ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-3.0/src/math/SquareMatrix.hpp
Revision: 1644
Committed: Mon Oct 25 22:46:19 2004 UTC (19 years, 8 months ago) by tim
File size: 12720 byte(s)
Log Message:
add getArray function to  RectMatrix and Vector classes

File Contents

# Content
1 /*
2 * Copyright (C) 2000-2004 Object Oriented Parallel Simulation Engine (OOPSE) project
3 *
4 * Contact: oopse@oopse.org
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public License
8 * as published by the Free Software Foundation; either version 2.1
9 * of the License, or (at your option) any later version.
10 * All we ask is that proper credit is given for our work, which includes
11 * - but is not limited to - adding the above copyright notice to the beginning
12 * of your source code files, and to any copyright notice that you may distribute
13 * with programs based on this work.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU Lesser General Public License for more details.
19 *
20 * You should have received a copy of the GNU Lesser General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 *
24 */
25
26 /**
27 * @file SquareMatrix.hpp
28 * @author Teng Lin
29 * @date 10/11/2004
30 * @version 1.0
31 */
32 #ifndef MATH_SQUAREMATRIX_HPP
33 #define MATH_SQUAREMATRIX_HPP
34
35 #include "math/RectMatrix.hpp"
36
37 namespace oopse {
38
39 /**
40 * @class SquareMatrix SquareMatrix.hpp "math/SquareMatrix.hpp"
41 * @brief A square matrix class
42 * @template Real the element type
43 * @template Dim the dimension of the square matrix
44 */
45 template<typename Real, int Dim>
46 class SquareMatrix : public RectMatrix<Real, Dim, Dim> {
47 public:
48 typedef Real ElemType;
49 typedef Real* ElemPoinerType;
50
51 /** default constructor */
52 SquareMatrix() {
53 for (unsigned int i = 0; i < Dim; i++)
54 for (unsigned int j = 0; j < Dim; j++)
55 data_[i][j] = 0.0;
56 }
57
58 /** Constructs and initializes every element of this matrix to a scalar */
59 SquareMatrix(Real s) : RectMatrix<Real, Dim, Dim>(s){
60 }
61
62 /** Constructs and initializes from an array */
63 SquareMatrix(Real* array) : RectMatrix<Real, Dim, Dim>(array){
64 }
65
66
67 /** copy constructor */
68 SquareMatrix(const RectMatrix<Real, Dim, Dim>& m) : RectMatrix<Real, Dim, Dim>(m) {
69 }
70
71 /** copy assignment operator */
72 SquareMatrix<Real, Dim>& operator =(const RectMatrix<Real, Dim, Dim>& m) {
73 RectMatrix<Real, Dim, Dim>::operator=(m);
74 return *this;
75 }
76
77 /** Retunrs an identity matrix*/
78
79 static SquareMatrix<Real, Dim> identity() {
80 SquareMatrix<Real, Dim> m;
81
82 for (unsigned int i = 0; i < Dim; i++)
83 for (unsigned int j = 0; j < Dim; j++)
84 if (i == j)
85 m(i, j) = 1.0;
86 else
87 m(i, j) = 0.0;
88
89 return m;
90 }
91
92 /**
93 * Retunrs the inversion of this matrix.
94 * @todo need implementation
95 */
96 SquareMatrix<Real, Dim> inverse() {
97 SquareMatrix<Real, Dim> result;
98
99 return result;
100 }
101
102 /**
103 * Returns the determinant of this matrix.
104 * @todo need implementation
105 */
106 Real determinant() const {
107 Real det;
108 return det;
109 }
110
111 /** Returns the trace of this matrix. */
112 Real trace() const {
113 Real tmp = 0;
114
115 for (unsigned int i = 0; i < Dim ; i++)
116 tmp += data_[i][i];
117
118 return tmp;
119 }
120
121 /** Tests if this matrix is symmetrix. */
122 bool isSymmetric() const {
123 for (unsigned int i = 0; i < Dim - 1; i++)
124 for (unsigned int j = i; j < Dim; j++)
125 if (fabs(data_[i][j] - data_[j][i]) > oopse::epsilon)
126 return false;
127
128 return true;
129 }
130
131 /** Tests if this matrix is orthogonal. */
132 bool isOrthogonal() {
133 SquareMatrix<Real, Dim> tmp;
134
135 tmp = *this * transpose();
136
137 return tmp.isDiagonal();
138 }
139
140 /** Tests if this matrix is diagonal. */
141 bool isDiagonal() const {
142 for (unsigned int i = 0; i < Dim ; i++)
143 for (unsigned int j = 0; j < Dim; j++)
144 if (i !=j && fabs(data_[i][j]) > oopse::epsilon)
145 return false;
146
147 return true;
148 }
149
150 /** Tests if this matrix is the unit matrix. */
151 bool isUnitMatrix() const {
152 if (!isDiagonal())
153 return false;
154
155 for (unsigned int i = 0; i < Dim ; i++)
156 if (fabs(data_[i][i] - 1) > oopse::epsilon)
157 return false;
158
159 return true;
160 }
161
162 /** @todo need implementation */
163 void diagonalize() {
164 //jacobi(m, eigenValues, ortMat);
165 }
166
167 /**
168 * Jacobi iteration routines for computing eigenvalues/eigenvectors of
169 * real symmetric matrix
170 *
171 * @return true if success, otherwise return false
172 * @param a symmetric matrix whose eigenvectors are to be computed. On return, the matrix is
173 * overwritten
174 * @param w will contain the eigenvalues of the matrix On return of this function
175 * @param v the columns of this matrix will contain the eigenvectors. The eigenvectors are
176 * normalized and mutually orthogonal.
177 */
178
179 static int jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& d,
180 SquareMatrix<Real, Dim>& v);
181 };//end SquareMatrix
182
183
184 /*=========================================================================
185
186 Program: Visualization Toolkit
187 Module: $RCSfile: SquareMatrix.hpp,v $
188
189 Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
190 All rights reserved.
191 See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
192
193 This software is distributed WITHOUT ANY WARRANTY; without even
194 the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
195 PURPOSE. See the above copyright notice for more information.
196
197 =========================================================================*/
198
199 #define VTK_ROTATE(a,i,j,k,l) g=a(i, j);h=a(k, l);a(i, j)=g-s*(h+g*tau);\
200 a(k, l)=h+s*(g-h*tau)
201
202 #define VTK_MAX_ROTATIONS 20
203
204 // Jacobi iteration for the solution of eigenvectors/eigenvalues of a nxn
205 // real symmetric matrix. Square nxn matrix a; size of matrix in n;
206 // output eigenvalues in w; and output eigenvectors in v. Resulting
207 // eigenvalues/vectors are sorted in decreasing order; eigenvectors are
208 // normalized.
209 template<typename Real, int Dim>
210 int SquareMatrix<Real, Dim>::jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& w,
211 SquareMatrix<Real, Dim>& v) {
212 const int n = Dim;
213 int i, j, k, iq, ip, numPos;
214 Real tresh, theta, tau, t, sm, s, h, g, c, tmp;
215 Real bspace[4], zspace[4];
216 Real *b = bspace;
217 Real *z = zspace;
218
219 // only allocate memory if the matrix is large
220 if (n > 4) {
221 b = new Real[n];
222 z = new Real[n];
223 }
224
225 // initialize
226 for (ip=0; ip<n; ip++) {
227 for (iq=0; iq<n; iq++) {
228 v(ip, iq) = 0.0;
229 }
230 v(ip, ip) = 1.0;
231 }
232 for (ip=0; ip<n; ip++) {
233 b[ip] = w[ip] = a(ip, ip);
234 z[ip] = 0.0;
235 }
236
237 // begin rotation sequence
238 for (i=0; i<VTK_MAX_ROTATIONS; i++) {
239 sm = 0.0;
240 for (ip=0; ip<n-1; ip++) {
241 for (iq=ip+1; iq<n; iq++) {
242 sm += fabs(a(ip, iq));
243 }
244 }
245 if (sm == 0.0) {
246 break;
247 }
248
249 if (i < 3) { // first 3 sweeps
250 tresh = 0.2*sm/(n*n);
251 } else {
252 tresh = 0.0;
253 }
254
255 for (ip=0; ip<n-1; ip++) {
256 for (iq=ip+1; iq<n; iq++) {
257 g = 100.0*fabs(a(ip, iq));
258
259 // after 4 sweeps
260 if (i > 3 && (fabs(w[ip])+g) == fabs(w[ip])
261 && (fabs(w[iq])+g) == fabs(w[iq])) {
262 a(ip, iq) = 0.0;
263 } else if (fabs(a(ip, iq)) > tresh) {
264 h = w[iq] - w[ip];
265 if ( (fabs(h)+g) == fabs(h)) {
266 t = (a(ip, iq)) / h;
267 } else {
268 theta = 0.5*h / (a(ip, iq));
269 t = 1.0 / (fabs(theta)+sqrt(1.0+theta*theta));
270 if (theta < 0.0) {
271 t = -t;
272 }
273 }
274 c = 1.0 / sqrt(1+t*t);
275 s = t*c;
276 tau = s/(1.0+c);
277 h = t*a(ip, iq);
278 z[ip] -= h;
279 z[iq] += h;
280 w[ip] -= h;
281 w[iq] += h;
282 a(ip, iq)=0.0;
283
284 // ip already shifted left by 1 unit
285 for (j = 0;j <= ip-1;j++) {
286 VTK_ROTATE(a,j,ip,j,iq);
287 }
288 // ip and iq already shifted left by 1 unit
289 for (j = ip+1;j <= iq-1;j++) {
290 VTK_ROTATE(a,ip,j,j,iq);
291 }
292 // iq already shifted left by 1 unit
293 for (j=iq+1; j<n; j++) {
294 VTK_ROTATE(a,ip,j,iq,j);
295 }
296 for (j=0; j<n; j++) {
297 VTK_ROTATE(v,j,ip,j,iq);
298 }
299 }
300 }
301 }
302
303 for (ip=0; ip<n; ip++) {
304 b[ip] += z[ip];
305 w[ip] = b[ip];
306 z[ip] = 0.0;
307 }
308 }
309
310 //// this is NEVER called
311 if ( i >= VTK_MAX_ROTATIONS ) {
312 std::cout << "vtkMath::Jacobi: Error extracting eigenfunctions" << std::endl;
313 return 0;
314 }
315
316 // sort eigenfunctions these changes do not affect accuracy
317 for (j=0; j<n-1; j++) { // boundary incorrect
318 k = j;
319 tmp = w[k];
320 for (i=j+1; i<n; i++) { // boundary incorrect, shifted already
321 if (w[i] >= tmp) { // why exchage if same?
322 k = i;
323 tmp = w[k];
324 }
325 }
326 if (k != j) {
327 w[k] = w[j];
328 w[j] = tmp;
329 for (i=0; i<n; i++) {
330 tmp = v(i, j);
331 v(i, j) = v(i, k);
332 v(i, k) = tmp;
333 }
334 }
335 }
336 // insure eigenvector consistency (i.e., Jacobi can compute vectors that
337 // are negative of one another (.707,.707,0) and (-.707,-.707,0). This can
338 // reek havoc in hyperstreamline/other stuff. We will select the most
339 // positive eigenvector.
340 int ceil_half_n = (n >> 1) + (n & 1);
341 for (j=0; j<n; j++) {
342 for (numPos=0, i=0; i<n; i++) {
343 if ( v(i, j) >= 0.0 ) {
344 numPos++;
345 }
346 }
347 // if ( numPos < ceil(double(n)/double(2.0)) )
348 if ( numPos < ceil_half_n) {
349 for (i=0; i<n; i++) {
350 v(i, j) *= -1.0;
351 }
352 }
353 }
354
355 if (n > 4) {
356 delete [] b;
357 delete [] z;
358 }
359 return 1;
360 }
361
362
363 }
364 #endif //MATH_SQUAREMATRIX_HPP
365