcConservedQuantity(){
226    
227     chi= currentSnapshot_->getChi();
228     integralOfChidt = currentSnapshot_->getIntegralOfChiDt();
229     loadEta();
230    
231     // We need NkBT a lot, so just set it here: This is the RAW number
232     // of integrableObjects, so no subtraction or addition of constraints or
233     // orientational degrees of freedom:
234     NkBT = info_->getNGlobalIntegrableObjects()*OOPSEConstant::kB *targetTemp;
235    
236     // fkBT is used because the thermostat operates on more degrees of freedom
237     // than the barostat (when there are particles with orientational degrees
238     // of freedom).
239     fkBT = info_->getNdf()*OOPSEConstant::kB *targetTemp;
240    
241    
242 tim 2235 double totalEnergy = thermo.getTotalE();
243 tim 2233
244 tim 2235 double thermostat_kinetic = fkBT * tt2 * chi * chi /(2.0 * OOPSEConstant::energyConvert);
245 tim 2233
246 tim 2235 double thermostat_potential = fkBT* integralOfChidt / OOPSEConstant::energyConvert;
247 tim 2233
248     SquareMatrix<double, 3> tmp = eta.transpose() * eta;
249 tim 2235 double trEta = tmp.trace();
250 tim 2233
251 tim 2235 double barostat_kinetic = NkBT * tb2 * trEta /(2.0 * OOPSEConstant::energyConvert);
252 tim 2233
253 tim 2235 double barostat_potential = (targetPressure * thermo.getVolume() / OOPSEConstant::pressureConvert) /OOPSEConstant::energyConvert;
254 tim 2233
255 tim 2235 Mat3x3d hmat = currentSnapshot_->getHmat();
256     double hz = hmat(2, 2);
257     double area = hmat(0,0) * hmat(1, 1);
258 tim 2233
259 tim 2235 double conservedQuantity = totalEnergy + thermostat_kinetic + thermostat_potential +
260     barostat_kinetic + barostat_potential - surfaceTension * area;
261    
262 tim 2233 return conservedQuantity;
263    
264     }
265    
266     void NPrT::loadEta() {
267     eta= currentSnapshot_->getEta();
268    
269     //if (!eta.isDiagonal()) {
270     // sprintf( painCave.errMsg,
271     // "NPrT error: the diagonal elements of eta matrix are not the same or etaMat is not a diagonal matrix");
272     // painCave.isFatal = 1;
273     // simError();
274     //}
275     }
276    
277     void NPrT::saveEta() {
278     currentSnapshot_->setEta(eta);
279     }
280    
281     }
282    
283