ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/UseTheForce/DarkSide/electrostatic.F90
(Generate patch)

Comparing trunk/OOPSE-4/src/UseTheForce/DarkSide/electrostatic.F90 (file contents):
Revision 2118 by gezelter, Fri Mar 11 15:53:18 2005 UTC vs.
Revision 2330 by chuckv, Mon Sep 26 17:07:54 2005 UTC

# Line 40 | Line 40 | module electrostatic_module
40   !!
41  
42   module electrostatic_module
43 <  
43 >
44    use force_globals
45    use definitions
46    use atype_module
# Line 54 | Line 54 | module electrostatic_module
54  
55    PRIVATE
56  
57 + #define __FORTRAN90
58 + #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
59 +
60    !! these prefactors convert the multipole interactions into kcal / mol
61    !! all were computed assuming distances are measured in angstroms
62    !! Charge-Charge, assuming charges are measured in electrons
# Line 68 | Line 71 | module electrostatic_module
71    !! This unit is also known affectionately as an esu centi-barn.
72    real(kind=dp), parameter :: pre14 = 69.13373_dp
73  
74 +  !! variables to handle different summation methods for long-range electrostatics:
75 +  integer, save :: summationMethod = NONE
76 +  logical, save :: summationMethodChecked = .false.
77 +  real(kind=DP), save :: defaultCutoff = 0.0_DP
78 +  logical, save :: haveDefaultCutoff = .false.
79 +  real(kind=DP), save :: dampingAlpha = 0.0_DP
80 +  logical, save :: haveDampingAlpha = .false.
81 +  real(kind=DP), save :: dielectric = 0.0_DP
82 +  logical, save :: haveDielectric = .false.
83 +  real(kind=DP), save :: constERFC = 0.0_DP
84 +  real(kind=DP), save :: constEXP = 0.0_DP
85 +  logical, save :: haveDWAconstants = .false.
86 +  real(kind=dp), save :: rcuti = 0.0_dp
87 +  real(kind=dp), save :: rcuti2 = 0.0_dp
88 +  real(kind=dp), save :: rcuti3 = 0.0_dp
89 +  real(kind=dp), save :: rcuti4 = 0.0_dp
90 +  logical, save :: is_Undamped_Wolf = .false.
91 +  logical, save :: is_Damped_Wolf = .false.
92 +
93 +
94 + ! error function
95 +  double precision, external :: derfc
96 +
97 +  public :: setElectrostaticSummationMethod
98 +  public :: setElectrostaticCutoffRadius
99 +  public :: setDampedWolfAlpha
100 +  public :: setReactionFieldDielectric
101    public :: newElectrostaticType
102    public :: setCharge
103    public :: setDipoleMoment
# Line 76 | Line 106 | module electrostatic_module
106    public :: doElectrostaticPair
107    public :: getCharge
108    public :: getDipoleMoment
109 +  public :: pre22
110 +  public :: destroyElectrostaticTypes
111  
112    type :: Electrostatic
113       integer :: c_ident
# Line 83 | Line 115 | module electrostatic_module
115       logical :: is_Dipole = .false.
116       logical :: is_SplitDipole = .false.
117       logical :: is_Quadrupole = .false.
118 +     logical :: is_Tap = .false.
119       real(kind=DP) :: charge = 0.0_DP
120       real(kind=DP) :: dipole_moment = 0.0_DP
121       real(kind=DP) :: split_dipole_distance = 0.0_DP
# Line 93 | Line 126 | contains
126  
127   contains
128  
129 +  subroutine setElectrostaticSummationMethod(the_ESM)
130 +    integer, intent(in) :: the_ESM    
131 +
132 +    if ((the_ESM .le. 0) .or. (the_ESM .gt. REACTION_FIELD)) then
133 +       call handleError("setElectrostaticSummationMethod", "Unsupported Summation Method")
134 +    endif
135 +
136 +    summationMethod = the_ESM
137 +
138 +    if (summationMethod .eq. UNDAMPED_WOLF) is_Undamped_Wolf = .true.
139 +    if (summationMethod .eq. DAMPED_WOLF) is_Damped_Wolf = .true.
140 +  end subroutine setElectrostaticSummationMethod
141 +
142 +  subroutine setElectrostaticCutoffRadius(thisRcut)
143 +    real(kind=dp), intent(in) :: thisRcut
144 +    defaultCutoff = thisRcut
145 +    haveDefaultCutoff = .true.
146 +  end subroutine setElectrostaticCutoffRadius
147 +
148 +  subroutine setDampedWolfAlpha(thisAlpha)
149 +    real(kind=dp), intent(in) :: thisAlpha
150 +    dampingAlpha = thisAlpha
151 +    haveDampingAlpha = .true.
152 +  end subroutine setDampedWolfAlpha
153 +  
154 +  subroutine setReactionFieldDielectric(thisDielectric)
155 +    real(kind=dp), intent(in) :: thisDielectric
156 +    dielectric = thisDielectric
157 +    haveDielectric = .true.
158 +  end subroutine setReactionFieldDielectric
159 +
160    subroutine newElectrostaticType(c_ident, is_Charge, is_Dipole, &
161 <       is_SplitDipole, is_Quadrupole, status)
162 <    
161 >       is_SplitDipole, is_Quadrupole, is_Tap, status)
162 >
163      integer, intent(in) :: c_ident
164      logical, intent(in) :: is_Charge
165      logical, intent(in) :: is_Dipole
166      logical, intent(in) :: is_SplitDipole
167      logical, intent(in) :: is_Quadrupole
168 +    logical, intent(in) :: is_Tap
169      integer, intent(out) :: status
170      integer :: nAtypes, myATID, i, j
171  
172      status = 0
173      myATID = getFirstMatchingElement(atypes, "c_ident", c_ident)
174 <    
174 >
175      !! Be simple-minded and assume that we need an ElectrostaticMap that
176      !! is the same size as the total number of atom types
177  
178      if (.not.allocated(ElectrostaticMap)) then
179 <      
179 >
180         nAtypes = getSize(atypes)
181 <    
181 >
182         if (nAtypes == 0) then
183            status = -1
184            return
185         end if
186 <      
186 >
187         if (.not. allocated(ElectrostaticMap)) then
188            allocate(ElectrostaticMap(nAtypes))
189         endif
190 <      
190 >
191      end if
192  
193      if (myATID .gt. size(ElectrostaticMap)) then
194         status = -1
195         return
196      endif
197 <    
197 >
198      ! set the values for ElectrostaticMap for this atom type:
199  
200      ElectrostaticMap(myATID)%c_ident = c_ident
# Line 137 | Line 202 | contains
202      ElectrostaticMap(myATID)%is_Dipole = is_Dipole
203      ElectrostaticMap(myATID)%is_SplitDipole = is_SplitDipole
204      ElectrostaticMap(myATID)%is_Quadrupole = is_Quadrupole
205 <    
205 >    ElectrostaticMap(myATID)%is_Tap = is_Tap
206 >
207    end subroutine newElectrostaticType
208  
209    subroutine setCharge(c_ident, charge, status)
# Line 165 | Line 231 | contains
231         call handleError("electrostatic", "Attempt to setCharge of an atom type that is not a charge!")
232         status = -1
233         return
234 <    endif      
234 >    endif
235  
236      ElectrostaticMap(myATID)%charge = charge
237    end subroutine setCharge
# Line 256 | Line 322 | contains
322         status = -1
323         return
324      endif
325 <    
325 >
326      do i = 1, 3
327 <          ElectrostaticMap(myATID)%quadrupole_moments(i) = &
328 <               quadrupole_moments(i)
329 <       enddo
327 >       ElectrostaticMap(myATID)%quadrupole_moments(i) = &
328 >            quadrupole_moments(i)
329 >    enddo
330  
331    end subroutine setQuadrupoleMoments
332  
333 <  
333 >
334    function getCharge(atid) result (c)
335      integer, intent(in) :: atid
336      integer :: localError
337      real(kind=dp) :: c
338 <    
338 >
339      if (.not.allocated(ElectrostaticMap)) then
340         call handleError("electrostatic", "no ElectrostaticMap was present before first call of getCharge!")
341         return
342      end if
343 <    
343 >
344      if (.not.ElectrostaticMap(atid)%is_Charge) then
345         call handleError("electrostatic", "getCharge was called for an atom type that isn't a charge!")
346         return
347      endif
348 <    
348 >
349      c = ElectrostaticMap(atid)%charge
350    end function getCharge
351  
# Line 287 | Line 353 | contains
353      integer, intent(in) :: atid
354      integer :: localError
355      real(kind=dp) :: dm
356 <    
356 >
357      if (.not.allocated(ElectrostaticMap)) then
358         call handleError("electrostatic", "no ElectrostaticMap was present before first call of getDipoleMoment!")
359         return
360      end if
361 <    
361 >
362      if (.not.ElectrostaticMap(atid)%is_Dipole) then
363         call handleError("electrostatic", "getDipoleMoment was called for an atom type that isn't a dipole!")
364         return
365      endif
366 <    
366 >
367      dm = ElectrostaticMap(atid)%dipole_moment
368    end function getDipoleMoment
369 +
370 +  subroutine checkSummationMethod()
371 +
372 +    if (.not.haveDefaultCutoff) then
373 +       call handleError("checkSummationMethod", "no Default Cutoff set!")
374 +    endif
375 +
376 +    rcuti = 1.0d0 / defaultCutoff
377 +    rcuti2 = rcuti*rcuti
378 +    rcuti3 = rcuti2*rcuti
379 +    rcuti4 = rcuti2*rcuti2
380 +
381 +    if (summationMethod .eq. DAMPED_WOLF) then
382 +       if (.not.haveDWAconstants) then
383 +          
384 +          if (.not.haveDampingAlpha) then
385 +             call handleError("checkSummationMethod", "no Damping Alpha set!")
386 +          endif
387 +          
388 +          if (.not.haveDefaultCutoff) then
389 +             call handleError("checkSummationMethod", "no Default Cutoff set!")
390 +          endif
391  
392 +          constEXP = exp(-dampingAlpha*dampingAlpha*defaultCutoff*defaultCutoff)
393 +          constERFC = derfc(dampingAlpha*defaultCutoff)
394 +          
395 +          haveDWAconstants = .true.
396 +       endif
397 +    endif
398 +
399 +    if (summationMethod .eq. REACTION_FIELD) then
400 +       if (.not.haveDielectric) then
401 +          call handleError("checkSummationMethod", "no reaction field Dielectric set!")
402 +       endif
403 +    endif
404 +
405 +    summationMethodChecked = .true.
406 +  end subroutine checkSummationMethod
407 +
408 +
409 +
410    subroutine doElectrostaticPair(atom1, atom2, d, rij, r2, sw, &
411         vpair, fpair, pot, eFrame, f, t, do_pot)
412 <    
412 >
413      logical, intent(in) :: do_pot
414 <    
414 >
415      integer, intent(in) :: atom1, atom2
416      integer :: localError
417  
# Line 318 | Line 424 | contains
424      real( kind = dp ), dimension(9,nLocal) :: eFrame
425      real( kind = dp ), dimension(3,nLocal) :: f
426      real( kind = dp ), dimension(3,nLocal) :: t
321    
322    real (kind = dp), dimension(3) :: ul_i
323    real (kind = dp), dimension(3) :: ul_j
427  
428 +    real (kind = dp), dimension(3) :: ux_i, uy_i, uz_i
429 +    real (kind = dp), dimension(3) :: ux_j, uy_j, uz_j
430 +    real (kind = dp), dimension(3) :: dudux_i, duduy_i, duduz_i
431 +    real (kind = dp), dimension(3) :: dudux_j, duduy_j, duduz_j
432 +
433      logical :: i_is_Charge, i_is_Dipole, i_is_SplitDipole, i_is_Quadrupole
434      logical :: j_is_Charge, j_is_Dipole, j_is_SplitDipole, j_is_Quadrupole
435 +    logical :: i_is_Tap, j_is_Tap
436      integer :: me1, me2, id1, id2
437      real (kind=dp) :: q_i, q_j, mu_i, mu_j, d_i, d_j
438 +    real (kind=dp) :: qxx_i, qyy_i, qzz_i
439 +    real (kind=dp) :: qxx_j, qyy_j, qzz_j
440 +    real (kind=dp) :: cx_i, cy_i, cz_i
441 +    real (kind=dp) :: cx_j, cy_j, cz_j
442 +    real (kind=dp) :: cx2, cy2, cz2
443      real (kind=dp) :: ct_i, ct_j, ct_ij, a1
444      real (kind=dp) :: riji, ri, ri2, ri3, ri4
445 <    real (kind=dp) :: pref, vterm, epot, dudr    
445 >    real (kind=dp) :: pref, vterm, epot, dudr, vterm1, vterm2
446      real (kind=dp) :: xhat, yhat, zhat
447      real (kind=dp) :: dudx, dudy, dudz
334    real (kind=dp) :: drdxj, drdyj, drdzj
335    real (kind=dp) :: duduix, duduiy, duduiz, dudujx, dudujy, dudujz
448      real (kind=dp) :: scale, sc2, bigR
449  
450      if (.not.allocated(ElectrostaticMap)) then
# Line 340 | Line 452 | contains
452         return
453      end if
454  
455 +    if (.not.summationMethodChecked) then
456 +       call checkSummationMethod()
457 +      
458 +    endif
459 +
460 +
461   #ifdef IS_MPI
462      me1 = atid_Row(atom1)
463      me2 = atid_Col(atom2)
# Line 356 | Line 474 | contains
474      yhat = d(2) * riji
475      zhat = d(3) * riji
476  
359    drdxj = xhat
360    drdyj = yhat
361    drdzj = zhat
362
477      !! logicals
364
478      i_is_Charge = ElectrostaticMap(me1)%is_Charge
479      i_is_Dipole = ElectrostaticMap(me1)%is_Dipole
480      i_is_SplitDipole = ElectrostaticMap(me1)%is_SplitDipole
481      i_is_Quadrupole = ElectrostaticMap(me1)%is_Quadrupole
482 +    i_is_Tap = ElectrostaticMap(me1)%is_Tap
483  
484      j_is_Charge = ElectrostaticMap(me2)%is_Charge
485      j_is_Dipole = ElectrostaticMap(me2)%is_Dipole
486      j_is_SplitDipole = ElectrostaticMap(me2)%is_SplitDipole
487      j_is_Quadrupole = ElectrostaticMap(me2)%is_Quadrupole
488 +    j_is_Tap = ElectrostaticMap(me2)%is_Tap
489  
490      if (i_is_Charge) then
491         q_i = ElectrostaticMap(me1)%charge      
492      endif
493 <    
493 >
494      if (i_is_Dipole) then
495         mu_i = ElectrostaticMap(me1)%dipole_moment
496   #ifdef IS_MPI
497 <       ul_i(1) = eFrame_Row(3,atom1)
498 <       ul_i(2) = eFrame_Row(6,atom1)
499 <       ul_i(3) = eFrame_Row(9,atom1)
497 >       uz_i(1) = eFrame_Row(3,atom1)
498 >       uz_i(2) = eFrame_Row(6,atom1)
499 >       uz_i(3) = eFrame_Row(9,atom1)
500   #else
501 <       ul_i(1) = eFrame(3,atom1)
502 <       ul_i(2) = eFrame(6,atom1)
503 <       ul_i(3) = eFrame(9,atom1)
501 >       uz_i(1) = eFrame(3,atom1)
502 >       uz_i(2) = eFrame(6,atom1)
503 >       uz_i(3) = eFrame(9,atom1)
504   #endif
505 <       ct_i = ul_i(1)*drdxj + ul_i(2)*drdyj + ul_i(3)*drdzj
505 >       ct_i = uz_i(1)*xhat + uz_i(2)*yhat + uz_i(3)*zhat
506  
507         if (i_is_SplitDipole) then
508            d_i = ElectrostaticMap(me1)%split_dipole_distance
509         endif
510 <      
510 >
511      endif
512  
513 +    if (i_is_Quadrupole) then
514 +       qxx_i = ElectrostaticMap(me1)%quadrupole_moments(1)
515 +       qyy_i = ElectrostaticMap(me1)%quadrupole_moments(2)
516 +       qzz_i = ElectrostaticMap(me1)%quadrupole_moments(3)
517 + #ifdef IS_MPI
518 +       ux_i(1) = eFrame_Row(1,atom1)
519 +       ux_i(2) = eFrame_Row(4,atom1)
520 +       ux_i(3) = eFrame_Row(7,atom1)
521 +       uy_i(1) = eFrame_Row(2,atom1)
522 +       uy_i(2) = eFrame_Row(5,atom1)
523 +       uy_i(3) = eFrame_Row(8,atom1)
524 +       uz_i(1) = eFrame_Row(3,atom1)
525 +       uz_i(2) = eFrame_Row(6,atom1)
526 +       uz_i(3) = eFrame_Row(9,atom1)
527 + #else
528 +       ux_i(1) = eFrame(1,atom1)
529 +       ux_i(2) = eFrame(4,atom1)
530 +       ux_i(3) = eFrame(7,atom1)
531 +       uy_i(1) = eFrame(2,atom1)
532 +       uy_i(2) = eFrame(5,atom1)
533 +       uy_i(3) = eFrame(8,atom1)
534 +       uz_i(1) = eFrame(3,atom1)
535 +       uz_i(2) = eFrame(6,atom1)
536 +       uz_i(3) = eFrame(9,atom1)
537 + #endif
538 +       cx_i = ux_i(1)*xhat + ux_i(2)*yhat + ux_i(3)*zhat
539 +       cy_i = uy_i(1)*xhat + uy_i(2)*yhat + uy_i(3)*zhat
540 +       cz_i = uz_i(1)*xhat + uz_i(2)*yhat + uz_i(3)*zhat
541 +    endif
542 +
543      if (j_is_Charge) then
544         q_j = ElectrostaticMap(me2)%charge      
545      endif
546 <    
546 >
547      if (j_is_Dipole) then
548         mu_j = ElectrostaticMap(me2)%dipole_moment
549   #ifdef IS_MPI
550 <       ul_j(1) = eFrame_Col(3,atom2)
551 <       ul_j(2) = eFrame_Col(6,atom2)
552 <       ul_j(3) = eFrame_Col(9,atom2)
550 >       uz_j(1) = eFrame_Col(3,atom2)
551 >       uz_j(2) = eFrame_Col(6,atom2)
552 >       uz_j(3) = eFrame_Col(9,atom2)
553   #else
554 <       ul_j(1) = eFrame(3,atom2)
555 <       ul_j(2) = eFrame(6,atom2)
556 <       ul_j(3) = eFrame(9,atom2)
554 >       uz_j(1) = eFrame(3,atom2)
555 >       uz_j(2) = eFrame(6,atom2)
556 >       uz_j(3) = eFrame(9,atom2)
557   #endif
558 <       ct_j = ul_j(1)*drdxj + ul_j(2)*drdyj + ul_j(3)*drdzj
558 >       ct_j = uz_j(1)*xhat + uz_j(2)*yhat + uz_j(3)*zhat
559  
560         if (j_is_SplitDipole) then
561            d_j = ElectrostaticMap(me2)%split_dipole_distance
562         endif
563      endif
564  
565 +    if (j_is_Quadrupole) then
566 +       qxx_j = ElectrostaticMap(me2)%quadrupole_moments(1)
567 +       qyy_j = ElectrostaticMap(me2)%quadrupole_moments(2)
568 +       qzz_j = ElectrostaticMap(me2)%quadrupole_moments(3)
569 + #ifdef IS_MPI
570 +       ux_j(1) = eFrame_Col(1,atom2)
571 +       ux_j(2) = eFrame_Col(4,atom2)
572 +       ux_j(3) = eFrame_Col(7,atom2)
573 +       uy_j(1) = eFrame_Col(2,atom2)
574 +       uy_j(2) = eFrame_Col(5,atom2)
575 +       uy_j(3) = eFrame_Col(8,atom2)
576 +       uz_j(1) = eFrame_Col(3,atom2)
577 +       uz_j(2) = eFrame_Col(6,atom2)
578 +       uz_j(3) = eFrame_Col(9,atom2)
579 + #else
580 +       ux_j(1) = eFrame(1,atom2)
581 +       ux_j(2) = eFrame(4,atom2)
582 +       ux_j(3) = eFrame(7,atom2)
583 +       uy_j(1) = eFrame(2,atom2)
584 +       uy_j(2) = eFrame(5,atom2)
585 +       uy_j(3) = eFrame(8,atom2)
586 +       uz_j(1) = eFrame(3,atom2)
587 +       uz_j(2) = eFrame(6,atom2)
588 +       uz_j(3) = eFrame(9,atom2)
589 + #endif
590 +       cx_j = ux_j(1)*xhat + ux_j(2)*yhat + ux_j(3)*zhat
591 +       cy_j = uy_j(1)*xhat + uy_j(2)*yhat + uy_j(3)*zhat
592 +       cz_j = uz_j(1)*xhat + uz_j(2)*yhat + uz_j(3)*zhat
593 +    endif
594 +  
595      epot = 0.0_dp
596      dudx = 0.0_dp
597      dudy = 0.0_dp
598      dudz = 0.0_dp
599  
600 <    duduix = 0.0_dp
601 <    duduiy = 0.0_dp
602 <    duduiz = 0.0_dp
600 >    dudux_i = 0.0_dp
601 >    duduy_i = 0.0_dp
602 >    duduz_i = 0.0_dp
603  
604 <    dudujx = 0.0_dp
605 <    dudujy = 0.0_dp
606 <    dudujz = 0.0_dp
604 >    dudux_j = 0.0_dp
605 >    duduy_j = 0.0_dp
606 >    duduz_j = 0.0_dp
607  
608      if (i_is_Charge) then
609  
610         if (j_is_Charge) then
436          
437          vterm = pre11 * q_i * q_j * riji
438          vpair = vpair + vterm
439          epot = epot + sw*vterm
611  
612 <          dudr  = - sw * vterm * riji
612 >          if (summationMethod .eq. UNDAMPED_WOLF) then
613  
614 <          dudx = dudx + dudr * drdxj
615 <          dudy = dudy + dudr * drdyj
616 <          dudz = dudz + dudr * drdzj
617 <      
618 <       endif
614 >             vterm = pre11 * q_i * q_j * (riji - rcuti)
615 >             vpair = vpair + vterm
616 >             epot = epot + sw*vterm
617 >            
618 >             dudr  = - sw * pre11 * q_i * q_j * (riji*riji*riji - rcuti2*rcuti)
619 >            
620 >             dudx = dudx + dudr * d(1)
621 >             dudy = dudy + dudr * d(2)
622 >             dudz = dudz + dudr * d(3)
623  
449       if (j_is_Dipole) then
450
451          if (j_is_SplitDipole) then
452             BigR = sqrt(r2 + 0.25_dp * d_j * d_j)
453             ri = 1.0_dp / BigR
454             scale = rij * ri
624            else
456             ri = riji
457             scale = 1.0_dp
458          endif
625  
626 <          ri2 = ri * ri
627 <          ri3 = ri2 * ri
628 <          sc2 = scale * scale
626 >             vterm = pre11 * q_i * q_j * riji
627 >             vpair = vpair + vterm
628 >             epot = epot + sw*vterm
629              
630 <          pref = pre12 * q_i * mu_j
631 <          vterm = pref * ct_j * ri2 * scale
632 <          vpair = vpair + vterm
633 <          epot = epot + sw * vterm
630 >             dudr  = - sw * vterm * riji
631 >            
632 >             dudx = dudx + dudr * xhat
633 >             dudy = dudy + dudr * yhat
634 >             dudz = dudz + dudr * zhat
635  
636 <          !! this has a + sign in the () because the rij vector is
470 <          !! r_j - r_i and the charge-dipole potential takes the origin
471 <          !! as the point dipole, which is atom j in this case.
636 >          endif
637  
473          dudx = dudx + pref * sw * ri3 * ( ul_j(1) + 3.0d0*ct_j*xhat*sc2)
474          dudy = dudy + pref * sw * ri3 * ( ul_j(2) + 3.0d0*ct_j*yhat*sc2)
475          dudz = dudz + pref * sw * ri3 * ( ul_j(3) + 3.0d0*ct_j*zhat*sc2)
476
477          dudujx = dudujx - pref * sw * ri2 * xhat * scale
478          dudujy = dudujy - pref * sw * ri2 * yhat * scale
479          dudujz = dudujz - pref * sw * ri2 * zhat * scale
480          
638         endif
639  
640 <    endif
484 <  
485 <    if (i_is_Dipole) then
486 <      
487 <       if (j_is_Charge) then
640 >       if (j_is_Dipole) then
641  
642 <          if (i_is_SplitDipole) then
490 <             BigR = sqrt(r2 + 0.25_dp * d_i * d_i)
491 <             ri = 1.0_dp / BigR
492 <             scale = rij * ri
493 <          else
494 <             ri = riji
495 <             scale = 1.0_dp
496 <          endif
642 >          pref = pre12 * q_i * mu_j
643  
644 <          ri2 = ri * ri
645 <          ri3 = ri2 * ri
646 <          sc2 = scale * scale
644 >          if (summationMethod .eq. UNDAMPED_WOLF) then
645 >             ri2 = riji * riji
646 >             ri3 = ri2 * riji
647 >
648 >             pref = pre12 * q_i * mu_j
649 >             vterm = - pref * ct_j * (ri2 - rcuti2)
650 >             vpair = vpair + vterm
651 >             epot = epot + sw*vterm
652              
653 <          pref = pre12 * q_j * mu_i
654 <          vterm = pref * ct_i * ri2 * scale
655 <          vpair = vpair + vterm
656 <          epot = epot + sw * vterm
653 >             !! this has a + sign in the () because the rij vector is
654 >             !! r_j - r_i and the charge-dipole potential takes the origin
655 >             !! as the point dipole, which is atom j in this case.
656 >            
657 >             dudx = dudx - sw*pref * ( ri3*( uz_j(1) - 3.0d0*ct_j*xhat) &
658 >                  - rcuti3*( uz_j(1) - 3.0d0*ct_j*d(1)*rcuti ) )
659 >             dudy = dudy - sw*pref * ( ri3*( uz_j(2) - 3.0d0*ct_j*yhat) &
660 >                  - rcuti3*( uz_j(2) - 3.0d0*ct_j*d(2)*rcuti ) )
661 >             dudz = dudz - sw*pref * ( ri3*( uz_j(3) - 3.0d0*ct_j*zhat) &
662 >                  - rcuti3*( uz_j(3) - 3.0d0*ct_j*d(3)*rcuti ) )
663 >            
664 >             duduz_j(1) = duduz_j(1) - sw*pref*( ri2*xhat - d(1)*rcuti3 )
665 >             duduz_j(2) = duduz_j(2) - sw*pref*( ri2*yhat - d(2)*rcuti3 )
666 >             duduz_j(3) = duduz_j(3) - sw*pref*( ri2*zhat - d(3)*rcuti3 )
667  
507          dudx = dudx + pref * sw * ri3 * ( ul_i(1) - 3.0d0 * ct_i * xhat*sc2)
508          dudy = dudy + pref * sw * ri3 * ( ul_i(2) - 3.0d0 * ct_i * yhat*sc2)
509          dudz = dudz + pref * sw * ri3 * ( ul_i(3) - 3.0d0 * ct_i * zhat*sc2)
510
511          duduix = duduix + pref * sw * ri2 * xhat * scale
512          duduiy = duduiy + pref * sw * ri2 * yhat * scale
513          duduiz = duduiz + pref * sw * ri2 * zhat * scale
514       endif
515
516       if (j_is_Dipole) then
517
518          if (i_is_SplitDipole) then
519             if (j_is_SplitDipole) then
520                BigR = sqrt(r2 + 0.25_dp * d_i * d_i + 0.25_dp * d_j * d_j)
521             else
522                BigR = sqrt(r2 + 0.25_dp * d_i * d_i)
523             endif
524             ri = 1.0_dp / BigR
525             scale = rij * ri                
668            else
669               if (j_is_SplitDipole) then
670                  BigR = sqrt(r2 + 0.25_dp * d_j * d_j)
671                  ri = 1.0_dp / BigR
672 <                scale = rij * ri                            
673 <             else                
672 >                scale = rij * ri
673 >             else
674                  ri = riji
675                  scale = 1.0_dp
676               endif
677 <          endif
677 >            
678 >             ri2 = ri * ri
679 >             ri3 = ri2 * ri
680 >             sc2 = scale * scale
681  
682 <          ct_ij = ul_i(1)*ul_j(1) + ul_i(2)*ul_j(2) + ul_i(3)*ul_j(3)
682 >             pref = pre12 * q_i * mu_j
683 >             vterm = - pref * ct_j * ri2 * scale
684 >             vpair = vpair + vterm
685 >             epot = epot + sw*vterm
686 >            
687 >             !! this has a + sign in the () because the rij vector is
688 >             !! r_j - r_i and the charge-dipole potential takes the origin
689 >             !! as the point dipole, which is atom j in this case.
690 >            
691 >             dudx = dudx - sw*pref * ri3 * ( uz_j(1) - 3.0d0*ct_j*xhat*sc2)
692 >             dudy = dudy - sw*pref * ri3 * ( uz_j(2) - 3.0d0*ct_j*yhat*sc2)
693 >             dudz = dudz - sw*pref * ri3 * ( uz_j(3) - 3.0d0*ct_j*zhat*sc2)
694 >            
695 >             duduz_j(1) = duduz_j(1) - sw*pref * ri2 * xhat * scale
696 >             duduz_j(2) = duduz_j(2) - sw*pref * ri2 * yhat * scale
697 >             duduz_j(3) = duduz_j(3) - sw*pref * ri2 * zhat * scale
698  
699 <          ri2 = ri * ri
700 <          ri3 = ri2 * ri
699 >          endif
700 >       endif
701 >
702 >       if (j_is_Quadrupole) then
703 >          ri2 = riji * riji
704 >          ri3 = ri2 * riji
705            ri4 = ri2 * ri2
706 <          sc2 = scale * scale
706 >          cx2 = cx_j * cx_j
707 >          cy2 = cy_j * cy_j
708 >          cz2 = cz_j * cz_j
709  
710 <          pref = pre22 * mu_i * mu_j
711 <          vterm = pref * ri3 * (ct_ij - 3.0d0 * ct_i * ct_j * sc2)
712 <          vpair = vpair + vterm
713 <          epot = epot + sw * vterm
714 <          
715 <          a1 = 5.0d0 * ct_i * ct_j * sc2 - ct_ij
716 <
717 <          dudx=dudx+pref*sw*3.0d0*ri4*scale*(a1*xhat-ct_i*ul_j(1)-ct_j*ul_i(1))
718 <          dudy=dudy+pref*sw*3.0d0*ri4*scale*(a1*yhat-ct_i*ul_j(2)-ct_j*ul_i(2))
719 <          dudz=dudz+pref*sw*3.0d0*ri4*scale*(a1*zhat-ct_i*ul_j(3)-ct_j*ul_i(3))
720 <
721 <          duduix = duduix + pref*sw*ri3*(ul_j(1) - 3.0d0*ct_j*xhat*sc2)
722 <          duduiy = duduiy + pref*sw*ri3*(ul_j(2) - 3.0d0*ct_j*yhat*sc2)
723 <          duduiz = duduiz + pref*sw*ri3*(ul_j(3) - 3.0d0*ct_j*zhat*sc2)
724 <
725 <          dudujx = dudujx + pref*sw*ri3*(ul_i(1) - 3.0d0*ct_i*xhat*sc2)
726 <          dudujy = dudujy + pref*sw*ri3*(ul_i(2) - 3.0d0*ct_i*yhat*sc2)
727 <          dudujz = dudujz + pref*sw*ri3*(ul_i(3) - 3.0d0*ct_i*zhat*sc2)
710 >          if (summationMethod .eq. UNDAMPED_WOLF) then
711 >             pref =  pre14 * q_i / 3.0_dp
712 >             vterm1 = pref * ri3*( qxx_j * (3.0_dp*cx2 - 1.0_dp) + &
713 >                  qyy_j * (3.0_dp*cy2 - 1.0_dp) + &
714 >                  qzz_j * (3.0_dp*cz2 - 1.0_dp) )
715 >             vterm2 = pref * rcuti3*( qxx_j * (3.0_dp*cx2 - 1.0_dp) + &
716 >                  qyy_j * (3.0_dp*cy2 - 1.0_dp) + &
717 >                  qzz_j * (3.0_dp*cz2 - 1.0_dp) )
718 >             vpair = vpair + ( vterm1 - vterm2 )
719 >             epot = epot + sw*( vterm1 - vterm2 )
720 >            
721 >             dudx = dudx - (5.0_dp * &
722 >                  (vterm1*riji*xhat - vterm2*rcuti2*d(1))) + sw*pref * ( &
723 >                  (ri4 - rcuti4)*(qxx_j*(6.0_dp*cx_j*ux_j(1)) - &
724 >                  qxx_j*2.0_dp*(xhat - rcuti*d(1))) + &
725 >                  (ri4 - rcuti4)*(qyy_j*(6.0_dp*cy_j*uy_j(1)) - &
726 >                  qyy_j*2.0_dp*(xhat - rcuti*d(1))) + &
727 >                  (ri4 - rcuti4)*(qzz_j*(6.0_dp*cz_j*uz_j(1)) - &
728 >                  qzz_j*2.0_dp*(xhat - rcuti*d(1))) )
729 >             dudy = dudy - (5.0_dp * &
730 >                  (vterm1*riji*yhat - vterm2*rcuti2*d(2))) + sw*pref * ( &
731 >                  (ri4 - rcuti4)*(qxx_j*(6.0_dp*cx_j*ux_j(2)) - &
732 >                  qxx_j*2.0_dp*(yhat - rcuti*d(2))) + &
733 >                  (ri4 - rcuti4)*(qyy_j*(6.0_dp*cy_j*uy_j(2)) - &
734 >                  qyy_j*2.0_dp*(yhat - rcuti*d(2))) + &
735 >                  (ri4 - rcuti4)*(qzz_j*(6.0_dp*cz_j*uz_j(2)) - &
736 >                  qzz_j*2.0_dp*(yhat - rcuti*d(2))) )
737 >             dudz = dudz - (5.0_dp * &
738 >                  (vterm1*riji*zhat - vterm2*rcuti2*d(3))) + sw*pref * ( &
739 >                  (ri4 - rcuti4)*(qxx_j*(6.0_dp*cx_j*ux_j(3)) - &
740 >                  qxx_j*2.0_dp*(zhat - rcuti*d(3))) + &
741 >                  (ri4 - rcuti4)*(qyy_j*(6.0_dp*cy_j*uy_j(3)) - &
742 >                  qyy_j*2.0_dp*(zhat - rcuti*d(3))) + &
743 >                  (ri4 - rcuti4)*(qzz_j*(6.0_dp*cz_j*uz_j(3)) - &
744 >                  qzz_j*2.0_dp*(zhat - rcuti*d(3))) )
745 >            
746 >             dudux_j(1) = dudux_j(1) + sw*pref*(ri3*(qxx_j*6.0_dp*cx_j*xhat) -&
747 >                  rcuti4*(qxx_j*6.0_dp*cx_j*d(1)))
748 >             dudux_j(2) = dudux_j(2) + sw*pref*(ri3*(qxx_j*6.0_dp*cx_j*yhat) -&
749 >                  rcuti4*(qxx_j*6.0_dp*cx_j*d(2)))
750 >             dudux_j(3) = dudux_j(3) + sw*pref*(ri3*(qxx_j*6.0_dp*cx_j*zhat) -&
751 >                  rcuti4*(qxx_j*6.0_dp*cx_j*d(3)))
752 >            
753 >             duduy_j(1) = duduy_j(1) + sw*pref*(ri3*(qyy_j*6.0_dp*cy_j*xhat) -&
754 >                  rcuti4*(qyy_j*6.0_dp*cx_j*d(1)))
755 >             duduy_j(2) = duduy_j(2) + sw*pref*(ri3*(qyy_j*6.0_dp*cy_j*yhat) -&
756 >                  rcuti4*(qyy_j*6.0_dp*cx_j*d(2)))
757 >             duduy_j(3) = duduy_j(3) + sw*pref*(ri3*(qyy_j*6.0_dp*cy_j*zhat) -&
758 >                  rcuti4*(qyy_j*6.0_dp*cx_j*d(3)))
759 >            
760 >             duduz_j(1) = duduz_j(1) + sw*pref*(ri3*(qzz_j*6.0_dp*cz_j*xhat) -&
761 >                  rcuti4*(qzz_j*6.0_dp*cx_j*d(1)))
762 >             duduz_j(2) = duduz_j(2) + sw*pref*(ri3*(qzz_j*6.0_dp*cz_j*yhat) -&
763 >                  rcuti4*(qzz_j*6.0_dp*cx_j*d(2)))
764 >             duduz_j(3) = duduz_j(3) + sw*pref*(ri3*(qzz_j*6.0_dp*cz_j*zhat) -&
765 >                  rcuti4*(qzz_j*6.0_dp*cx_j*d(3)))
766 >        
767 >          else
768 >             pref =  pre14 * q_i / 3.0_dp
769 >             vterm = pref * ri3 * (qxx_j * (3.0_dp*cx2 - 1.0_dp) + &
770 >                  qyy_j * (3.0_dp*cy2 - 1.0_dp) + &
771 >                  qzz_j * (3.0_dp*cz2 - 1.0_dp))
772 >             vpair = vpair + vterm
773 >             epot = epot + sw*vterm
774 >            
775 >             dudx = dudx - 5.0_dp*sw*vterm*riji*xhat + sw*pref * ri4 * ( &
776 >                  qxx_j*(6.0_dp*cx_j*ux_j(1) - 2.0_dp*xhat) + &
777 >                  qyy_j*(6.0_dp*cy_j*uy_j(1) - 2.0_dp*xhat) + &
778 >                  qzz_j*(6.0_dp*cz_j*uz_j(1) - 2.0_dp*xhat) )
779 >             dudy = dudy - 5.0_dp*sw*vterm*riji*yhat + sw*pref * ri4 * ( &
780 >                  qxx_j*(6.0_dp*cx_j*ux_j(2) - 2.0_dp*yhat) + &
781 >                  qyy_j*(6.0_dp*cy_j*uy_j(2) - 2.0_dp*yhat) + &
782 >                  qzz_j*(6.0_dp*cz_j*uz_j(2) - 2.0_dp*yhat) )
783 >             dudz = dudz - 5.0_dp*sw*vterm*riji*zhat + sw*pref * ri4 * ( &
784 >                  qxx_j*(6.0_dp*cx_j*ux_j(3) - 2.0_dp*zhat) + &
785 >                  qyy_j*(6.0_dp*cy_j*uy_j(3) - 2.0_dp*zhat) + &
786 >                  qzz_j*(6.0_dp*cz_j*uz_j(3) - 2.0_dp*zhat) )
787 >            
788 >             dudux_j(1) = dudux_j(1) + sw*pref * ri3*(qxx_j*6.0_dp*cx_j*xhat)
789 >             dudux_j(2) = dudux_j(2) + sw*pref * ri3*(qxx_j*6.0_dp*cx_j*yhat)
790 >             dudux_j(3) = dudux_j(3) + sw*pref * ri3*(qxx_j*6.0_dp*cx_j*zhat)
791 >            
792 >             duduy_j(1) = duduy_j(1) + sw*pref * ri3*(qyy_j*6.0_dp*cy_j*xhat)
793 >             duduy_j(2) = duduy_j(2) + sw*pref * ri3*(qyy_j*6.0_dp*cy_j*yhat)
794 >             duduy_j(3) = duduy_j(3) + sw*pref * ri3*(qyy_j*6.0_dp*cy_j*zhat)
795 >            
796 >             duduz_j(1) = duduz_j(1) + sw*pref * ri3*(qzz_j*6.0_dp*cz_j*xhat)
797 >             duduz_j(2) = duduz_j(2) + sw*pref * ri3*(qzz_j*6.0_dp*cz_j*yhat)
798 >             duduz_j(3) = duduz_j(3) + sw*pref * ri3*(qzz_j*6.0_dp*cz_j*zhat)
799 >          
800 >          endif
801         endif
802 +    endif
803  
804 +    if (i_is_Dipole) then
805 +
806 +       if (j_is_Charge) then
807 +          
808 +          pref = pre12 * q_j * mu_i
809 +          
810 +          if (summationMethod .eq. UNDAMPED_WOLF) then
811 +             ri2 = riji * riji
812 +             ri3 = ri2 * riji
813 +
814 +             pref = pre12 * q_j * mu_i
815 +             vterm = pref * ct_i * (ri2 - rcuti2)
816 +             vpair = vpair + vterm
817 +             epot = epot + sw*vterm
818 +            
819 +             !! this has a + sign in the () because the rij vector is
820 +             !! r_j - r_i and the charge-dipole potential takes the origin
821 +             !! as the point dipole, which is atom j in this case.
822 +            
823 +             dudx = dudx + sw*pref * ( ri3*( uz_i(1) - 3.0d0*ct_i*xhat) &
824 +                  - rcuti3*( uz_i(1) - 3.0d0*ct_i*d(1)*rcuti ) )
825 +             dudy = dudy + sw*pref * ( ri3*( uz_i(2) - 3.0d0*ct_i*yhat) &
826 +                  - rcuti3*( uz_i(2) - 3.0d0*ct_i*d(2)*rcuti ) )
827 +             dudz = dudz + sw*pref * ( ri3*( uz_i(3) - 3.0d0*ct_i*zhat) &
828 +                  - rcuti3*( uz_i(3) - 3.0d0*ct_i*d(3)*rcuti ) )
829 +            
830 +             duduz_i(1) = duduz_i(1) - sw*pref*( ri2*xhat - d(1)*rcuti3 )
831 +             duduz_i(2) = duduz_i(2) - sw*pref*( ri2*yhat - d(2)*rcuti3 )
832 +             duduz_i(3) = duduz_i(3) - sw*pref*( ri2*zhat - d(3)*rcuti3 )
833 +
834 +          else
835 +             if (i_is_SplitDipole) then
836 +                BigR = sqrt(r2 + 0.25_dp * d_i * d_i)
837 +                ri = 1.0_dp / BigR
838 +                scale = rij * ri
839 +             else
840 +                ri = riji
841 +                scale = 1.0_dp
842 +             endif
843 +            
844 +             ri2 = ri * ri
845 +             ri3 = ri2 * ri
846 +             sc2 = scale * scale
847 +
848 +             pref = pre12 * q_j * mu_i
849 +             vterm = pref * ct_i * ri2 * scale
850 +             vpair = vpair + vterm
851 +             epot = epot + sw*vterm
852 +            
853 +             dudx = dudx + sw*pref * ri3 * ( uz_i(1) - 3.0d0 * ct_i * xhat*sc2)
854 +             dudy = dudy + sw*pref * ri3 * ( uz_i(2) - 3.0d0 * ct_i * yhat*sc2)
855 +             dudz = dudz + sw*pref * ri3 * ( uz_i(3) - 3.0d0 * ct_i * zhat*sc2)
856 +            
857 +             duduz_i(1) = duduz_i(1) + sw*pref * ri2 * xhat * scale
858 +             duduz_i(2) = duduz_i(2) + sw*pref * ri2 * yhat * scale
859 +             duduz_i(3) = duduz_i(3) + sw*pref * ri2 * zhat * scale
860 +          endif
861 +       endif
862 +      
863 +       if (j_is_Dipole) then
864 +
865 +          if (summationMethod .eq. UNDAMPED_WOLF) then
866 +             ri2 = riji * riji
867 +             ri3 = ri2 * riji
868 +             ri4 = ri2 * ri2
869 +
870 +             pref = pre22 * mu_i * mu_j
871 +             vterm = pref * (ri3 - rcuti3) * (ct_ij - 3.0d0 * ct_i * ct_j)
872 +             vpair = vpair + vterm
873 +             epot = epot + sw*vterm
874 +            
875 +             a1 = 5.0d0 * ct_i * ct_j - ct_ij
876 +            
877 +             dudx = dudx + sw*pref*3.0d0*ri4 &
878 +                             * (a1*xhat-ct_i*uz_j(1)-ct_j*uz_i(1)) &
879 +                         - sw*pref*3.0d0*rcuti4 &
880 +                             * (a1*rcuti*d(1)-ct_i*uz_j(1)-ct_j*uz_i(1))
881 +             dudy = dudy + sw*pref*3.0d0*ri4 &
882 +                             * (a1*yhat-ct_i*uz_j(2)-ct_j*uz_i(2)) &
883 +                         - sw*pref*3.0d0*rcuti4 &
884 +                             * (a1*rcuti*d(2)-ct_i*uz_j(2)-ct_j*uz_i(2))
885 +             dudz = dudz + sw*pref*3.0d0*ri4 &
886 +                             * (a1*zhat-ct_i*uz_j(3)-ct_j*uz_i(3)) &
887 +                         - sw*pref*3.0d0*rcuti4 &
888 +                             * (a1*rcuti*d(3)-ct_i*uz_j(3)-ct_j*uz_i(3))
889 +            
890 +             duduz_i(1) = duduz_i(1) + sw*pref*(ri3*(uz_j(1)-3.0d0*ct_j*xhat) &
891 +                  - rcuti3*(uz_j(1) - 3.0d0*ct_j*d(1)*rcuti))
892 +             duduz_i(2) = duduz_i(2) + sw*pref*(ri3*(uz_j(2)-3.0d0*ct_j*yhat) &
893 +                  - rcuti3*(uz_j(2) - 3.0d0*ct_j*d(2)*rcuti))
894 +             duduz_i(3) = duduz_i(3) + sw*pref*(ri3*(uz_j(3)-3.0d0*ct_j*zhat) &
895 +                  - rcuti3*(uz_j(3) - 3.0d0*ct_j*d(3)*rcuti))
896 +             duduz_j(1) = duduz_j(1) + sw*pref*(ri3*(uz_i(1)-3.0d0*ct_i*xhat) &
897 +                  - rcuti3*(uz_i(1) - 3.0d0*ct_i*d(1)*rcuti))
898 +             duduz_j(2) = duduz_j(2) + sw*pref*(ri3*(uz_i(2)-3.0d0*ct_i*yhat) &
899 +                  - rcuti3*(uz_i(2) - 3.0d0*ct_i*d(2)*rcuti))
900 +             duduz_j(3) = duduz_j(3) + sw*pref*(ri3*(uz_i(3)-3.0d0*ct_i*zhat) &
901 +                  - rcuti3*(uz_i(3) - 3.0d0*ct_i*d(3)*rcuti))
902 +
903 +          else
904 +             if (i_is_SplitDipole) then
905 +                if (j_is_SplitDipole) then
906 +                   BigR = sqrt(r2 + 0.25_dp * d_i * d_i + 0.25_dp * d_j * d_j)
907 +                else
908 +                   BigR = sqrt(r2 + 0.25_dp * d_i * d_i)
909 +                endif
910 +                ri = 1.0_dp / BigR
911 +                scale = rij * ri                
912 +             else
913 +                if (j_is_SplitDipole) then
914 +                   BigR = sqrt(r2 + 0.25_dp * d_j * d_j)
915 +                   ri = 1.0_dp / BigR
916 +                   scale = rij * ri                            
917 +                else                
918 +                   ri = riji
919 +                   scale = 1.0_dp
920 +                endif
921 +             endif
922 +            
923 +             ct_ij = uz_i(1)*uz_j(1) + uz_i(2)*uz_j(2) + uz_i(3)*uz_j(3)
924 +            
925 +             ri2 = ri * ri
926 +             ri3 = ri2 * ri
927 +             ri4 = ri2 * ri2
928 +             sc2 = scale * scale
929 +            
930 +             pref = pre22 * mu_i * mu_j
931 +             vterm = pref * ri3 * (ct_ij - 3.0d0 * ct_i * ct_j * sc2)
932 +             vpair = vpair + vterm
933 +             epot = epot + sw*vterm
934 +            
935 +             a1 = 5.0d0 * ct_i * ct_j * sc2 - ct_ij
936 +            
937 +             dudx = dudx + sw*pref*3.0d0*ri4*scale &
938 +                             *(a1*xhat-ct_i*uz_j(1)-ct_j*uz_i(1))
939 +             dudy = dudy + sw*pref*3.0d0*ri4*scale &
940 +                             *(a1*yhat-ct_i*uz_j(2)-ct_j*uz_i(2))
941 +             dudz = dudz + sw*pref*3.0d0*ri4*scale &
942 +                             *(a1*zhat-ct_i*uz_j(3)-ct_j*uz_i(3))
943 +            
944 +             duduz_i(1) = duduz_i(1) + sw*pref*ri3 &
945 +                                         *(uz_j(1) - 3.0d0*ct_j*xhat*sc2)
946 +             duduz_i(2) = duduz_i(2) + sw*pref*ri3 &
947 +                                         *(uz_j(2) - 3.0d0*ct_j*yhat*sc2)
948 +             duduz_i(3) = duduz_i(3) + sw*pref*ri3 &
949 +                                         *(uz_j(3) - 3.0d0*ct_j*zhat*sc2)
950 +            
951 +             duduz_j(1) = duduz_j(1) + sw*pref*ri3 &
952 +                                         *(uz_i(1) - 3.0d0*ct_i*xhat*sc2)
953 +             duduz_j(2) = duduz_j(2) + sw*pref*ri3 &
954 +                                         *(uz_i(2) - 3.0d0*ct_i*yhat*sc2)
955 +             duduz_j(3) = duduz_j(3) + sw*pref*ri3 &
956 +                                         *(uz_i(3) - 3.0d0*ct_i*zhat*sc2)
957 +          endif
958 +       endif
959      endif
960 <    
960 >
961 >    if (i_is_Quadrupole) then
962 >       if (j_is_Charge) then
963 >
964 >          ri2 = riji * riji
965 >          ri3 = ri2 * riji
966 >          ri4 = ri2 * ri2
967 >          cx2 = cx_i * cx_i
968 >          cy2 = cy_i * cy_i
969 >          cz2 = cz_i * cz_i
970 >
971 >          if (summationMethod .eq. UNDAMPED_WOLF) then
972 >             pref = pre14 * q_j / 3.0_dp
973 >             vterm1 = pref * ri3*( qxx_i * (3.0_dp*cx2 - 1.0_dp) + &
974 >                  qyy_i * (3.0_dp*cy2 - 1.0_dp) + &
975 >                  qzz_i * (3.0_dp*cz2 - 1.0_dp) )
976 >             vterm2 = pref * rcuti3*( qxx_i * (3.0_dp*cx2 - 1.0_dp) + &
977 >                  qyy_i * (3.0_dp*cy2 - 1.0_dp) + &
978 >                  qzz_i * (3.0_dp*cz2 - 1.0_dp) )
979 >             vpair = vpair + ( vterm1 - vterm2 )
980 >             epot = epot + sw*( vterm1 - vterm2 )
981 >            
982 >             dudx = dudx - sw*(5.0_dp*(vterm1*riji*xhat-vterm2*rcuti2*d(1))) +&
983 >                  sw*pref * ( (ri4 - rcuti4)*(qxx_i*(6.0_dp*cx_i*ux_i(1)) - &
984 >                  qxx_i*2.0_dp*(xhat - rcuti*d(1))) + &
985 >                  (ri4 - rcuti4)*(qyy_i*(6.0_dp*cy_i*uy_i(1)) - &
986 >                  qyy_i*2.0_dp*(xhat - rcuti*d(1))) + &
987 >                  (ri4 - rcuti4)*(qzz_i*(6.0_dp*cz_i*uz_i(1)) - &
988 >                  qzz_i*2.0_dp*(xhat - rcuti*d(1))) )
989 >             dudy = dudy - sw*(5.0_dp*(vterm1*riji*yhat-vterm2*rcuti2*d(2))) +&
990 >                  sw*pref * ( (ri4 - rcuti4)*(qxx_i*(6.0_dp*cx_i*ux_i(2)) - &
991 >                  qxx_i*2.0_dp*(yhat - rcuti*d(2))) + &
992 >                  (ri4 - rcuti4)*(qyy_i*(6.0_dp*cy_i*uy_i(2)) - &
993 >                  qyy_i*2.0_dp*(yhat - rcuti*d(2))) + &
994 >                  (ri4 - rcuti4)*(qzz_i*(6.0_dp*cz_i*uz_i(2)) - &
995 >                  qzz_i*2.0_dp*(yhat - rcuti*d(2))) )
996 >             dudz = dudz - sw*(5.0_dp*(vterm1*riji*zhat-vterm2*rcuti2*d(3))) +&
997 >                  sw*pref * ( (ri4 - rcuti4)*(qxx_i*(6.0_dp*cx_i*ux_i(3)) - &
998 >                  qxx_i*2.0_dp*(zhat - rcuti*d(3))) + &
999 >                  (ri4 - rcuti4)*(qyy_i*(6.0_dp*cy_i*uy_i(3)) - &
1000 >                  qyy_i*2.0_dp*(zhat - rcuti*d(3))) + &
1001 >                  (ri4 - rcuti4)*(qzz_i*(6.0_dp*cz_i*uz_i(3)) - &
1002 >                  qzz_i*2.0_dp*(zhat - rcuti*d(3))) )
1003 >            
1004 >             dudux_i(1) = dudux_i(1) + sw*pref*(ri3*(qxx_i*6.0_dp*cx_i*xhat) -&
1005 >                  rcuti4*(qxx_i*6.0_dp*cx_i*d(1)))
1006 >             dudux_i(2) = dudux_i(2) + sw*pref*(ri3*(qxx_i*6.0_dp*cx_i*yhat) -&
1007 >                  rcuti4*(qxx_i*6.0_dp*cx_i*d(2)))
1008 >             dudux_i(3) = dudux_i(3) + sw*pref*(ri3*(qxx_i*6.0_dp*cx_i*zhat) -&
1009 >                  rcuti4*(qxx_i*6.0_dp*cx_i*d(3)))
1010 >            
1011 >             duduy_i(1) = duduy_i(1) + sw*pref*(ri3*(qyy_i*6.0_dp*cy_i*xhat) -&
1012 >                  rcuti4*(qyy_i*6.0_dp*cx_i*d(1)))
1013 >             duduy_i(2) = duduy_i(2) + sw*pref*(ri3*(qyy_i*6.0_dp*cy_i*yhat) -&
1014 >                  rcuti4*(qyy_i*6.0_dp*cx_i*d(2)))
1015 >             duduy_i(3) = duduy_i(3) + sw*pref*(ri3*(qyy_i*6.0_dp*cy_i*zhat) -&
1016 >                  rcuti4*(qyy_i*6.0_dp*cx_i*d(3)))
1017 >            
1018 >             duduz_i(1) = duduz_i(1) + sw*pref*(ri3*(qzz_i*6.0_dp*cz_i*xhat) -&
1019 >                  rcuti4*(qzz_i*6.0_dp*cx_i*d(1)))
1020 >             duduz_i(2) = duduz_i(2) + sw*pref*(ri3*(qzz_i*6.0_dp*cz_i*yhat) -&
1021 >                  rcuti4*(qzz_i*6.0_dp*cx_i*d(2)))
1022 >             duduz_i(3) = duduz_i(3) + sw*pref*(ri3*(qzz_i*6.0_dp*cz_i*zhat) -&
1023 >                  rcuti4*(qzz_i*6.0_dp*cx_i*d(3)))
1024 >
1025 >          else
1026 >             pref = pre14 * q_j / 3.0_dp
1027 >             vterm = pref * ri3 * (qxx_i * (3.0_dp*cx2 - 1.0_dp) + &
1028 >                  qyy_i * (3.0_dp*cy2 - 1.0_dp) + &
1029 >                  qzz_i * (3.0_dp*cz2 - 1.0_dp))
1030 >             vpair = vpair + vterm
1031 >             epot = epot + sw*vterm
1032 >            
1033 >             dudx = dudx - 5.0_dp*sw*vterm*riji*xhat + sw*pref*ri4 * ( &
1034 >                  qxx_i*(6.0_dp*cx_i*ux_i(1) - 2.0_dp*xhat) + &
1035 >                  qyy_i*(6.0_dp*cy_i*uy_i(1) - 2.0_dp*xhat) + &
1036 >                  qzz_i*(6.0_dp*cz_i*uz_i(1) - 2.0_dp*xhat) )
1037 >             dudy = dudy - 5.0_dp*sw*vterm*riji*yhat + sw*pref*ri4 * ( &
1038 >                  qxx_i*(6.0_dp*cx_i*ux_i(2) - 2.0_dp*yhat) + &
1039 >                  qyy_i*(6.0_dp*cy_i*uy_i(2) - 2.0_dp*yhat) + &
1040 >                  qzz_i*(6.0_dp*cz_i*uz_i(2) - 2.0_dp*yhat) )
1041 >             dudz = dudz - 5.0_dp*sw*vterm*riji*zhat + sw*pref*ri4 * ( &
1042 >                  qxx_i*(6.0_dp*cx_i*ux_i(3) - 2.0_dp*zhat) + &
1043 >                  qyy_i*(6.0_dp*cy_i*uy_i(3) - 2.0_dp*zhat) + &
1044 >                  qzz_i*(6.0_dp*cz_i*uz_i(3) - 2.0_dp*zhat) )
1045 >            
1046 >             dudux_i(1) = dudux_i(1) + sw*pref*ri3*(qxx_i*6.0_dp*cx_i*xhat)
1047 >             dudux_i(2) = dudux_i(2) + sw*pref*ri3*(qxx_i*6.0_dp*cx_i*yhat)
1048 >             dudux_i(3) = dudux_i(3) + sw*pref*ri3*(qxx_i*6.0_dp*cx_i*zhat)
1049 >            
1050 >             duduy_i(1) = duduy_i(1) + sw*pref*ri3*(qyy_i*6.0_dp*cy_i*xhat)
1051 >             duduy_i(2) = duduy_i(2) + sw*pref*ri3*(qyy_i*6.0_dp*cy_i*yhat)
1052 >             duduy_i(3) = duduy_i(3) + sw*pref*ri3*(qyy_i*6.0_dp*cy_i*zhat)
1053 >            
1054 >             duduz_i(1) = duduz_i(1) + sw*pref*ri3*(qzz_i*6.0_dp*cz_i*xhat)
1055 >             duduz_i(2) = duduz_i(2) + sw*pref*ri3*(qzz_i*6.0_dp*cz_i*yhat)
1056 >             duduz_i(3) = duduz_i(3) + sw*pref*ri3*(qzz_i*6.0_dp*cz_i*zhat)
1057 >          endif
1058 >       endif
1059 >    endif
1060 >
1061 >
1062      if (do_pot) then
1063   #ifdef IS_MPI
1064         pot_row(atom1) = pot_row(atom1) + 0.5d0*epot
# Line 571 | Line 1067 | contains
1067         pot = pot + epot
1068   #endif
1069      endif
1070 <        
1070 >
1071   #ifdef IS_MPI
1072      f_Row(1,atom1) = f_Row(1,atom1) + dudx
1073      f_Row(2,atom1) = f_Row(2,atom1) + dudy
1074      f_Row(3,atom1) = f_Row(3,atom1) + dudz
1075 <    
1075 >
1076      f_Col(1,atom2) = f_Col(1,atom2) - dudx
1077      f_Col(2,atom2) = f_Col(2,atom2) - dudy
1078      f_Col(3,atom2) = f_Col(3,atom2) - dudz
1079 <    
1079 >
1080      if (i_is_Dipole .or. i_is_Quadrupole) then
1081 <       t_Row(1,atom1) = t_Row(1,atom1) - ul_i(2)*duduiz + ul_i(3)*duduiy
1082 <       t_Row(2,atom1) = t_Row(2,atom1) - ul_i(3)*duduix + ul_i(1)*duduiz
1083 <       t_Row(3,atom1) = t_Row(3,atom1) - ul_i(1)*duduiy + ul_i(2)*duduix
1081 >       t_Row(1,atom1)=t_Row(1,atom1) - uz_i(2)*duduz_i(3) + uz_i(3)*duduz_i(2)
1082 >       t_Row(2,atom1)=t_Row(2,atom1) - uz_i(3)*duduz_i(1) + uz_i(1)*duduz_i(3)
1083 >       t_Row(3,atom1)=t_Row(3,atom1) - uz_i(1)*duduz_i(2) + uz_i(2)*duduz_i(1)
1084      endif
1085 +    if (i_is_Quadrupole) then
1086 +       t_Row(1,atom1)=t_Row(1,atom1) - ux_i(2)*dudux_i(3) + ux_i(3)*dudux_i(2)
1087 +       t_Row(2,atom1)=t_Row(2,atom1) - ux_i(3)*dudux_i(1) + ux_i(1)*dudux_i(3)
1088 +       t_Row(3,atom1)=t_Row(3,atom1) - ux_i(1)*dudux_i(2) + ux_i(2)*dudux_i(1)
1089  
1090 +       t_Row(1,atom1)=t_Row(1,atom1) - uy_i(2)*duduy_i(3) + uy_i(3)*duduy_i(2)
1091 +       t_Row(2,atom1)=t_Row(2,atom1) - uy_i(3)*duduy_i(1) + uy_i(1)*duduy_i(3)
1092 +       t_Row(3,atom1)=t_Row(3,atom1) - uy_i(1)*duduy_i(2) + uy_i(2)*duduy_i(1)
1093 +    endif
1094 +
1095      if (j_is_Dipole .or. j_is_Quadrupole) then
1096 <       t_Col(1,atom2) = t_Col(1,atom2) - ul_j(2)*dudujz + ul_j(3)*dudujy
1097 <       t_Col(2,atom2) = t_Col(2,atom2) - ul_j(3)*dudujx + ul_j(1)*dudujz
1098 <       t_Col(3,atom2) = t_Col(3,atom2) - ul_j(1)*dudujy + ul_j(2)*dudujx
1096 >       t_Col(1,atom2)=t_Col(1,atom2) - uz_j(2)*duduz_j(3) + uz_j(3)*duduz_j(2)
1097 >       t_Col(2,atom2)=t_Col(2,atom2) - uz_j(3)*duduz_j(1) + uz_j(1)*duduz_j(3)
1098 >       t_Col(3,atom2)=t_Col(3,atom2) - uz_j(1)*duduz_j(2) + uz_j(2)*duduz_j(1)
1099      endif
1100 +    if (j_is_Quadrupole) then
1101 +       t_Col(1,atom2)=t_Col(1,atom2) - ux_j(2)*dudux_j(3) + ux_j(3)*dudux_j(2)
1102 +       t_Col(2,atom2)=t_Col(2,atom2) - ux_j(3)*dudux_j(1) + ux_j(1)*dudux_j(3)
1103 +       t_Col(3,atom2)=t_Col(3,atom2) - ux_j(1)*dudux_j(2) + ux_j(2)*dudux_j(1)
1104  
1105 +       t_Col(1,atom2)=t_Col(1,atom2) - uy_j(2)*duduy_j(3) + uy_j(3)*duduy_j(2)
1106 +       t_Col(2,atom2)=t_Col(2,atom2) - uy_j(3)*duduy_j(1) + uy_j(1)*duduy_j(3)
1107 +       t_Col(3,atom2)=t_Col(3,atom2) - uy_j(1)*duduy_j(2) + uy_j(2)*duduy_j(1)
1108 +    endif
1109 +
1110   #else
1111      f(1,atom1) = f(1,atom1) + dudx
1112      f(2,atom1) = f(2,atom1) + dudy
1113      f(3,atom1) = f(3,atom1) + dudz
1114 <    
1114 >
1115      f(1,atom2) = f(1,atom2) - dudx
1116      f(2,atom2) = f(2,atom2) - dudy
1117      f(3,atom2) = f(3,atom2) - dudz
1118 <    
1118 >
1119      if (i_is_Dipole .or. i_is_Quadrupole) then
1120 <       t(1,atom1) = t(1,atom1) - ul_i(2)*duduiz + ul_i(3)*duduiy
1121 <       t(2,atom1) = t(2,atom1) - ul_i(3)*duduix + ul_i(1)*duduiz
1122 <       t(3,atom1) = t(3,atom1) - ul_i(1)*duduiy + ul_i(2)*duduix
1120 >       t(1,atom1)=t(1,atom1) - uz_i(2)*duduz_i(3) + uz_i(3)*duduz_i(2)
1121 >       t(2,atom1)=t(2,atom1) - uz_i(3)*duduz_i(1) + uz_i(1)*duduz_i(3)
1122 >       t(3,atom1)=t(3,atom1) - uz_i(1)*duduz_i(2) + uz_i(2)*duduz_i(1)
1123      endif
1124 <      
1124 >    if (i_is_Quadrupole) then
1125 >       t(1,atom1)=t(1,atom1) - ux_i(2)*dudux_i(3) + ux_i(3)*dudux_i(2)
1126 >       t(2,atom1)=t(2,atom1) - ux_i(3)*dudux_i(1) + ux_i(1)*dudux_i(3)
1127 >       t(3,atom1)=t(3,atom1) - ux_i(1)*dudux_i(2) + ux_i(2)*dudux_i(1)
1128 >
1129 >       t(1,atom1)=t(1,atom1) - uy_i(2)*duduy_i(3) + uy_i(3)*duduy_i(2)
1130 >       t(2,atom1)=t(2,atom1) - uy_i(3)*duduy_i(1) + uy_i(1)*duduy_i(3)
1131 >       t(3,atom1)=t(3,atom1) - uy_i(1)*duduy_i(2) + uy_i(2)*duduy_i(1)
1132 >    endif
1133 >
1134      if (j_is_Dipole .or. j_is_Quadrupole) then
1135 <       t(1,atom2) = t(1,atom2) - ul_j(2)*dudujz + ul_j(3)*dudujy
1136 <       t(2,atom2) = t(2,atom2) - ul_j(3)*dudujx + ul_j(1)*dudujz
1137 <       t(3,atom2) = t(3,atom2) - ul_j(1)*dudujy + ul_j(2)*dudujx
1135 >       t(1,atom2)=t(1,atom2) - uz_j(2)*duduz_j(3) + uz_j(3)*duduz_j(2)
1136 >       t(2,atom2)=t(2,atom2) - uz_j(3)*duduz_j(1) + uz_j(1)*duduz_j(3)
1137 >       t(3,atom2)=t(3,atom2) - uz_j(1)*duduz_j(2) + uz_j(2)*duduz_j(1)
1138      endif
1139 +    if (j_is_Quadrupole) then
1140 +       t(1,atom2)=t(1,atom2) - ux_j(2)*dudux_j(3) + ux_j(3)*dudux_j(2)
1141 +       t(2,atom2)=t(2,atom2) - ux_j(3)*dudux_j(1) + ux_j(1)*dudux_j(3)
1142 +       t(3,atom2)=t(3,atom2) - ux_j(1)*dudux_j(2) + ux_j(2)*dudux_j(1)
1143 +
1144 +       t(1,atom2)=t(1,atom2) - uy_j(2)*duduy_j(3) + uy_j(3)*duduy_j(2)
1145 +       t(2,atom2)=t(2,atom2) - uy_j(3)*duduy_j(1) + uy_j(1)*duduy_j(3)
1146 +       t(3,atom2)=t(3,atom2) - uy_j(1)*duduy_j(2) + uy_j(2)*duduy_j(1)
1147 +    endif
1148 +
1149   #endif
1150 <    
1150 >
1151   #ifdef IS_MPI
1152      id1 = AtomRowToGlobal(atom1)
1153      id2 = AtomColToGlobal(atom2)
# Line 624 | Line 1157 | contains
1157   #endif
1158  
1159      if (molMembershipList(id1) .ne. molMembershipList(id2)) then
1160 <      
1160 >
1161         fpair(1) = fpair(1) + dudx
1162         fpair(2) = fpair(2) + dudy
1163         fpair(3) = fpair(3) + dudz
# Line 633 | Line 1166 | contains
1166  
1167      return
1168    end subroutine doElectrostaticPair
1169 <  
1169 >
1170 >  !! calculates the switching functions and their derivatives for a given
1171 >  subroutine calc_switch(r, mu, scale, dscale)
1172 >
1173 >    real (kind=dp), intent(in) :: r, mu
1174 >    real (kind=dp), intent(inout) :: scale, dscale
1175 >    real (kind=dp) :: rl, ru, mulow, minRatio, temp, scaleVal
1176 >
1177 >    ! distances must be in angstroms
1178 >    rl = 2.75d0
1179 >    ru = 3.75d0
1180 >    mulow = 0.0d0 !3.3856d0 ! 1.84 * 1.84
1181 >    minRatio = mulow / (mu*mu)
1182 >    scaleVal = 1.0d0 - minRatio
1183 >    
1184 >    if (r.lt.rl) then
1185 >       scale = minRatio
1186 >       dscale = 0.0d0
1187 >    elseif (r.gt.ru) then
1188 >       scale = 1.0d0
1189 >       dscale = 0.0d0
1190 >    else
1191 >       scale = 1.0d0 - scaleVal*((ru + 2.0d0*r - 3.0d0*rl) * (ru-r)**2) &
1192 >                        / ((ru - rl)**3)
1193 >       dscale = -scaleVal * 6.0d0 * (r-ru)*(r-rl)/((ru - rl)**3)    
1194 >    endif
1195 >        
1196 >    return
1197 >  end subroutine calc_switch
1198 >
1199 >  subroutine destroyElectrostaticTypes()
1200 >
1201 >    if(allocated(ElectrostaticMap)) deallocate(ElectrostaticMap)
1202 >
1203 >  end subroutine destroyElectrostaticTypes
1204 >
1205   end module electrostatic_module

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines