ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/UseTheForce/DarkSide/electrostatic.F90
(Generate patch)

Comparing trunk/OOPSE-4/src/UseTheForce/DarkSide/electrostatic.F90 (file contents):
Revision 2105 by gezelter, Thu Mar 10 17:54:58 2005 UTC vs.
Revision 2301 by gezelter, Thu Sep 15 22:05:21 2005 UTC

# Line 40 | Line 40 | module electrostatic_module
40   !!
41  
42   module electrostatic_module
43 <  
43 >
44    use force_globals
45    use definitions
46    use atype_module
# Line 54 | Line 54 | module electrostatic_module
54  
55    PRIVATE
56  
57 + #define __FORTRAN90
58 + #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
59 +
60 +  !! these prefactors convert the multipole interactions into kcal / mol
61 +  !! all were computed assuming distances are measured in angstroms
62 +  !! Charge-Charge, assuming charges are measured in electrons
63    real(kind=dp), parameter :: pre11 = 332.0637778_dp
64 <  real(kind=dp), parameter :: pre12 = 69.13291783_dp
65 <  real(kind=dp), parameter :: pre22 = 14.39289874_dp
66 <  real(kind=dp), parameter :: pre14 = 0.0_dp
64 >  !! Charge-Dipole, assuming charges are measured in electrons, and
65 >  !! dipoles are measured in debyes
66 >  real(kind=dp), parameter :: pre12 = 69.13373_dp
67 >  !! Dipole-Dipole, assuming dipoles are measured in debyes
68 >  real(kind=dp), parameter :: pre22 = 14.39325_dp
69 >  !! Charge-Quadrupole, assuming charges are measured in electrons, and
70 >  !! quadrupoles are measured in 10^-26 esu cm^2
71 >  !! This unit is also known affectionately as an esu centi-barn.
72 >  real(kind=dp), parameter :: pre14 = 69.13373_dp
73  
74 +  !! variables to handle different summation methods for long-range electrostatics:
75 +  integer, save :: summationMethod = NONE
76 +  real(kind=DP), save :: defaultCutoff = 0.0_DP
77 +  logical, save :: haveDefaultCutoff = .false.
78 +  real(kind=DP), save :: dampingAlpha = 0.0_DP
79 +  logical, save :: haveDampingAlpha = .false.
80 +  real(kind=DP), save :: dielectric = 0.0_DP
81 +  logical, save :: haveDielectric = .false.
82 +  real(kind=DP), save :: constERFC = 0.0_DP
83 +  real(kind=DP), save :: constEXP = 0.0_DP
84 +  logical, save :: haveDWAconstants = .false.
85 +
86 +
87 +  public :: setElectrostaticSummationMethod
88 +  public :: setElectrostaticCutoffRadius
89 +  public :: setDampedWolfAlpha
90 +  public :: setReactionFieldDielectric
91    public :: newElectrostaticType
92    public :: setCharge
93    public :: setDipoleMoment
# Line 67 | Line 96 | module electrostatic_module
96    public :: doElectrostaticPair
97    public :: getCharge
98    public :: getDipoleMoment
99 +  public :: pre22
100 +  public :: destroyElectrostaticTypes
101  
102    type :: Electrostatic
103       integer :: c_ident
# Line 74 | Line 105 | module electrostatic_module
105       logical :: is_Dipole = .false.
106       logical :: is_SplitDipole = .false.
107       logical :: is_Quadrupole = .false.
108 +     logical :: is_Tap = .false.
109       real(kind=DP) :: charge = 0.0_DP
110       real(kind=DP) :: dipole_moment = 0.0_DP
111       real(kind=DP) :: split_dipole_distance = 0.0_DP
# Line 84 | Line 116 | contains
116  
117   contains
118  
119 +  subroutine setElectrostaticSummationMethod(the_ESM)
120 +
121 +    integer, intent(in) :: the_ESM    
122 +
123 +    if ((the_ESM .le. 0) .or. (the_ESM .gt. REACTION_FIELD)) then
124 +       call handleError("setElectrostaticSummationMethod", "Unsupported Summation Method")
125 +    endif
126 +
127 +  end subroutine setElectrostaticSummationMethod
128 +
129 +  subroutine setElectrostaticCutoffRadius(thisRcut)
130 +    real(kind=dp), intent(in) :: thisRcut
131 +    defaultCutoff = thisRcut
132 +    haveDefaultCutoff = .true.
133 +  end subroutine setElectrostaticCutoffRadius
134 +
135 +  subroutine setDampedWolfAlpha(thisAlpha)
136 +    real(kind=dp), intent(in) :: thisAlpha
137 +    dampingAlpha = thisAlpha
138 +    haveDampingAlpha = .true.
139 +  end subroutine setDampedWolfAlpha
140 +  
141 +  subroutine setReactionFieldDielectric(thisDielectric)
142 +    real(kind=dp), intent(in) :: thisDielectric
143 +    dielectric = thisDielectric
144 +    haveDielectric = .true.
145 +  end subroutine setReactionFieldDielectric
146 +
147    subroutine newElectrostaticType(c_ident, is_Charge, is_Dipole, &
148 <       is_SplitDipole, is_Quadrupole, status)
149 <    
148 >       is_SplitDipole, is_Quadrupole, is_Tap, status)
149 >
150      integer, intent(in) :: c_ident
151      logical, intent(in) :: is_Charge
152      logical, intent(in) :: is_Dipole
153      logical, intent(in) :: is_SplitDipole
154      logical, intent(in) :: is_Quadrupole
155 +    logical, intent(in) :: is_Tap
156      integer, intent(out) :: status
157      integer :: nAtypes, myATID, i, j
158  
159      status = 0
160      myATID = getFirstMatchingElement(atypes, "c_ident", c_ident)
161 <    
161 >
162      !! Be simple-minded and assume that we need an ElectrostaticMap that
163      !! is the same size as the total number of atom types
164  
165      if (.not.allocated(ElectrostaticMap)) then
166 <      
166 >
167         nAtypes = getSize(atypes)
168 <    
168 >
169         if (nAtypes == 0) then
170            status = -1
171            return
172         end if
173 <      
173 >
174         if (.not. allocated(ElectrostaticMap)) then
175            allocate(ElectrostaticMap(nAtypes))
176         endif
177 <      
177 >
178      end if
179  
180      if (myATID .gt. size(ElectrostaticMap)) then
181         status = -1
182         return
183      endif
184 <    
184 >
185      ! set the values for ElectrostaticMap for this atom type:
186  
187      ElectrostaticMap(myATID)%c_ident = c_ident
# Line 128 | Line 189 | contains
189      ElectrostaticMap(myATID)%is_Dipole = is_Dipole
190      ElectrostaticMap(myATID)%is_SplitDipole = is_SplitDipole
191      ElectrostaticMap(myATID)%is_Quadrupole = is_Quadrupole
192 <    
192 >    ElectrostaticMap(myATID)%is_Tap = is_Tap
193 >
194    end subroutine newElectrostaticType
195  
196    subroutine setCharge(c_ident, charge, status)
# Line 156 | Line 218 | contains
218         call handleError("electrostatic", "Attempt to setCharge of an atom type that is not a charge!")
219         status = -1
220         return
221 <    endif      
221 >    endif
222  
223      ElectrostaticMap(myATID)%charge = charge
224    end subroutine setCharge
# Line 247 | Line 309 | contains
309         status = -1
310         return
311      endif
312 <    
312 >
313      do i = 1, 3
314 <          ElectrostaticMap(myATID)%quadrupole_moments(i) = &
315 <               quadrupole_moments(i)
316 <       enddo
314 >       ElectrostaticMap(myATID)%quadrupole_moments(i) = &
315 >            quadrupole_moments(i)
316 >    enddo
317  
318    end subroutine setQuadrupoleMoments
319  
320 <  
320 >
321    function getCharge(atid) result (c)
322      integer, intent(in) :: atid
323      integer :: localError
324      real(kind=dp) :: c
325 <    
325 >
326      if (.not.allocated(ElectrostaticMap)) then
327         call handleError("electrostatic", "no ElectrostaticMap was present before first call of getCharge!")
328         return
329      end if
330 <    
330 >
331      if (.not.ElectrostaticMap(atid)%is_Charge) then
332         call handleError("electrostatic", "getCharge was called for an atom type that isn't a charge!")
333         return
334      endif
335 <    
335 >
336      c = ElectrostaticMap(atid)%charge
337    end function getCharge
338  
# Line 278 | Line 340 | contains
340      integer, intent(in) :: atid
341      integer :: localError
342      real(kind=dp) :: dm
343 <    
343 >
344      if (.not.allocated(ElectrostaticMap)) then
345         call handleError("electrostatic", "no ElectrostaticMap was present before first call of getDipoleMoment!")
346         return
347      end if
348 <    
348 >
349      if (.not.ElectrostaticMap(atid)%is_Dipole) then
350         call handleError("electrostatic", "getDipoleMoment was called for an atom type that isn't a dipole!")
351         return
352      endif
353 <    
353 >
354      dm = ElectrostaticMap(atid)%dipole_moment
355    end function getDipoleMoment
356  
357 <  subroutine doElectrostaticPair(atom1, atom2, d, rij, r2, sw, &
358 <       vpair, fpair, pot, eFrame, f, t, do_pot)
359 <    
357 >  subroutine checkSummationMethod()
358 >
359 >    if (summationMethod .eq. DAMPED_WOLF) then
360 >       if (.not.haveDWAconstants) then
361 >          
362 >          if (.not.haveDampingAlpha) then
363 >             call handleError("checkSummationMethod", "no Damping Alpha set!")
364 >          endif
365 >          
366 >          if (.not.have....)
367 >          constEXP =
368 >          constERFC =
369 >          
370 >          haveDWAconstants = .true.
371 >       endif
372 >    endif
373 >
374 >  end subroutine checkSummationMethod
375 >
376 >
377 >
378 >  subroutine doElectrostaticPair(atom1, atom2, d, rij, r2, sw, &
379 >       vpair, fpair, pot, eFrame, f, t, do_pot, corrMethod, rcuti)
380 >
381      logical, intent(in) :: do_pot
382 <    
382 >
383      integer, intent(in) :: atom1, atom2
384      integer :: localError
385 +    integer, intent(in) :: corrMethod
386  
387 <    real(kind=dp), intent(in) :: rij, r2, sw
387 >    real(kind=dp), intent(in) :: rij, r2, sw, rcuti
388      real(kind=dp), intent(in), dimension(3) :: d
389      real(kind=dp), intent(inout) :: vpair
390      real(kind=dp), intent(inout), dimension(3) :: fpair
391  
392 <    real( kind = dp ) :: pot
392 >    real( kind = dp ) :: pot, swi
393      real( kind = dp ), dimension(9,nLocal) :: eFrame
394      real( kind = dp ), dimension(3,nLocal) :: f
395      real( kind = dp ), dimension(3,nLocal) :: t
312    
313    real (kind = dp), dimension(3) :: ul_i
314    real (kind = dp), dimension(3) :: ul_j
396  
397 +    real (kind = dp), dimension(3) :: ux_i, uy_i, uz_i
398 +    real (kind = dp), dimension(3) :: ux_j, uy_j, uz_j
399 +    real (kind = dp), dimension(3) :: dudux_i, duduy_i, duduz_i
400 +    real (kind = dp), dimension(3) :: dudux_j, duduy_j, duduz_j
401 +
402      logical :: i_is_Charge, i_is_Dipole, i_is_SplitDipole, i_is_Quadrupole
403      logical :: j_is_Charge, j_is_Dipole, j_is_SplitDipole, j_is_Quadrupole
404 +    logical :: i_is_Tap, j_is_Tap
405      integer :: me1, me2, id1, id2
406      real (kind=dp) :: q_i, q_j, mu_i, mu_j, d_i, d_j
407 +    real (kind=dp) :: qxx_i, qyy_i, qzz_i
408 +    real (kind=dp) :: qxx_j, qyy_j, qzz_j
409 +    real (kind=dp) :: cx_i, cy_i, cz_i
410 +    real (kind=dp) :: cx_j, cy_j, cz_j
411 +    real (kind=dp) :: cx2, cy2, cz2
412      real (kind=dp) :: ct_i, ct_j, ct_ij, a1
413      real (kind=dp) :: riji, ri, ri2, ri3, ri4
414 <    real (kind=dp) :: pref, vterm, epot, dudr    
414 >    real (kind=dp) :: pref, vterm, epot, dudr, vterm1, vterm2
415      real (kind=dp) :: xhat, yhat, zhat
416      real (kind=dp) :: dudx, dudy, dudz
417 <    real (kind=dp) :: drdxj, drdyj, drdzj
418 <    real (kind=dp) :: duduix, duduiy, duduiz, dudujx, dudujy, dudujz
327 <    real (kind=dp) :: scale, sc2, bigR
417 >    real (kind=dp) :: scale, sc2, bigR, switcher, dswitcher
418 >    real (kind=dp) :: rcuti2, rcuti3, rcuti4
419  
420      if (.not.allocated(ElectrostaticMap)) then
421         call handleError("electrostatic", "no ElectrostaticMap was present before first call of do_electrostatic_pair!")
422         return
423      end if
424  
425 +    if (.not.summationMethodChecked) then
426 +       call checkSummationMethod()
427 +    endif
428 +
429 +
430   #ifdef IS_MPI
431      me1 = atid_Row(atom1)
432      me2 = atid_Col(atom2)
# Line 347 | Line 443 | contains
443      yhat = d(2) * riji
444      zhat = d(3) * riji
445  
446 <    drdxj = xhat
447 <    drdyj = yhat
448 <    drdzj = zhat
446 >    rcuti2 = rcuti*rcuti
447 >    rcuti3 = rcuti2*rcuti
448 >    rcuti4 = rcuti2*rcuti2
449  
450 <    !! logicals
450 >    swi = 1.0d0 / sw
451  
452 +    !! logicals
453      i_is_Charge = ElectrostaticMap(me1)%is_Charge
454      i_is_Dipole = ElectrostaticMap(me1)%is_Dipole
455      i_is_SplitDipole = ElectrostaticMap(me1)%is_SplitDipole
456      i_is_Quadrupole = ElectrostaticMap(me1)%is_Quadrupole
457 +    i_is_Tap = ElectrostaticMap(me1)%is_Tap
458  
459      j_is_Charge = ElectrostaticMap(me2)%is_Charge
460      j_is_Dipole = ElectrostaticMap(me2)%is_Dipole
461      j_is_SplitDipole = ElectrostaticMap(me2)%is_SplitDipole
462      j_is_Quadrupole = ElectrostaticMap(me2)%is_Quadrupole
463 +    j_is_Tap = ElectrostaticMap(me2)%is_Tap
464  
465      if (i_is_Charge) then
466         q_i = ElectrostaticMap(me1)%charge      
467      endif
468 <    
468 >
469      if (i_is_Dipole) then
470         mu_i = ElectrostaticMap(me1)%dipole_moment
471   #ifdef IS_MPI
472 <       ul_i(1) = eFrame_Row(3,atom1)
473 <       ul_i(2) = eFrame_Row(6,atom1)
474 <       ul_i(3) = eFrame_Row(9,atom1)
472 >       uz_i(1) = eFrame_Row(3,atom1)
473 >       uz_i(2) = eFrame_Row(6,atom1)
474 >       uz_i(3) = eFrame_Row(9,atom1)
475   #else
476 <       ul_i(1) = eFrame(3,atom1)
477 <       ul_i(2) = eFrame(6,atom1)
478 <       ul_i(3) = eFrame(9,atom1)
476 >       uz_i(1) = eFrame(3,atom1)
477 >       uz_i(2) = eFrame(6,atom1)
478 >       uz_i(3) = eFrame(9,atom1)
479   #endif
480 <       ct_i = ul_i(1)*drdxj + ul_i(2)*drdyj + ul_i(3)*drdzj
480 >       ct_i = uz_i(1)*xhat + uz_i(2)*yhat + uz_i(3)*zhat
481  
482         if (i_is_SplitDipole) then
483            d_i = ElectrostaticMap(me1)%split_dipole_distance
484         endif
485 <      
485 >
486      endif
487  
488 +    if (i_is_Quadrupole) then
489 +       qxx_i = ElectrostaticMap(me1)%quadrupole_moments(1)
490 +       qyy_i = ElectrostaticMap(me1)%quadrupole_moments(2)
491 +       qzz_i = ElectrostaticMap(me1)%quadrupole_moments(3)
492 + #ifdef IS_MPI
493 +       ux_i(1) = eFrame_Row(1,atom1)
494 +       ux_i(2) = eFrame_Row(4,atom1)
495 +       ux_i(3) = eFrame_Row(7,atom1)
496 +       uy_i(1) = eFrame_Row(2,atom1)
497 +       uy_i(2) = eFrame_Row(5,atom1)
498 +       uy_i(3) = eFrame_Row(8,atom1)
499 +       uz_i(1) = eFrame_Row(3,atom1)
500 +       uz_i(2) = eFrame_Row(6,atom1)
501 +       uz_i(3) = eFrame_Row(9,atom1)
502 + #else
503 +       ux_i(1) = eFrame(1,atom1)
504 +       ux_i(2) = eFrame(4,atom1)
505 +       ux_i(3) = eFrame(7,atom1)
506 +       uy_i(1) = eFrame(2,atom1)
507 +       uy_i(2) = eFrame(5,atom1)
508 +       uy_i(3) = eFrame(8,atom1)
509 +       uz_i(1) = eFrame(3,atom1)
510 +       uz_i(2) = eFrame(6,atom1)
511 +       uz_i(3) = eFrame(9,atom1)
512 + #endif
513 +       cx_i = ux_i(1)*xhat + ux_i(2)*yhat + ux_i(3)*zhat
514 +       cy_i = uy_i(1)*xhat + uy_i(2)*yhat + uy_i(3)*zhat
515 +       cz_i = uz_i(1)*xhat + uz_i(2)*yhat + uz_i(3)*zhat
516 +    endif
517 +
518      if (j_is_Charge) then
519         q_j = ElectrostaticMap(me2)%charge      
520      endif
521 <    
521 >
522      if (j_is_Dipole) then
523         mu_j = ElectrostaticMap(me2)%dipole_moment
524   #ifdef IS_MPI
525 <       ul_j(1) = eFrame_Col(3,atom2)
526 <       ul_j(2) = eFrame_Col(6,atom2)
527 <       ul_j(3) = eFrame_Col(9,atom2)
525 >       uz_j(1) = eFrame_Col(3,atom2)
526 >       uz_j(2) = eFrame_Col(6,atom2)
527 >       uz_j(3) = eFrame_Col(9,atom2)
528   #else
529 <       ul_j(1) = eFrame(3,atom2)
530 <       ul_j(2) = eFrame(6,atom2)
531 <       ul_j(3) = eFrame(9,atom2)
529 >       uz_j(1) = eFrame(3,atom2)
530 >       uz_j(2) = eFrame(6,atom2)
531 >       uz_j(3) = eFrame(9,atom2)
532   #endif
533 <       ct_j = ul_j(1)*drdxj + ul_j(2)*drdyj + ul_j(3)*drdzj
533 >       ct_j = uz_j(1)*xhat + uz_j(2)*yhat + uz_j(3)*zhat
534  
535         if (j_is_SplitDipole) then
536            d_j = ElectrostaticMap(me2)%split_dipole_distance
537         endif
538      endif
539  
540 +    if (j_is_Quadrupole) then
541 +       qxx_j = ElectrostaticMap(me2)%quadrupole_moments(1)
542 +       qyy_j = ElectrostaticMap(me2)%quadrupole_moments(2)
543 +       qzz_j = ElectrostaticMap(me2)%quadrupole_moments(3)
544 + #ifdef IS_MPI
545 +       ux_j(1) = eFrame_Col(1,atom2)
546 +       ux_j(2) = eFrame_Col(4,atom2)
547 +       ux_j(3) = eFrame_Col(7,atom2)
548 +       uy_j(1) = eFrame_Col(2,atom2)
549 +       uy_j(2) = eFrame_Col(5,atom2)
550 +       uy_j(3) = eFrame_Col(8,atom2)
551 +       uz_j(1) = eFrame_Col(3,atom2)
552 +       uz_j(2) = eFrame_Col(6,atom2)
553 +       uz_j(3) = eFrame_Col(9,atom2)
554 + #else
555 +       ux_j(1) = eFrame(1,atom2)
556 +       ux_j(2) = eFrame(4,atom2)
557 +       ux_j(3) = eFrame(7,atom2)
558 +       uy_j(1) = eFrame(2,atom2)
559 +       uy_j(2) = eFrame(5,atom2)
560 +       uy_j(3) = eFrame(8,atom2)
561 +       uz_j(1) = eFrame(3,atom2)
562 +       uz_j(2) = eFrame(6,atom2)
563 +       uz_j(3) = eFrame(9,atom2)
564 + #endif
565 +       cx_j = ux_j(1)*xhat + ux_j(2)*yhat + ux_j(3)*zhat
566 +       cy_j = uy_j(1)*xhat + uy_j(2)*yhat + uy_j(3)*zhat
567 +       cz_j = uz_j(1)*xhat + uz_j(2)*yhat + uz_j(3)*zhat
568 +    endif
569 +  
570 + !!$    switcher = 1.0d0
571 + !!$    dswitcher = 0.0d0
572 + !!$    ebalance = 0.0d0
573 + !!$    ! weaken the dipole interaction at close range for TAP water
574 + !!$    if (j_is_Tap .and. i_is_Tap) then
575 + !!$      call calc_switch(rij, mu_i, switcher, dswitcher)
576 + !!$    endif
577 +
578      epot = 0.0_dp
579      dudx = 0.0_dp
580      dudy = 0.0_dp
581      dudz = 0.0_dp
582  
583 <    duduix = 0.0_dp
584 <    duduiy = 0.0_dp
585 <    duduiz = 0.0_dp
583 >    dudux_i = 0.0_dp
584 >    duduy_i = 0.0_dp
585 >    duduz_i = 0.0_dp
586  
587 <    dudujx = 0.0_dp
588 <    dudujy = 0.0_dp
589 <    dudujz = 0.0_dp
587 >    dudux_j = 0.0_dp
588 >    duduy_j = 0.0_dp
589 >    duduz_j = 0.0_dp
590  
591      if (i_is_Charge) then
592  
593         if (j_is_Charge) then
427          
428          vterm = pre11 * q_i * q_j * riji
429          vpair = vpair + vterm
430          epot = epot + sw*vterm
594  
595 <          dudr  = - sw * vterm * riji
595 >          if (corrMethod .eq. 1) then
596 >             vterm = pre11 * q_i * q_j * (riji - rcuti)
597  
598 <          dudx = dudx + dudr * drdxj
599 <          dudy = dudy + dudr * drdyj
600 <          dudz = dudz + dudr * drdzj
601 <      
602 <       endif
598 >             vpair = vpair + vterm
599 >             epot = epot + sw * vterm
600 >            
601 >             dudr  = - sw * pre11 * q_i * q_j * (riji*riji*riji - rcuti2*rcuti)
602 >            
603 >             dudx = dudx + dudr * d(1)
604 >             dudy = dudy + dudr * d(2)
605 >             dudz = dudz + dudr * d(3)
606  
440       if (j_is_Dipole) then
441
442          if (j_is_SplitDipole) then
443             BigR = sqrt(r2 + 0.25_dp * d_j * d_j)
444             ri = 1.0_dp / BigR
445             scale = rij * ri
607            else
608 <             ri = riji
448 <             scale = 1.0_dp
449 <          endif
608 >             vterm = pre11 * q_i * q_j * riji
609  
610 <          ri2 = ri * ri
611 <          ri3 = ri2 * ri
453 <          sc2 = scale * scale
610 >             vpair = vpair + vterm
611 >             epot = epot + sw * vterm
612              
613 <          pref = pre12 * q_i * mu_j
614 <          vterm = pref * ct_j * ri2 * scale
615 <          vpair = vpair + vterm
616 <          epot = epot + sw * vterm
613 >             dudr  = - sw * vterm * riji
614 >            
615 >             dudx = dudx + dudr * xhat
616 >             dudy = dudy + dudr * yhat
617 >             dudz = dudz + dudr * zhat
618  
619 <          !! this has a + sign in the () because the rij vector is
461 <          !! r_j - r_i and the charge-dipole potential takes the origin
462 <          !! as the point dipole, which is atom j in this case.
619 >          endif
620  
464          dudx = dudx + pref * sw * ri3 * ( ul_j(1) + 3.0d0*ct_j*xhat*sc2)
465          dudy = dudy + pref * sw * ri3 * ( ul_j(2) + 3.0d0*ct_j*yhat*sc2)
466          dudz = dudz + pref * sw * ri3 * ( ul_j(3) + 3.0d0*ct_j*zhat*sc2)
467
468          dudujx = dudujx - pref * sw * ri2 * xhat * scale
469          dudujy = dudujy - pref * sw * ri2 * yhat * scale
470          dudujz = dudujz - pref * sw * ri2 * zhat * scale
471          
621         endif
622  
623 <    endif
475 <  
476 <    if (i_is_Dipole) then
477 <      
478 <       if (j_is_Charge) then
623 >       if (j_is_Dipole) then
624  
625 <          if (i_is_SplitDipole) then
481 <             BigR = sqrt(r2 + 0.25_dp * d_i * d_i)
482 <             ri = 1.0_dp / BigR
483 <             scale = rij * ri
484 <          else
485 <             ri = riji
486 <             scale = 1.0_dp
487 <          endif
625 >          pref = sw * pre12 * q_i * mu_j
626  
627 <          ri2 = ri * ri
628 <          ri3 = ri2 * ri
629 <          sc2 = scale * scale
627 >          if (corrMethod .eq. 1) then
628 >             ri2 = riji * riji
629 >             ri3 = ri2 * riji
630 >
631 >             vterm = - pref * ct_j * (ri2 - rcuti2)
632 >             vpair = vpair + swi*vterm
633 >             epot = epot + vterm
634              
635 <          pref = pre12 * q_j * mu_i
636 <          vterm = pref * ct_i * ri2 * scale
637 <          vpair = vpair + vterm
638 <          epot = epot + sw * vterm
635 >             !! this has a + sign in the () because the rij vector is
636 >             !! r_j - r_i and the charge-dipole potential takes the origin
637 >             !! as the point dipole, which is atom j in this case.
638 >            
639 >             dudx = dudx - pref * ( ri3*( uz_j(1) - 3.0d0*ct_j*xhat) &
640 >                  - rcuti3*( uz_j(1) - 3.0d0*ct_j*d(1)*rcuti ) )
641 >             dudy = dudy - pref * ( ri3*( uz_j(2) - 3.0d0*ct_j*yhat) &
642 >                  - rcuti3*( uz_j(2) - 3.0d0*ct_j*d(2)*rcuti ) )
643 >             dudz = dudz - pref * ( ri3*( uz_j(3) - 3.0d0*ct_j*zhat) &
644 >                  - rcuti3*( uz_j(3) - 3.0d0*ct_j*d(3)*rcuti ) )
645 >            
646 >             duduz_j(1) = duduz_j(1) - pref*( ri2*xhat - d(1)*rcuti3 )
647 >             duduz_j(2) = duduz_j(2) - pref*( ri2*yhat - d(2)*rcuti3 )
648 >             duduz_j(3) = duduz_j(3) - pref*( ri2*zhat - d(3)*rcuti3 )
649  
498          dudx = dudx + pref * sw * ri3 * ( ul_i(1) - 3.0d0 * ct_i * xhat*sc2)
499          dudy = dudy + pref * sw * ri3 * ( ul_i(2) - 3.0d0 * ct_i * yhat*sc2)
500          dudz = dudz + pref * sw * ri3 * ( ul_i(3) - 3.0d0 * ct_i * zhat*sc2)
501
502          duduix = duduix + pref * sw * ri2 * xhat * scale
503          duduiy = duduiy + pref * sw * ri2 * yhat * scale
504          duduiz = duduiz + pref * sw * ri2 * zhat * scale
505       endif
506
507       if (j_is_Dipole) then
508
509          if (i_is_SplitDipole) then
510             if (j_is_SplitDipole) then
511                BigR = sqrt(r2 + 0.25_dp * d_i * d_i + 0.25_dp * d_j * d_j)
512             else
513                BigR = sqrt(r2 + 0.25_dp * d_i * d_i)
514             endif
515             ri = 1.0_dp / BigR
516             scale = rij * ri                
650            else
651               if (j_is_SplitDipole) then
652                  BigR = sqrt(r2 + 0.25_dp * d_j * d_j)
653                  ri = 1.0_dp / BigR
654 <                scale = rij * ri                            
655 <             else                
654 >                scale = rij * ri
655 >             else
656                  ri = riji
657                  scale = 1.0_dp
658               endif
659 +            
660 +             ri2 = ri * ri
661 +             ri3 = ri2 * ri
662 +             sc2 = scale * scale
663 +            
664 +             vterm = - pref * ct_j * ri2 * scale
665 +             vpair = vpair + swi * vterm
666 +             epot = epot + vterm
667 +            
668 +             !! this has a + sign in the () because the rij vector is
669 +             !! r_j - r_i and the charge-dipole potential takes the origin
670 +             !! as the point dipole, which is atom j in this case.
671 +            
672 +             dudx = dudx - pref * ri3 * ( uz_j(1) - 3.0d0*ct_j*xhat*sc2)
673 +             dudy = dudy - pref * ri3 * ( uz_j(2) - 3.0d0*ct_j*yhat*sc2)
674 +             dudz = dudz - pref * ri3 * ( uz_j(3) - 3.0d0*ct_j*zhat*sc2)
675 +            
676 +             duduz_j(1) = duduz_j(1) - pref * ri2 * xhat * scale
677 +             duduz_j(2) = duduz_j(2) - pref * ri2 * yhat * scale
678 +             duduz_j(3) = duduz_j(3) - pref * ri2 * zhat * scale
679 +
680            endif
681 +       endif
682  
683 <          ct_ij = ul_i(1)*ul_j(1) + ul_i(2)*ul_j(2) + ul_i(3)*ul_j(3)
684 <
685 <          ri2 = ri * ri
531 <          ri3 = ri2 * ri
683 >       if (j_is_Quadrupole) then
684 >          ri2 = riji * riji
685 >          ri3 = ri2 * riji
686            ri4 = ri2 * ri2
687 <          sc2 = scale * scale
687 >          cx2 = cx_j * cx_j
688 >          cy2 = cy_j * cy_j
689 >          cz2 = cz_j * cz_j
690  
535          pref = pre22 * mu_i * mu_j
536          vterm = pref * ri3 * (ct_ij - 3.0d0 * ct_i * ct_j * sc2)
537          vpair = vpair + vterm
538          epot = epot + sw * vterm
539          
540          a1 = 5.0d0 * ct_i * ct_j * sc2 - ct_ij
691  
692 <          dudx=dudx+pref*sw*3.0d0*ri4*scale*(a1*xhat-ct_i*ul_j(1)-ct_j*ul_i(1))
543 <          dudy=dudy+pref*sw*3.0d0*ri4*scale*(a1*yhat-ct_i*ul_j(2)-ct_j*ul_i(2))
544 <          dudz=dudz+pref*sw*3.0d0*ri4*scale*(a1*zhat-ct_i*ul_j(3)-ct_j*ul_i(3))
692 >          pref =  sw * pre14 * q_i / 3.0_dp
693  
694 <          duduix = duduix + pref*sw*ri3*(ul_j(1) - 3.0d0*ct_j*xhat*sc2)
695 <          duduiy = duduiy + pref*sw*ri3*(ul_j(2) - 3.0d0*ct_j*yhat*sc2)
696 <          duduiz = duduiz + pref*sw*ri3*(ul_j(3) - 3.0d0*ct_j*zhat*sc2)
697 <
698 <          dudujx = dudujx + pref*sw*ri3*(ul_i(1) - 3.0d0*ct_i*xhat*sc2)
699 <          dudujy = dudujy + pref*sw*ri3*(ul_i(2) - 3.0d0*ct_i*yhat*sc2)
700 <          dudujz = dudujz + pref*sw*ri3*(ul_i(3) - 3.0d0*ct_i*zhat*sc2)
694 >          if (corrMethod .eq. 1) then
695 >             vterm1 = pref * ri3*( qxx_j * (3.0_dp*cx2 - 1.0_dp) + &
696 >                  qyy_j * (3.0_dp*cy2 - 1.0_dp) + &
697 >                  qzz_j * (3.0_dp*cz2 - 1.0_dp) )
698 >             vterm2 = pref * rcuti3*( qxx_j * (3.0_dp*cx2 - 1.0_dp) + &
699 >                  qyy_j * (3.0_dp*cy2 - 1.0_dp) + &
700 >                  qzz_j * (3.0_dp*cz2 - 1.0_dp) )
701 >             vpair = vpair + swi*( vterm1 - vterm2 )
702 >             epot = epot + ( vterm1 - vterm2 )
703 >            
704 >             dudx = dudx - (5.0_dp * &
705 >                  (vterm1*riji*xhat - vterm2*rcuti2*d(1))) + pref * ( &
706 >                  (ri4 - rcuti4)*(qxx_j*(6.0_dp*cx_j*ux_j(1)) - &
707 >                  qxx_j*2.0_dp*(xhat - rcuti*d(1))) + &
708 >                  (ri4 - rcuti4)*(qyy_j*(6.0_dp*cy_j*uy_j(1)) - &
709 >                  qyy_j*2.0_dp*(xhat - rcuti*d(1))) + &
710 >                  (ri4 - rcuti4)*(qzz_j*(6.0_dp*cz_j*uz_j(1)) - &
711 >                  qzz_j*2.0_dp*(xhat - rcuti*d(1))) )
712 >             dudy = dudy - (5.0_dp * &
713 >                  (vterm1*riji*yhat - vterm2*rcuti2*d(2))) + pref * ( &
714 >                  (ri4 - rcuti4)*(qxx_j*(6.0_dp*cx_j*ux_j(2)) - &
715 >                  qxx_j*2.0_dp*(yhat - rcuti*d(2))) + &
716 >                  (ri4 - rcuti4)*(qyy_j*(6.0_dp*cy_j*uy_j(2)) - &
717 >                  qyy_j*2.0_dp*(yhat - rcuti*d(2))) + &
718 >                  (ri4 - rcuti4)*(qzz_j*(6.0_dp*cz_j*uz_j(2)) - &
719 >                  qzz_j*2.0_dp*(yhat - rcuti*d(2))) )
720 >             dudz = dudz - (5.0_dp * &
721 >                  (vterm1*riji*zhat - vterm2*rcuti2*d(3))) + pref * ( &
722 >                  (ri4 - rcuti4)*(qxx_j*(6.0_dp*cx_j*ux_j(3)) - &
723 >                  qxx_j*2.0_dp*(zhat - rcuti*d(3))) + &
724 >                  (ri4 - rcuti4)*(qyy_j*(6.0_dp*cy_j*uy_j(3)) - &
725 >                  qyy_j*2.0_dp*(zhat - rcuti*d(3))) + &
726 >                  (ri4 - rcuti4)*(qzz_j*(6.0_dp*cz_j*uz_j(3)) - &
727 >                  qzz_j*2.0_dp*(zhat - rcuti*d(3))) )
728 >            
729 >             dudux_j(1) = dudux_j(1) + pref * (ri3*(qxx_j*6.0_dp*cx_j*xhat) - &
730 >                  rcuti4*(qxx_j*6.0_dp*cx_j*d(1)))
731 >             dudux_j(2) = dudux_j(2) + pref * (ri3*(qxx_j*6.0_dp*cx_j*yhat) - &
732 >                  rcuti4*(qxx_j*6.0_dp*cx_j*d(2)))
733 >             dudux_j(3) = dudux_j(3) + pref * (ri3*(qxx_j*6.0_dp*cx_j*zhat) - &
734 >                  rcuti4*(qxx_j*6.0_dp*cx_j*d(3)))
735 >            
736 >             duduy_j(1) = duduy_j(1) + pref * (ri3*(qyy_j*6.0_dp*cy_j*xhat) - &
737 >                  rcuti4*(qyy_j*6.0_dp*cx_j*d(1)))
738 >             duduy_j(2) = duduy_j(2) + pref * (ri3*(qyy_j*6.0_dp*cy_j*yhat) - &
739 >                  rcuti4*(qyy_j*6.0_dp*cx_j*d(2)))
740 >             duduy_j(3) = duduy_j(3) + pref * (ri3*(qyy_j*6.0_dp*cy_j*zhat) - &
741 >                  rcuti4*(qyy_j*6.0_dp*cx_j*d(3)))
742 >            
743 >             duduz_j(1) = duduz_j(1) + pref * (ri3*(qzz_j*6.0_dp*cz_j*xhat) - &
744 >                  rcuti4*(qzz_j*6.0_dp*cx_j*d(1)))
745 >             duduz_j(2) = duduz_j(2) + pref * (ri3*(qzz_j*6.0_dp*cz_j*yhat) - &
746 >                  rcuti4*(qzz_j*6.0_dp*cx_j*d(2)))
747 >             duduz_j(3) = duduz_j(3) + pref * (ri3*(qzz_j*6.0_dp*cz_j*zhat) - &
748 >                  rcuti4*(qzz_j*6.0_dp*cx_j*d(3)))
749 >        
750 >          else
751 >             vterm = pref * ri3 * (qxx_j * (3.0_dp*cx2 - 1.0_dp) + &
752 >                  qyy_j * (3.0_dp*cy2 - 1.0_dp) + &
753 >                  qzz_j * (3.0_dp*cz2 - 1.0_dp))
754 >             vpair = vpair + swi * vterm
755 >             epot = epot + vterm
756 >            
757 >             dudx = dudx - 5.0_dp*vterm*riji*xhat + pref * ri4 * ( &
758 >                  qxx_j*(6.0_dp*cx_j*ux_j(1) - 2.0_dp*xhat) + &
759 >                  qyy_j*(6.0_dp*cy_j*uy_j(1) - 2.0_dp*xhat) + &
760 >                  qzz_j*(6.0_dp*cz_j*uz_j(1) - 2.0_dp*xhat) )
761 >             dudy = dudy - 5.0_dp*vterm*riji*yhat + pref * ri4 * ( &
762 >                  qxx_j*(6.0_dp*cx_j*ux_j(2) - 2.0_dp*yhat) + &
763 >                  qyy_j*(6.0_dp*cy_j*uy_j(2) - 2.0_dp*yhat) + &
764 >                  qzz_j*(6.0_dp*cz_j*uz_j(2) - 2.0_dp*yhat) )
765 >             dudz = dudz - 5.0_dp*vterm*riji*zhat + pref * ri4 * ( &
766 >                  qxx_j*(6.0_dp*cx_j*ux_j(3) - 2.0_dp*zhat) + &
767 >                  qyy_j*(6.0_dp*cy_j*uy_j(3) - 2.0_dp*zhat) + &
768 >                  qzz_j*(6.0_dp*cz_j*uz_j(3) - 2.0_dp*zhat) )
769 >            
770 >             dudux_j(1) = dudux_j(1) + pref * ri3*(qxx_j*6.0_dp*cx_j*xhat)
771 >             dudux_j(2) = dudux_j(2) + pref * ri3*(qxx_j*6.0_dp*cx_j*yhat)
772 >             dudux_j(3) = dudux_j(3) + pref * ri3*(qxx_j*6.0_dp*cx_j*zhat)
773 >            
774 >             duduy_j(1) = duduy_j(1) + pref * ri3*(qyy_j*6.0_dp*cy_j*xhat)
775 >             duduy_j(2) = duduy_j(2) + pref * ri3*(qyy_j*6.0_dp*cy_j*yhat)
776 >             duduy_j(3) = duduy_j(3) + pref * ri3*(qyy_j*6.0_dp*cy_j*zhat)
777 >            
778 >             duduz_j(1) = duduz_j(1) + pref * ri3*(qzz_j*6.0_dp*cz_j*xhat)
779 >             duduz_j(2) = duduz_j(2) + pref * ri3*(qzz_j*6.0_dp*cz_j*yhat)
780 >             duduz_j(3) = duduz_j(3) + pref * ri3*(qzz_j*6.0_dp*cz_j*zhat)
781 >          
782 >          endif
783 >       endif
784 >    endif
785 >
786 >    if (i_is_Dipole) then
787 >
788 >       if (j_is_Charge) then
789 >
790 >          pref = sw * pre12 * q_j * mu_i
791 >
792 >          if (corrMethod .eq. 1) then
793 >             ri2 = riji * riji
794 >             ri3 = ri2 * riji
795 >
796 >             vterm = pref * ct_i * (ri2 - rcuti2)
797 >             vpair = vpair + swi * vterm
798 >             epot = epot + vterm
799 >            
800 >             !! this has a + sign in the () because the rij vector is
801 >             !! r_j - r_i and the charge-dipole potential takes the origin
802 >             !! as the point dipole, which is atom j in this case.
803 >            
804 >             dudx = dudx + pref * ( ri3*( uz_i(1) - 3.0d0*ct_i*xhat) &
805 >                  - rcuti3*( uz_i(1) - 3.0d0*ct_i*d(1)*rcuti ) )
806 >             dudy = dudy + pref * ( ri3*( uz_i(2) - 3.0d0*ct_i*yhat) &
807 >                  - rcuti3*( uz_i(2) - 3.0d0*ct_i*d(2)*rcuti ) )
808 >             dudz = dudz + pref * ( ri3*( uz_i(3) - 3.0d0*ct_i*zhat) &
809 >                  - rcuti3*( uz_i(3) - 3.0d0*ct_i*d(3)*rcuti ) )
810 >            
811 >             duduz_i(1) = duduz_i(1) - pref*( ri2*xhat - d(1)*rcuti3 )
812 >             duduz_i(2) = duduz_i(2) - pref*( ri2*yhat - d(2)*rcuti3 )
813 >             duduz_i(3) = duduz_i(3) - pref*( ri2*zhat - d(3)*rcuti3 )
814 >
815 >          else
816 >             if (i_is_SplitDipole) then
817 >                BigR = sqrt(r2 + 0.25_dp * d_i * d_i)
818 >                ri = 1.0_dp / BigR
819 >                scale = rij * ri
820 >             else
821 >                ri = riji
822 >                scale = 1.0_dp
823 >             endif
824 >            
825 >             ri2 = ri * ri
826 >             ri3 = ri2 * ri
827 >             sc2 = scale * scale
828 >            
829 >             vterm = pref * ct_i * ri2 * scale
830 >             vpair = vpair + swi * vterm
831 >             epot = epot + vterm
832 >            
833 >             dudx = dudx + pref * ri3 * ( uz_i(1) - 3.0d0 * ct_i * xhat*sc2)
834 >             dudy = dudy + pref * ri3 * ( uz_i(2) - 3.0d0 * ct_i * yhat*sc2)
835 >             dudz = dudz + pref * ri3 * ( uz_i(3) - 3.0d0 * ct_i * zhat*sc2)
836 >            
837 >             duduz_i(1) = duduz_i(1) + pref * ri2 * xhat * scale
838 >             duduz_i(2) = duduz_i(2) + pref * ri2 * yhat * scale
839 >             duduz_i(3) = duduz_i(3) + pref * ri2 * zhat * scale
840 >          endif
841 >       endif
842 >
843 >       if (j_is_Dipole) then
844 >
845 >          pref = sw * pre22 * mu_i * mu_j
846 >
847 >          if (corrMethod .eq. 1) then
848 >             ri2 = riji * riji
849 >             ri3 = ri2 * riji
850 >             ri4 = ri2 * ri2
851 >
852 >             vterm = pref * (ri3 - rcuti3) * (ct_ij - 3.0d0 * ct_i * ct_j)
853 >             vpair = vpair + swi * vterm
854 >             epot = epot + vterm
855 >            
856 >             a1 = 5.0d0 * ct_i * ct_j - ct_ij
857 >            
858 >             dudx = dudx + pref*3.0d0*ri4 &
859 >                  *(a1*xhat-ct_i*uz_j(1)-ct_j*uz_i(1)) - &
860 >                  pref*3.0d0*rcuti4*(a1*rcuti*d(1)-ct_i*uz_j(1)-ct_j*uz_i(1))
861 >             dudy = dudy + pref*3.0d0*ri4 &
862 >                  *(a1*yhat-ct_i*uz_j(2)-ct_j*uz_i(2)) - &
863 >                  pref*3.0d0*rcuti4*(a1*rcuti*d(2)-ct_i*uz_j(2)-ct_j*uz_i(2))
864 >             dudz = dudz + pref*3.0d0*ri4 &
865 >                  *(a1*zhat-ct_i*uz_j(3)-ct_j*uz_i(3)) - &
866 >                  pref*3.0d0*rcuti4*(a1*rcuti*d(3)-ct_i*uz_j(3)-ct_j*uz_i(3))
867 >            
868 >             duduz_i(1) = duduz_i(1) + pref*(ri3*(uz_j(1) - 3.0d0*ct_j*xhat) &
869 >                  - rcuti3*(uz_j(1) - 3.0d0*ct_j*d(1)*rcuti))
870 >             duduz_i(2) = duduz_i(2) + pref*(ri3*(uz_j(2) - 3.0d0*ct_j*yhat) &
871 >                  - rcuti3*(uz_j(2) - 3.0d0*ct_j*d(2)*rcuti))
872 >             duduz_i(3) = duduz_i(3) + pref*(ri3*(uz_j(3) - 3.0d0*ct_j*zhat) &
873 >                  - rcuti3*(uz_j(3) - 3.0d0*ct_j*d(3)*rcuti))
874 >             duduz_j(1) = duduz_j(1) + pref*(ri3*(uz_i(1) - 3.0d0*ct_i*xhat) &
875 >                  - rcuti3*(uz_i(1) - 3.0d0*ct_i*d(1)*rcuti))
876 >             duduz_j(2) = duduz_j(2) + pref*(ri3*(uz_i(2) - 3.0d0*ct_i*yhat) &
877 >                  - rcuti3*(uz_i(2) - 3.0d0*ct_i*d(2)*rcuti))
878 >             duduz_j(3) = duduz_j(3) + pref*(ri3*(uz_i(3) - 3.0d0*ct_i*zhat) &
879 >                  - rcuti3*(uz_i(3) - 3.0d0*ct_i*d(3)*rcuti))
880 >          else
881 >            
882 >             if (i_is_SplitDipole) then
883 >                if (j_is_SplitDipole) then
884 >                   BigR = sqrt(r2 + 0.25_dp * d_i * d_i + 0.25_dp * d_j * d_j)
885 >                else
886 >                   BigR = sqrt(r2 + 0.25_dp * d_i * d_i)
887 >                endif
888 >                ri = 1.0_dp / BigR
889 >                scale = rij * ri                
890 >             else
891 >                if (j_is_SplitDipole) then
892 >                   BigR = sqrt(r2 + 0.25_dp * d_j * d_j)
893 >                   ri = 1.0_dp / BigR
894 >                   scale = rij * ri                            
895 >                else                
896 >                   ri = riji
897 >                   scale = 1.0_dp
898 >                endif
899 >             endif
900 >            
901 >             ct_ij = uz_i(1)*uz_j(1) + uz_i(2)*uz_j(2) + uz_i(3)*uz_j(3)
902 >            
903 >             ri2 = ri * ri
904 >             ri3 = ri2 * ri
905 >             ri4 = ri2 * ri2
906 >             sc2 = scale * scale
907 >            
908 >             vterm = pref * ri3 * (ct_ij - 3.0d0 * ct_i * ct_j * sc2)
909 >             vpair = vpair + swi * vterm
910 >             epot = epot + vterm
911 >            
912 >             a1 = 5.0d0 * ct_i * ct_j * sc2 - ct_ij
913 >            
914 >             dudx = dudx + pref*3.0d0*ri4*scale &
915 >                  *(a1*xhat-ct_i*uz_j(1)-ct_j*uz_i(1))
916 >             dudy = dudy + pref*3.0d0*ri4*scale &
917 >                  *(a1*yhat-ct_i*uz_j(2)-ct_j*uz_i(2))
918 >             dudz = dudz + pref*3.0d0*ri4*scale &
919 >                  *(a1*zhat-ct_i*uz_j(3)-ct_j*uz_i(3))
920 >            
921 >             duduz_i(1) = duduz_i(1) + pref*ri3 &
922 >                  *(uz_j(1) - 3.0d0*ct_j*xhat*sc2)
923 >             duduz_i(2) = duduz_i(2) + pref*ri3 &
924 >                  *(uz_j(2) - 3.0d0*ct_j*yhat*sc2)
925 >             duduz_i(3) = duduz_i(3) + pref*ri3 &
926 >                  *(uz_j(3) - 3.0d0*ct_j*zhat*sc2)
927 >            
928 >             duduz_j(1) = duduz_j(1) + pref*ri3 &
929 >                  *(uz_i(1) - 3.0d0*ct_i*xhat*sc2)
930 >             duduz_j(2) = duduz_j(2) + pref*ri3 &
931 >                  *(uz_i(2) - 3.0d0*ct_i*yhat*sc2)
932 >             duduz_j(3) = duduz_j(3) + pref*ri3 &
933 >                  *(uz_i(3) - 3.0d0*ct_i*zhat*sc2)
934 >          endif
935         endif
936 +    endif
937  
938 +    if (i_is_Quadrupole) then
939 +       if (j_is_Charge) then
940 +
941 +          ri2 = riji * riji
942 +          ri3 = ri2 * riji
943 +          ri4 = ri2 * ri2
944 +          cx2 = cx_i * cx_i
945 +          cy2 = cy_i * cy_i
946 +          cz2 = cz_i * cz_i
947 +
948 +          pref = sw * pre14 * q_j / 3.0_dp
949 +
950 +          if (corrMethod .eq. 1) then
951 +             vterm1 = pref * ri3*( qxx_i * (3.0_dp*cx2 - 1.0_dp) + &
952 +                  qyy_i * (3.0_dp*cy2 - 1.0_dp) + &
953 +                  qzz_i * (3.0_dp*cz2 - 1.0_dp) )
954 +             vterm2 = pref * rcuti3*( qxx_i * (3.0_dp*cx2 - 1.0_dp) + &
955 +                  qyy_i * (3.0_dp*cy2 - 1.0_dp) + &
956 +                  qzz_i * (3.0_dp*cz2 - 1.0_dp) )
957 +             vpair = vpair + swi * ( vterm1 - vterm2 )
958 +             epot = epot + ( vterm1 - vterm2 )
959 +            
960 +             dudx = dudx - (5.0_dp*(vterm1*riji*xhat - vterm2*rcuti2*d(1))) + &
961 +                  pref * ( (ri4 - rcuti4)*(qxx_i*(6.0_dp*cx_i*ux_i(1)) - &
962 +                  qxx_i*2.0_dp*(xhat - rcuti*d(1))) + &
963 +                  (ri4 - rcuti4)*(qyy_i*(6.0_dp*cy_i*uy_i(1)) - &
964 +                  qyy_i*2.0_dp*(xhat - rcuti*d(1))) + &
965 +                  (ri4 - rcuti4)*(qzz_i*(6.0_dp*cz_i*uz_i(1)) - &
966 +                  qzz_i*2.0_dp*(xhat - rcuti*d(1))) )
967 +             dudy = dudy - (5.0_dp*(vterm1*riji*yhat - vterm2*rcuti2*d(2))) + &
968 +                  pref * ( (ri4 - rcuti4)*(qxx_i*(6.0_dp*cx_i*ux_i(2)) - &
969 +                  qxx_i*2.0_dp*(yhat - rcuti*d(2))) + &
970 +                  (ri4 - rcuti4)*(qyy_i*(6.0_dp*cy_i*uy_i(2)) - &
971 +                  qyy_i*2.0_dp*(yhat - rcuti*d(2))) + &
972 +                  (ri4 - rcuti4)*(qzz_i*(6.0_dp*cz_i*uz_i(2)) - &
973 +                  qzz_i*2.0_dp*(yhat - rcuti*d(2))) )
974 +             dudz = dudz - (5.0_dp*(vterm1*riji*zhat - vterm2*rcuti2*d(3))) + &
975 +                  pref * ( (ri4 - rcuti4)*(qxx_i*(6.0_dp*cx_i*ux_i(3)) - &
976 +                  qxx_i*2.0_dp*(zhat - rcuti*d(3))) + &
977 +                  (ri4 - rcuti4)*(qyy_i*(6.0_dp*cy_i*uy_i(3)) - &
978 +                  qyy_i*2.0_dp*(zhat - rcuti*d(3))) + &
979 +                  (ri4 - rcuti4)*(qzz_i*(6.0_dp*cz_i*uz_i(3)) - &
980 +                  qzz_i*2.0_dp*(zhat - rcuti*d(3))) )
981 +            
982 +             dudux_i(1) = dudux_i(1) + pref * (ri3*(qxx_i*6.0_dp*cx_i*xhat) - &
983 +                  rcuti4*(qxx_i*6.0_dp*cx_i*d(1)))
984 +             dudux_i(2) = dudux_i(2) + pref * (ri3*(qxx_i*6.0_dp*cx_i*yhat) - &
985 +                  rcuti4*(qxx_i*6.0_dp*cx_i*d(2)))
986 +             dudux_i(3) = dudux_i(3) + pref * (ri3*(qxx_i*6.0_dp*cx_i*zhat) - &
987 +                  rcuti4*(qxx_i*6.0_dp*cx_i*d(3)))
988 +            
989 +             duduy_i(1) = duduy_i(1) + pref * (ri3*(qyy_i*6.0_dp*cy_i*xhat) - &
990 +                  rcuti4*(qyy_i*6.0_dp*cx_i*d(1)))
991 +             duduy_i(2) = duduy_i(2) + pref * (ri3*(qyy_i*6.0_dp*cy_i*yhat) - &
992 +                  rcuti4*(qyy_i*6.0_dp*cx_i*d(2)))
993 +             duduy_i(3) = duduy_i(3) + pref * (ri3*(qyy_i*6.0_dp*cy_i*zhat) - &
994 +                  rcuti4*(qyy_i*6.0_dp*cx_i*d(3)))
995 +            
996 +             duduz_i(1) = duduz_i(1) + pref * (ri3*(qzz_i*6.0_dp*cz_i*xhat) - &
997 +                  rcuti4*(qzz_i*6.0_dp*cx_i*d(1)))
998 +             duduz_i(2) = duduz_i(2) + pref * (ri3*(qzz_i*6.0_dp*cz_i*yhat) - &
999 +                  rcuti4*(qzz_i*6.0_dp*cx_i*d(2)))
1000 +             duduz_i(3) = duduz_i(3) + pref * (ri3*(qzz_i*6.0_dp*cz_i*zhat) - &
1001 +                  rcuti4*(qzz_i*6.0_dp*cx_i*d(3)))
1002 +
1003 +          else
1004 +             vterm = pref * ri3 * (qxx_i * (3.0_dp*cx2 - 1.0_dp) + &
1005 +                  qyy_i * (3.0_dp*cy2 - 1.0_dp) + &
1006 +                  qzz_i * (3.0_dp*cz2 - 1.0_dp))
1007 +             vpair = vpair + swi * vterm
1008 +             epot = epot + vterm
1009 +            
1010 +             dudx = dudx - 5.0_dp*vterm*riji*xhat + pref * ri4 * ( &
1011 +                  qxx_i*(6.0_dp*cx_i*ux_i(1) - 2.0_dp*xhat) + &
1012 +                  qyy_i*(6.0_dp*cy_i*uy_i(1) - 2.0_dp*xhat) + &
1013 +                  qzz_i*(6.0_dp*cz_i*uz_i(1) - 2.0_dp*xhat) )
1014 +             dudy = dudy - 5.0_dp*vterm*riji*yhat + pref * ri4 * ( &
1015 +                  qxx_i*(6.0_dp*cx_i*ux_i(2) - 2.0_dp*yhat) + &
1016 +                  qyy_i*(6.0_dp*cy_i*uy_i(2) - 2.0_dp*yhat) + &
1017 +                  qzz_i*(6.0_dp*cz_i*uz_i(2) - 2.0_dp*yhat) )
1018 +             dudz = dudz - 5.0_dp*vterm*riji*zhat + pref * ri4 * ( &
1019 +                  qxx_i*(6.0_dp*cx_i*ux_i(3) - 2.0_dp*zhat) + &
1020 +                  qyy_i*(6.0_dp*cy_i*uy_i(3) - 2.0_dp*zhat) + &
1021 +                  qzz_i*(6.0_dp*cz_i*uz_i(3) - 2.0_dp*zhat) )
1022 +            
1023 +             dudux_i(1) = dudux_i(1) + pref * ri3*(qxx_i*6.0_dp*cx_i*xhat)
1024 +             dudux_i(2) = dudux_i(2) + pref * ri3*(qxx_i*6.0_dp*cx_i*yhat)
1025 +             dudux_i(3) = dudux_i(3) + pref * ri3*(qxx_i*6.0_dp*cx_i*zhat)
1026 +            
1027 +             duduy_i(1) = duduy_i(1) + pref * ri3*(qyy_i*6.0_dp*cy_i*xhat)
1028 +             duduy_i(2) = duduy_i(2) + pref * ri3*(qyy_i*6.0_dp*cy_i*yhat)
1029 +             duduy_i(3) = duduy_i(3) + pref * ri3*(qyy_i*6.0_dp*cy_i*zhat)
1030 +            
1031 +             duduz_i(1) = duduz_i(1) + pref * ri3*(qzz_i*6.0_dp*cz_i*xhat)
1032 +             duduz_i(2) = duduz_i(2) + pref * ri3*(qzz_i*6.0_dp*cz_i*yhat)
1033 +             duduz_i(3) = duduz_i(3) + pref * ri3*(qzz_i*6.0_dp*cz_i*zhat)
1034 +          endif
1035 +       endif
1036      endif
1037 <    
1037 >
1038 >
1039      if (do_pot) then
1040   #ifdef IS_MPI
1041         pot_row(atom1) = pot_row(atom1) + 0.5d0*epot
# Line 562 | Line 1044 | contains
1044         pot = pot + epot
1045   #endif
1046      endif
1047 <        
1047 >
1048   #ifdef IS_MPI
1049      f_Row(1,atom1) = f_Row(1,atom1) + dudx
1050      f_Row(2,atom1) = f_Row(2,atom1) + dudy
1051      f_Row(3,atom1) = f_Row(3,atom1) + dudz
1052 <    
1052 >
1053      f_Col(1,atom2) = f_Col(1,atom2) - dudx
1054      f_Col(2,atom2) = f_Col(2,atom2) - dudy
1055      f_Col(3,atom2) = f_Col(3,atom2) - dudz
1056 <    
1056 >
1057      if (i_is_Dipole .or. i_is_Quadrupole) then
1058 <       t_Row(1,atom1) = t_Row(1,atom1) - ul_i(2)*duduiz + ul_i(3)*duduiy
1059 <       t_Row(2,atom1) = t_Row(2,atom1) - ul_i(3)*duduix + ul_i(1)*duduiz
1060 <       t_Row(3,atom1) = t_Row(3,atom1) - ul_i(1)*duduiy + ul_i(2)*duduix
1058 >       t_Row(1,atom1)=t_Row(1,atom1) - uz_i(2)*duduz_i(3) + uz_i(3)*duduz_i(2)
1059 >       t_Row(2,atom1)=t_Row(2,atom1) - uz_i(3)*duduz_i(1) + uz_i(1)*duduz_i(3)
1060 >       t_Row(3,atom1)=t_Row(3,atom1) - uz_i(1)*duduz_i(2) + uz_i(2)*duduz_i(1)
1061      endif
1062 +    if (i_is_Quadrupole) then
1063 +       t_Row(1,atom1)=t_Row(1,atom1) - ux_i(2)*dudux_i(3) + ux_i(3)*dudux_i(2)
1064 +       t_Row(2,atom1)=t_Row(2,atom1) - ux_i(3)*dudux_i(1) + ux_i(1)*dudux_i(3)
1065 +       t_Row(3,atom1)=t_Row(3,atom1) - ux_i(1)*dudux_i(2) + ux_i(2)*dudux_i(1)
1066  
1067 +       t_Row(1,atom1)=t_Row(1,atom1) - uy_i(2)*duduy_i(3) + uy_i(3)*duduy_i(2)
1068 +       t_Row(2,atom1)=t_Row(2,atom1) - uy_i(3)*duduy_i(1) + uy_i(1)*duduy_i(3)
1069 +       t_Row(3,atom1)=t_Row(3,atom1) - uy_i(1)*duduy_i(2) + uy_i(2)*duduy_i(1)
1070 +    endif
1071 +
1072      if (j_is_Dipole .or. j_is_Quadrupole) then
1073 <       t_Col(1,atom2) = t_Col(1,atom2) - ul_j(2)*dudujz + ul_j(3)*dudujy
1074 <       t_Col(2,atom2) = t_Col(2,atom2) - ul_j(3)*dudujx + ul_j(1)*dudujz
1075 <       t_Col(3,atom2) = t_Col(3,atom2) - ul_j(1)*dudujy + ul_j(2)*dudujx
1073 >       t_Col(1,atom2)=t_Col(1,atom2) - uz_j(2)*duduz_j(3) + uz_j(3)*duduz_j(2)
1074 >       t_Col(2,atom2)=t_Col(2,atom2) - uz_j(3)*duduz_j(1) + uz_j(1)*duduz_j(3)
1075 >       t_Col(3,atom2)=t_Col(3,atom2) - uz_j(1)*duduz_j(2) + uz_j(2)*duduz_j(1)
1076      endif
1077 +    if (j_is_Quadrupole) then
1078 +       t_Col(1,atom2)=t_Col(1,atom2) - ux_j(2)*dudux_j(3) + ux_j(3)*dudux_j(2)
1079 +       t_Col(2,atom2)=t_Col(2,atom2) - ux_j(3)*dudux_j(1) + ux_j(1)*dudux_j(3)
1080 +       t_Col(3,atom2)=t_Col(3,atom2) - ux_j(1)*dudux_j(2) + ux_j(2)*dudux_j(1)
1081  
1082 +       t_Col(1,atom2)=t_Col(1,atom2) - uy_j(2)*duduy_j(3) + uy_j(3)*duduy_j(2)
1083 +       t_Col(2,atom2)=t_Col(2,atom2) - uy_j(3)*duduy_j(1) + uy_j(1)*duduy_j(3)
1084 +       t_Col(3,atom2)=t_Col(3,atom2) - uy_j(1)*duduy_j(2) + uy_j(2)*duduy_j(1)
1085 +    endif
1086 +
1087   #else
1088      f(1,atom1) = f(1,atom1) + dudx
1089      f(2,atom1) = f(2,atom1) + dudy
1090      f(3,atom1) = f(3,atom1) + dudz
1091 <    
1091 >
1092      f(1,atom2) = f(1,atom2) - dudx
1093      f(2,atom2) = f(2,atom2) - dudy
1094      f(3,atom2) = f(3,atom2) - dudz
1095 <    
1095 >
1096      if (i_is_Dipole .or. i_is_Quadrupole) then
1097 <       t(1,atom1) = t(1,atom1) - ul_i(2)*duduiz + ul_i(3)*duduiy
1098 <       t(2,atom1) = t(2,atom1) - ul_i(3)*duduix + ul_i(1)*duduiz
1099 <       t(3,atom1) = t(3,atom1) - ul_i(1)*duduiy + ul_i(2)*duduix
1097 >       t(1,atom1)=t(1,atom1) - uz_i(2)*duduz_i(3) + uz_i(3)*duduz_i(2)
1098 >       t(2,atom1)=t(2,atom1) - uz_i(3)*duduz_i(1) + uz_i(1)*duduz_i(3)
1099 >       t(3,atom1)=t(3,atom1) - uz_i(1)*duduz_i(2) + uz_i(2)*duduz_i(1)
1100      endif
1101 <      
1101 >    if (i_is_Quadrupole) then
1102 >       t(1,atom1)=t(1,atom1) - ux_i(2)*dudux_i(3) + ux_i(3)*dudux_i(2)
1103 >       t(2,atom1)=t(2,atom1) - ux_i(3)*dudux_i(1) + ux_i(1)*dudux_i(3)
1104 >       t(3,atom1)=t(3,atom1) - ux_i(1)*dudux_i(2) + ux_i(2)*dudux_i(1)
1105 >
1106 >       t(1,atom1)=t(1,atom1) - uy_i(2)*duduy_i(3) + uy_i(3)*duduy_i(2)
1107 >       t(2,atom1)=t(2,atom1) - uy_i(3)*duduy_i(1) + uy_i(1)*duduy_i(3)
1108 >       t(3,atom1)=t(3,atom1) - uy_i(1)*duduy_i(2) + uy_i(2)*duduy_i(1)
1109 >    endif
1110 >
1111      if (j_is_Dipole .or. j_is_Quadrupole) then
1112 <       t(1,atom2) = t(1,atom2) - ul_j(2)*dudujz + ul_j(3)*dudujy
1113 <       t(2,atom2) = t(2,atom2) - ul_j(3)*dudujx + ul_j(1)*dudujz
1114 <       t(3,atom2) = t(3,atom2) - ul_j(1)*dudujy + ul_j(2)*dudujx
1112 >       t(1,atom2)=t(1,atom2) - uz_j(2)*duduz_j(3) + uz_j(3)*duduz_j(2)
1113 >       t(2,atom2)=t(2,atom2) - uz_j(3)*duduz_j(1) + uz_j(1)*duduz_j(3)
1114 >       t(3,atom2)=t(3,atom2) - uz_j(1)*duduz_j(2) + uz_j(2)*duduz_j(1)
1115      endif
1116 +    if (j_is_Quadrupole) then
1117 +       t(1,atom2)=t(1,atom2) - ux_j(2)*dudux_j(3) + ux_j(3)*dudux_j(2)
1118 +       t(2,atom2)=t(2,atom2) - ux_j(3)*dudux_j(1) + ux_j(1)*dudux_j(3)
1119 +       t(3,atom2)=t(3,atom2) - ux_j(1)*dudux_j(2) + ux_j(2)*dudux_j(1)
1120 +
1121 +       t(1,atom2)=t(1,atom2) - uy_j(2)*duduy_j(3) + uy_j(3)*duduy_j(2)
1122 +       t(2,atom2)=t(2,atom2) - uy_j(3)*duduy_j(1) + uy_j(1)*duduy_j(3)
1123 +       t(3,atom2)=t(3,atom2) - uy_j(1)*duduy_j(2) + uy_j(2)*duduy_j(1)
1124 +    endif
1125 +
1126   #endif
1127 <    
1127 >
1128   #ifdef IS_MPI
1129      id1 = AtomRowToGlobal(atom1)
1130      id2 = AtomColToGlobal(atom2)
# Line 615 | Line 1134 | contains
1134   #endif
1135  
1136      if (molMembershipList(id1) .ne. molMembershipList(id2)) then
1137 <      
1137 >
1138         fpair(1) = fpair(1) + dudx
1139         fpair(2) = fpair(2) + dudy
1140         fpair(3) = fpair(3) + dudz
# Line 624 | Line 1143 | contains
1143  
1144      return
1145    end subroutine doElectrostaticPair
1146 <  
1146 >
1147 >  !! calculates the switching functions and their derivatives for a given
1148 >  subroutine calc_switch(r, mu, scale, dscale)
1149 >
1150 >    real (kind=dp), intent(in) :: r, mu
1151 >    real (kind=dp), intent(inout) :: scale, dscale
1152 >    real (kind=dp) :: rl, ru, mulow, minRatio, temp, scaleVal
1153 >
1154 >    ! distances must be in angstroms
1155 >    rl = 2.75d0
1156 >    ru = 3.75d0
1157 >    mulow = 0.0d0 !3.3856d0 ! 1.84 * 1.84
1158 >    minRatio = mulow / (mu*mu)
1159 >    scaleVal = 1.0d0 - minRatio
1160 >    
1161 >    if (r.lt.rl) then
1162 >       scale = minRatio
1163 >       dscale = 0.0d0
1164 >    elseif (r.gt.ru) then
1165 >       scale = 1.0d0
1166 >       dscale = 0.0d0
1167 >    else
1168 >       scale = 1.0d0 - scaleVal*((ru + 2.0d0*r - 3.0d0*rl) * (ru-r)**2) &
1169 >                        / ((ru - rl)**3)
1170 >       dscale = -scaleVal * 6.0d0 * (r-ru)*(r-rl)/((ru - rl)**3)    
1171 >    endif
1172 >        
1173 >    return
1174 >  end subroutine calc_switch
1175 >
1176 >  subroutine destroyElectrostaticTypes()
1177 >
1178 >    if(allocated(ElectrostaticMap)) deallocate(ElectrostaticMap)
1179 >
1180 >  end subroutine destroyElectrostaticTypes
1181 >
1182   end module electrostatic_module

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines