ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/UseTheForce/DarkSide/electrostatic.F90
(Generate patch)

Comparing trunk/OOPSE-4/src/UseTheForce/DarkSide/electrostatic.F90 (file contents):
Revision 2118 by gezelter, Fri Mar 11 15:53:18 2005 UTC vs.
Revision 2390 by chrisfen, Wed Oct 19 19:24:40 2005 UTC

# Line 40 | Line 40 | module electrostatic_module
40   !!
41  
42   module electrostatic_module
43 <  
43 >
44    use force_globals
45    use definitions
46    use atype_module
# Line 54 | Line 54 | module electrostatic_module
54  
55    PRIVATE
56  
57 +
58 + #define __FORTRAN90
59 + #include "UseTheForce/DarkSide/fInteractionMap.h"
60 + #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
61 +
62 +
63    !! these prefactors convert the multipole interactions into kcal / mol
64    !! all were computed assuming distances are measured in angstroms
65    !! Charge-Charge, assuming charges are measured in electrons
# Line 68 | Line 74 | module electrostatic_module
74    !! This unit is also known affectionately as an esu centi-barn.
75    real(kind=dp), parameter :: pre14 = 69.13373_dp
76  
77 +  !! variables to handle different summation methods for long-range electrostatics:
78 +  integer, save :: summationMethod = NONE
79 +  logical, save :: summationMethodChecked = .false.
80 +  real(kind=DP), save :: defaultCutoff = 0.0_DP
81 +  real(kind=DP), save :: defaultCutoff2 = 0.0_DP
82 +  logical, save :: haveDefaultCutoff = .false.
83 +  real(kind=DP), save :: dampingAlpha = 0.0_DP
84 +  logical, save :: haveDampingAlpha = .false.
85 +  real(kind=DP), save :: dielectric = 1.0_DP
86 +  logical, save :: haveDielectric = .false.
87 +  real(kind=DP), save :: constERFC = 0.0_DP
88 +  real(kind=DP), save :: constEXP = 0.0_DP
89 +  logical, save :: haveDWAconstants = .false.
90 +  real(kind=dp), save :: rcuti = 0.0_DP
91 +  real(kind=dp), save :: rcuti2 = 0.0_DP
92 +  real(kind=dp), save :: rcuti3 = 0.0_DP
93 +  real(kind=dp), save :: rcuti4 = 0.0_DP
94 +  real(kind=dp), save :: alphaPi = 0.0_DP
95 +  real(kind=dp), save :: invRootPi = 0.0_DP
96 +  real(kind=dp), save :: rrf = 1.0_DP
97 +  real(kind=dp), save :: rt = 1.0_DP
98 +  real(kind=dp), save :: rrfsq = 1.0_DP
99 +  real(kind=dp), save :: preRF = 0.0_DP
100 +  logical, save :: preRFCalculated = .false.
101 +
102 + #ifdef __IFC
103 + ! error function for ifc version > 7.
104 +  double precision, external :: derfc
105 + #endif
106 +  
107 +  public :: setElectrostaticSummationMethod
108 +  public :: setElectrostaticCutoffRadius
109 +  public :: setDampedWolfAlpha
110 +  public :: setReactionFieldDielectric
111 +  public :: setReactionFieldPrefactor
112    public :: newElectrostaticType
113    public :: setCharge
114    public :: setDipoleMoment
# Line 76 | Line 117 | module electrostatic_module
117    public :: doElectrostaticPair
118    public :: getCharge
119    public :: getDipoleMoment
120 +  public :: pre22
121 +  public :: destroyElectrostaticTypes
122 +  public :: accumulate_rf
123 +  public :: accumulate_self_rf
124 +  public :: reaction_field_final
125 +  public :: rf_correct_forces
126  
127    type :: Electrostatic
128       integer :: c_ident
# Line 83 | Line 130 | module electrostatic_module
130       logical :: is_Dipole = .false.
131       logical :: is_SplitDipole = .false.
132       logical :: is_Quadrupole = .false.
133 +     logical :: is_Tap = .false.
134       real(kind=DP) :: charge = 0.0_DP
135       real(kind=DP) :: dipole_moment = 0.0_DP
136       real(kind=DP) :: split_dipole_distance = 0.0_DP
# Line 93 | Line 141 | contains
141  
142   contains
143  
144 +  subroutine setElectrostaticSummationMethod(the_ESM)
145 +    integer, intent(in) :: the_ESM    
146 +
147 +    if ((the_ESM .le. 0) .or. (the_ESM .gt. REACTION_FIELD)) then
148 +       call handleError("setElectrostaticSummationMethod", "Unsupported Summation Method")
149 +    endif
150 +
151 +    summationMethod = the_ESM
152 +
153 +  end subroutine setElectrostaticSummationMethod
154 +
155 +  subroutine setElectrostaticCutoffRadius(thisRcut, thisRsw)
156 +    real(kind=dp), intent(in) :: thisRcut
157 +    real(kind=dp), intent(in) :: thisRsw
158 +    defaultCutoff = thisRcut
159 +    rrf = defaultCutoff
160 +    rt = thisRsw
161 +    haveDefaultCutoff = .true.
162 +  end subroutine setElectrostaticCutoffRadius
163 +
164 +  subroutine setDampedWolfAlpha(thisAlpha)
165 +    real(kind=dp), intent(in) :: thisAlpha
166 +    dampingAlpha = thisAlpha
167 +    haveDampingAlpha = .true.
168 +  end subroutine setDampedWolfAlpha
169 +  
170 +  subroutine setReactionFieldDielectric(thisDielectric)
171 +    real(kind=dp), intent(in) :: thisDielectric
172 +    dielectric = thisDielectric
173 +    haveDielectric = .true.
174 +  end subroutine setReactionFieldDielectric
175 +
176 +  subroutine setReactionFieldPrefactor
177 +    if (haveDefaultCutoff .and. haveDielectric) then
178 +       defaultCutoff2 = defaultCutoff*defaultCutoff
179 +       preRF = pre22 * 2.0d0*(dielectric-1.0d0) / &
180 +            ((2.0d0*dielectric+1.0d0)*defaultCutoff2*defaultCutoff)
181 +       preRFCalculated = .true.
182 +    else if (.not.haveDefaultCutoff) then
183 +       call handleError("setReactionFieldPrefactor", "Default cutoff not set")
184 +    else
185 +       call handleError("setReactionFieldPrefactor", "Dielectric not set")
186 +    endif
187 +  end subroutine setReactionFieldPrefactor
188 +
189    subroutine newElectrostaticType(c_ident, is_Charge, is_Dipole, &
190 <       is_SplitDipole, is_Quadrupole, status)
191 <    
190 >       is_SplitDipole, is_Quadrupole, is_Tap, status)
191 >
192      integer, intent(in) :: c_ident
193      logical, intent(in) :: is_Charge
194      logical, intent(in) :: is_Dipole
195      logical, intent(in) :: is_SplitDipole
196      logical, intent(in) :: is_Quadrupole
197 +    logical, intent(in) :: is_Tap
198      integer, intent(out) :: status
199      integer :: nAtypes, myATID, i, j
200  
201      status = 0
202      myATID = getFirstMatchingElement(atypes, "c_ident", c_ident)
203 <    
203 >
204      !! Be simple-minded and assume that we need an ElectrostaticMap that
205      !! is the same size as the total number of atom types
206  
207      if (.not.allocated(ElectrostaticMap)) then
208 <      
208 >
209         nAtypes = getSize(atypes)
210 <    
210 >
211         if (nAtypes == 0) then
212            status = -1
213            return
214         end if
215 <      
215 >
216         if (.not. allocated(ElectrostaticMap)) then
217            allocate(ElectrostaticMap(nAtypes))
218         endif
219 <      
219 >
220      end if
221  
222      if (myATID .gt. size(ElectrostaticMap)) then
223         status = -1
224         return
225      endif
226 <    
226 >
227      ! set the values for ElectrostaticMap for this atom type:
228  
229      ElectrostaticMap(myATID)%c_ident = c_ident
# Line 137 | Line 231 | contains
231      ElectrostaticMap(myATID)%is_Dipole = is_Dipole
232      ElectrostaticMap(myATID)%is_SplitDipole = is_SplitDipole
233      ElectrostaticMap(myATID)%is_Quadrupole = is_Quadrupole
234 <    
234 >    ElectrostaticMap(myATID)%is_Tap = is_Tap
235 >
236    end subroutine newElectrostaticType
237  
238    subroutine setCharge(c_ident, charge, status)
# Line 165 | Line 260 | contains
260         call handleError("electrostatic", "Attempt to setCharge of an atom type that is not a charge!")
261         status = -1
262         return
263 <    endif      
263 >    endif
264  
265      ElectrostaticMap(myATID)%charge = charge
266    end subroutine setCharge
# Line 256 | Line 351 | contains
351         status = -1
352         return
353      endif
354 <    
354 >
355      do i = 1, 3
356 <          ElectrostaticMap(myATID)%quadrupole_moments(i) = &
357 <               quadrupole_moments(i)
358 <       enddo
356 >       ElectrostaticMap(myATID)%quadrupole_moments(i) = &
357 >            quadrupole_moments(i)
358 >    enddo
359  
360    end subroutine setQuadrupoleMoments
361  
362 <  
362 >
363    function getCharge(atid) result (c)
364      integer, intent(in) :: atid
365      integer :: localError
366      real(kind=dp) :: c
367 <    
367 >
368      if (.not.allocated(ElectrostaticMap)) then
369         call handleError("electrostatic", "no ElectrostaticMap was present before first call of getCharge!")
370         return
371      end if
372 <    
372 >
373      if (.not.ElectrostaticMap(atid)%is_Charge) then
374         call handleError("electrostatic", "getCharge was called for an atom type that isn't a charge!")
375         return
376      endif
377 <    
377 >
378      c = ElectrostaticMap(atid)%charge
379    end function getCharge
380  
# Line 287 | Line 382 | contains
382      integer, intent(in) :: atid
383      integer :: localError
384      real(kind=dp) :: dm
385 <    
385 >
386      if (.not.allocated(ElectrostaticMap)) then
387         call handleError("electrostatic", "no ElectrostaticMap was present before first call of getDipoleMoment!")
388         return
389      end if
390 <    
390 >
391      if (.not.ElectrostaticMap(atid)%is_Dipole) then
392         call handleError("electrostatic", "getDipoleMoment was called for an atom type that isn't a dipole!")
393         return
394      endif
395 <    
395 >
396      dm = ElectrostaticMap(atid)%dipole_moment
397    end function getDipoleMoment
398 +
399 +  subroutine checkSummationMethod()
400 +
401 +    if (.not.haveDefaultCutoff) then
402 +       call handleError("checkSummationMethod", "no Default Cutoff set!")
403 +    endif
404 +
405 +    rcuti = 1.0d0 / defaultCutoff
406 +    rcuti2 = rcuti*rcuti
407 +    rcuti3 = rcuti2*rcuti
408 +    rcuti4 = rcuti2*rcuti2
409 +
410 +    if (summationMethod .eq. DAMPED_WOLF) then
411 +       if (.not.haveDWAconstants) then
412 +          
413 +          if (.not.haveDampingAlpha) then
414 +             call handleError("checkSummationMethod", "no Damping Alpha set!")
415 +          endif
416 +          
417 +          if (.not.haveDefaultCutoff) then
418 +             call handleError("checkSummationMethod", "no Default Cutoff set!")
419 +          endif
420  
421 +          constEXP = exp(-dampingAlpha*dampingAlpha*defaultCutoff*defaultCutoff)
422 +          constERFC = derfc(dampingAlpha*defaultCutoff)
423 +          invRootPi = 0.56418958354775628695d0
424 +          alphaPi = 2*dampingAlpha*invRootPi
425 +  
426 +          haveDWAconstants = .true.
427 +       endif
428 +    endif
429 +
430 +    if (summationMethod .eq. REACTION_FIELD) then
431 +       if (.not.haveDielectric) then
432 +          call handleError("checkSummationMethod", "no reaction field Dielectric set!")
433 +       endif
434 +    endif
435 +
436 +    summationMethodChecked = .true.
437 +  end subroutine checkSummationMethod
438 +
439 +
440 +
441    subroutine doElectrostaticPair(atom1, atom2, d, rij, r2, sw, &
442         vpair, fpair, pot, eFrame, f, t, do_pot)
443 <    
443 >
444      logical, intent(in) :: do_pot
445 <    
445 >
446      integer, intent(in) :: atom1, atom2
447      integer :: localError
448  
# Line 318 | Line 455 | contains
455      real( kind = dp ), dimension(9,nLocal) :: eFrame
456      real( kind = dp ), dimension(3,nLocal) :: f
457      real( kind = dp ), dimension(3,nLocal) :: t
321    
322    real (kind = dp), dimension(3) :: ul_i
323    real (kind = dp), dimension(3) :: ul_j
458  
459 +    real (kind = dp), dimension(3) :: ux_i, uy_i, uz_i
460 +    real (kind = dp), dimension(3) :: ux_j, uy_j, uz_j
461 +    real (kind = dp), dimension(3) :: dudux_i, duduy_i, duduz_i
462 +    real (kind = dp), dimension(3) :: dudux_j, duduy_j, duduz_j
463 +
464      logical :: i_is_Charge, i_is_Dipole, i_is_SplitDipole, i_is_Quadrupole
465      logical :: j_is_Charge, j_is_Dipole, j_is_SplitDipole, j_is_Quadrupole
466 +    logical :: i_is_Tap, j_is_Tap
467      integer :: me1, me2, id1, id2
468      real (kind=dp) :: q_i, q_j, mu_i, mu_j, d_i, d_j
469 +    real (kind=dp) :: qxx_i, qyy_i, qzz_i
470 +    real (kind=dp) :: qxx_j, qyy_j, qzz_j
471 +    real (kind=dp) :: cx_i, cy_i, cz_i
472 +    real (kind=dp) :: cx_j, cy_j, cz_j
473 +    real (kind=dp) :: cx2, cy2, cz2
474      real (kind=dp) :: ct_i, ct_j, ct_ij, a1
475      real (kind=dp) :: riji, ri, ri2, ri3, ri4
476 <    real (kind=dp) :: pref, vterm, epot, dudr    
476 >    real (kind=dp) :: pref, vterm, epot, dudr, vterm1, vterm2
477      real (kind=dp) :: xhat, yhat, zhat
478      real (kind=dp) :: dudx, dudy, dudz
334    real (kind=dp) :: drdxj, drdyj, drdzj
335    real (kind=dp) :: duduix, duduiy, duduiz, dudujx, dudujy, dudujz
479      real (kind=dp) :: scale, sc2, bigR
480 +    real (kind=dp) :: varERFC, varEXP
481 +    real (kind=dp) :: limScale
482  
483      if (.not.allocated(ElectrostaticMap)) then
484         call handleError("electrostatic", "no ElectrostaticMap was present before first call of do_electrostatic_pair!")
485         return
486      end if
487  
488 +    if (.not.summationMethodChecked) then
489 +       call checkSummationMethod()
490 +      
491 +    endif
492 +
493 +
494   #ifdef IS_MPI
495      me1 = atid_Row(atom1)
496      me2 = atid_Col(atom2)
# Line 351 | Line 502 | contains
502      !! some variables we'll need independent of electrostatic type:
503  
504      riji = 1.0d0 / rij
505 <
505 >  
506      xhat = d(1) * riji
507      yhat = d(2) * riji
508      zhat = d(3) * riji
509  
359    drdxj = xhat
360    drdyj = yhat
361    drdzj = zhat
362
510      !! logicals
364
511      i_is_Charge = ElectrostaticMap(me1)%is_Charge
512      i_is_Dipole = ElectrostaticMap(me1)%is_Dipole
513      i_is_SplitDipole = ElectrostaticMap(me1)%is_SplitDipole
514      i_is_Quadrupole = ElectrostaticMap(me1)%is_Quadrupole
515 +    i_is_Tap = ElectrostaticMap(me1)%is_Tap
516  
517      j_is_Charge = ElectrostaticMap(me2)%is_Charge
518      j_is_Dipole = ElectrostaticMap(me2)%is_Dipole
519      j_is_SplitDipole = ElectrostaticMap(me2)%is_SplitDipole
520      j_is_Quadrupole = ElectrostaticMap(me2)%is_Quadrupole
521 +    j_is_Tap = ElectrostaticMap(me2)%is_Tap
522  
523      if (i_is_Charge) then
524         q_i = ElectrostaticMap(me1)%charge      
525      endif
526 <    
526 >
527      if (i_is_Dipole) then
528         mu_i = ElectrostaticMap(me1)%dipole_moment
529   #ifdef IS_MPI
530 <       ul_i(1) = eFrame_Row(3,atom1)
531 <       ul_i(2) = eFrame_Row(6,atom1)
532 <       ul_i(3) = eFrame_Row(9,atom1)
530 >       uz_i(1) = eFrame_Row(3,atom1)
531 >       uz_i(2) = eFrame_Row(6,atom1)
532 >       uz_i(3) = eFrame_Row(9,atom1)
533   #else
534 <       ul_i(1) = eFrame(3,atom1)
535 <       ul_i(2) = eFrame(6,atom1)
536 <       ul_i(3) = eFrame(9,atom1)
534 >       uz_i(1) = eFrame(3,atom1)
535 >       uz_i(2) = eFrame(6,atom1)
536 >       uz_i(3) = eFrame(9,atom1)
537   #endif
538 <       ct_i = ul_i(1)*drdxj + ul_i(2)*drdyj + ul_i(3)*drdzj
538 >       ct_i = uz_i(1)*xhat + uz_i(2)*yhat + uz_i(3)*zhat
539  
540         if (i_is_SplitDipole) then
541            d_i = ElectrostaticMap(me1)%split_dipole_distance
542         endif
543 <      
543 >
544      endif
545  
546 +    if (i_is_Quadrupole) then
547 +       qxx_i = ElectrostaticMap(me1)%quadrupole_moments(1)
548 +       qyy_i = ElectrostaticMap(me1)%quadrupole_moments(2)
549 +       qzz_i = ElectrostaticMap(me1)%quadrupole_moments(3)
550 + #ifdef IS_MPI
551 +       ux_i(1) = eFrame_Row(1,atom1)
552 +       ux_i(2) = eFrame_Row(4,atom1)
553 +       ux_i(3) = eFrame_Row(7,atom1)
554 +       uy_i(1) = eFrame_Row(2,atom1)
555 +       uy_i(2) = eFrame_Row(5,atom1)
556 +       uy_i(3) = eFrame_Row(8,atom1)
557 +       uz_i(1) = eFrame_Row(3,atom1)
558 +       uz_i(2) = eFrame_Row(6,atom1)
559 +       uz_i(3) = eFrame_Row(9,atom1)
560 + #else
561 +       ux_i(1) = eFrame(1,atom1)
562 +       ux_i(2) = eFrame(4,atom1)
563 +       ux_i(3) = eFrame(7,atom1)
564 +       uy_i(1) = eFrame(2,atom1)
565 +       uy_i(2) = eFrame(5,atom1)
566 +       uy_i(3) = eFrame(8,atom1)
567 +       uz_i(1) = eFrame(3,atom1)
568 +       uz_i(2) = eFrame(6,atom1)
569 +       uz_i(3) = eFrame(9,atom1)
570 + #endif
571 +       cx_i = ux_i(1)*xhat + ux_i(2)*yhat + ux_i(3)*zhat
572 +       cy_i = uy_i(1)*xhat + uy_i(2)*yhat + uy_i(3)*zhat
573 +       cz_i = uz_i(1)*xhat + uz_i(2)*yhat + uz_i(3)*zhat
574 +    endif
575 +
576      if (j_is_Charge) then
577         q_j = ElectrostaticMap(me2)%charge      
578      endif
579 <    
579 >
580      if (j_is_Dipole) then
581         mu_j = ElectrostaticMap(me2)%dipole_moment
582   #ifdef IS_MPI
583 <       ul_j(1) = eFrame_Col(3,atom2)
584 <       ul_j(2) = eFrame_Col(6,atom2)
585 <       ul_j(3) = eFrame_Col(9,atom2)
583 >       uz_j(1) = eFrame_Col(3,atom2)
584 >       uz_j(2) = eFrame_Col(6,atom2)
585 >       uz_j(3) = eFrame_Col(9,atom2)
586   #else
587 <       ul_j(1) = eFrame(3,atom2)
588 <       ul_j(2) = eFrame(6,atom2)
589 <       ul_j(3) = eFrame(9,atom2)
587 >       uz_j(1) = eFrame(3,atom2)
588 >       uz_j(2) = eFrame(6,atom2)
589 >       uz_j(3) = eFrame(9,atom2)
590   #endif
591 <       ct_j = ul_j(1)*drdxj + ul_j(2)*drdyj + ul_j(3)*drdzj
591 >       ct_j = uz_j(1)*xhat + uz_j(2)*yhat + uz_j(3)*zhat
592  
593         if (j_is_SplitDipole) then
594            d_j = ElectrostaticMap(me2)%split_dipole_distance
595         endif
596      endif
597  
598 +    if (j_is_Quadrupole) then
599 +       qxx_j = ElectrostaticMap(me2)%quadrupole_moments(1)
600 +       qyy_j = ElectrostaticMap(me2)%quadrupole_moments(2)
601 +       qzz_j = ElectrostaticMap(me2)%quadrupole_moments(3)
602 + #ifdef IS_MPI
603 +       ux_j(1) = eFrame_Col(1,atom2)
604 +       ux_j(2) = eFrame_Col(4,atom2)
605 +       ux_j(3) = eFrame_Col(7,atom2)
606 +       uy_j(1) = eFrame_Col(2,atom2)
607 +       uy_j(2) = eFrame_Col(5,atom2)
608 +       uy_j(3) = eFrame_Col(8,atom2)
609 +       uz_j(1) = eFrame_Col(3,atom2)
610 +       uz_j(2) = eFrame_Col(6,atom2)
611 +       uz_j(3) = eFrame_Col(9,atom2)
612 + #else
613 +       ux_j(1) = eFrame(1,atom2)
614 +       ux_j(2) = eFrame(4,atom2)
615 +       ux_j(3) = eFrame(7,atom2)
616 +       uy_j(1) = eFrame(2,atom2)
617 +       uy_j(2) = eFrame(5,atom2)
618 +       uy_j(3) = eFrame(8,atom2)
619 +       uz_j(1) = eFrame(3,atom2)
620 +       uz_j(2) = eFrame(6,atom2)
621 +       uz_j(3) = eFrame(9,atom2)
622 + #endif
623 +       cx_j = ux_j(1)*xhat + ux_j(2)*yhat + ux_j(3)*zhat
624 +       cy_j = uy_j(1)*xhat + uy_j(2)*yhat + uy_j(3)*zhat
625 +       cz_j = uz_j(1)*xhat + uz_j(2)*yhat + uz_j(3)*zhat
626 +    endif
627 +  
628      epot = 0.0_dp
629      dudx = 0.0_dp
630      dudy = 0.0_dp
631      dudz = 0.0_dp
632  
633 <    duduix = 0.0_dp
634 <    duduiy = 0.0_dp
635 <    duduiz = 0.0_dp
633 >    dudux_i = 0.0_dp
634 >    duduy_i = 0.0_dp
635 >    duduz_i = 0.0_dp
636  
637 <    dudujx = 0.0_dp
638 <    dudujy = 0.0_dp
639 <    dudujz = 0.0_dp
637 >    dudux_j = 0.0_dp
638 >    duduy_j = 0.0_dp
639 >    duduz_j = 0.0_dp
640  
641      if (i_is_Charge) then
642  
643         if (j_is_Charge) then
436          
437          vterm = pre11 * q_i * q_j * riji
438          vpair = vpair + vterm
439          epot = epot + sw*vterm
644  
645 <          dudr  = - sw * vterm * riji
645 >          if (summationMethod .eq. UNDAMPED_WOLF) then
646  
647 <          dudx = dudx + dudr * drdxj
648 <          dudy = dudy + dudr * drdyj
649 <          dudz = dudz + dudr * drdzj
650 <      
651 <       endif
647 >             vterm = pre11 * q_i * q_j * (riji - rcuti)
648 >             vpair = vpair + vterm
649 >             epot = epot + sw*vterm
650 >            
651 >             dudr  = -sw*pre11*q_i*q_j * (riji*riji-rcuti2)*riji
652 >            
653 >             dudx = dudx + dudr * d(1)
654 >             dudy = dudy + dudr * d(2)
655 >             dudz = dudz + dudr * d(3)
656  
657 <       if (j_is_Dipole) then
657 >          elseif (summationMethod .eq. DAMPED_WOLF) then
658  
659 <          if (j_is_SplitDipole) then
660 <             BigR = sqrt(r2 + 0.25_dp * d_j * d_j)
661 <             ri = 1.0_dp / BigR
662 <             scale = rij * ri
663 <          else
456 <             ri = riji
457 <             scale = 1.0_dp
458 <          endif
459 <
460 <          ri2 = ri * ri
461 <          ri3 = ri2 * ri
462 <          sc2 = scale * scale
659 >             varERFC = derfc(dampingAlpha*rij)
660 >             varEXP = exp(-dampingAlpha*dampingAlpha*rij*rij)
661 >             vterm = pre11 * q_i * q_j * (varERFC*riji - constERFC*rcuti)
662 >             vpair = vpair + vterm
663 >             epot = epot + sw*vterm
664              
665 <          pref = pre12 * q_i * mu_j
666 <          vterm = pref * ct_j * ri2 * scale
667 <          vpair = vpair + vterm
668 <          epot = epot + sw * vterm
665 >             dudr  = -sw*pre11*q_i*q_j * ( riji*((varERFC*riji*riji &
666 >                                                  + alphaPi*varEXP) &
667 >                                                 - (constERFC*rcuti2 &
668 >                                                    + alphaPi*constEXP)) )
669 >            
670 >             dudx = dudx + dudr * d(1)
671 >             dudy = dudy + dudr * d(2)
672 >             dudz = dudz + dudr * d(3)
673  
469          !! this has a + sign in the () because the rij vector is
470          !! r_j - r_i and the charge-dipole potential takes the origin
471          !! as the point dipole, which is atom j in this case.
472
473          dudx = dudx + pref * sw * ri3 * ( ul_j(1) + 3.0d0*ct_j*xhat*sc2)
474          dudy = dudy + pref * sw * ri3 * ( ul_j(2) + 3.0d0*ct_j*yhat*sc2)
475          dudz = dudz + pref * sw * ri3 * ( ul_j(3) + 3.0d0*ct_j*zhat*sc2)
476
477          dudujx = dudujx - pref * sw * ri2 * xhat * scale
478          dudujy = dudujy - pref * sw * ri2 * yhat * scale
479          dudujz = dudujz - pref * sw * ri2 * zhat * scale
480          
481       endif
482
483    endif
484  
485    if (i_is_Dipole) then
486      
487       if (j_is_Charge) then
488
489          if (i_is_SplitDipole) then
490             BigR = sqrt(r2 + 0.25_dp * d_i * d_i)
491             ri = 1.0_dp / BigR
492             scale = rij * ri
674            else
494             ri = riji
495             scale = 1.0_dp
496          endif
675  
676 <          ri2 = ri * ri
677 <          ri3 = ri2 * ri
678 <          sc2 = scale * scale
676 >             vterm = pre11 * q_i * q_j * riji
677 >             vpair = vpair + vterm
678 >             epot = epot + sw*vterm
679              
680 <          pref = pre12 * q_j * mu_i
681 <          vterm = pref * ct_i * ri2 * scale
682 <          vpair = vpair + vterm
683 <          epot = epot + sw * vterm
680 >             dudr  = - sw * vterm * riji
681 >            
682 >             dudx = dudx + dudr * xhat
683 >             dudy = dudy + dudr * yhat
684 >             dudz = dudz + dudr * zhat
685  
686 <          dudx = dudx + pref * sw * ri3 * ( ul_i(1) - 3.0d0 * ct_i * xhat*sc2)
508 <          dudy = dudy + pref * sw * ri3 * ( ul_i(2) - 3.0d0 * ct_i * yhat*sc2)
509 <          dudz = dudz + pref * sw * ri3 * ( ul_i(3) - 3.0d0 * ct_i * zhat*sc2)
686 >          endif
687  
511          duduix = duduix + pref * sw * ri2 * xhat * scale
512          duduiy = duduiy + pref * sw * ri2 * yhat * scale
513          duduiz = duduiz + pref * sw * ri2 * zhat * scale
688         endif
689  
690         if (j_is_Dipole) then
691  
692 <          if (i_is_SplitDipole) then
693 <             if (j_is_SplitDipole) then
694 <                BigR = sqrt(r2 + 0.25_dp * d_i * d_i + 0.25_dp * d_j * d_j)
695 <             else
696 <                BigR = sqrt(r2 + 0.25_dp * d_i * d_i)
697 <             endif
698 <             ri = 1.0_dp / BigR
699 <             scale = rij * ri                
692 >          pref = pre12 * q_i * mu_j
693 >
694 >          if (summationMethod .eq. UNDAMPED_WOLF) then
695 >             ri2 = riji * riji
696 >             ri3 = ri2 * riji
697 >
698 >             pref = pre12 * q_i * mu_j
699 >             vterm = - pref * ct_j * (ri2 - rcuti2)
700 >             vpair = vpair + vterm
701 >             epot = epot + sw*vterm
702 >            
703 >             !! this has a + sign in the () because the rij vector is
704 >             !! r_j - r_i and the charge-dipole potential takes the origin
705 >             !! as the point dipole, which is atom j in this case.
706 >            
707 >             dudx = dudx - sw*pref * ( ri3*( uz_j(1) - 3.0d0*ct_j*xhat) &
708 >                  - rcuti3*( uz_j(1) - 3.0d0*ct_j*d(1)*rcuti ) )
709 >             dudy = dudy - sw*pref * ( ri3*( uz_j(2) - 3.0d0*ct_j*yhat) &
710 >                  - rcuti3*( uz_j(2) - 3.0d0*ct_j*d(2)*rcuti ) )
711 >             dudz = dudz - sw*pref * ( ri3*( uz_j(3) - 3.0d0*ct_j*zhat) &
712 >                  - rcuti3*( uz_j(3) - 3.0d0*ct_j*d(3)*rcuti ) )
713 >            
714 >             duduz_j(1) = duduz_j(1) - sw*pref*( ri2*xhat - d(1)*rcuti3 )
715 >             duduz_j(2) = duduz_j(2) - sw*pref*( ri2*yhat - d(2)*rcuti3 )
716 >             duduz_j(3) = duduz_j(3) - sw*pref*( ri2*zhat - d(3)*rcuti3 )
717 >
718            else
719               if (j_is_SplitDipole) then
720                  BigR = sqrt(r2 + 0.25_dp * d_j * d_j)
721                  ri = 1.0_dp / BigR
722 <                scale = rij * ri                            
723 <             else                
722 >                scale = rij * ri
723 >             else
724                  ri = riji
725                  scale = 1.0_dp
726               endif
727 <          endif
727 >            
728 >             ri2 = ri * ri
729 >             ri3 = ri2 * ri
730 >             sc2 = scale * scale
731  
732 <          ct_ij = ul_i(1)*ul_j(1) + ul_i(2)*ul_j(2) + ul_i(3)*ul_j(3)
732 >             pref = pre12 * q_i * mu_j
733 >             vterm = - pref * ct_j * ri2 * scale
734 >             vpair = vpair + vterm
735 >             epot = epot + sw*vterm
736 >            
737 >             !! this has a + sign in the () because the rij vector is
738 >             !! r_j - r_i and the charge-dipole potential takes the origin
739 >             !! as the point dipole, which is atom j in this case.
740 >            
741 >             dudx = dudx - sw*pref * ri3 * ( uz_j(1) - 3.0d0*ct_j*xhat*sc2)
742 >             dudy = dudy - sw*pref * ri3 * ( uz_j(2) - 3.0d0*ct_j*yhat*sc2)
743 >             dudz = dudz - sw*pref * ri3 * ( uz_j(3) - 3.0d0*ct_j*zhat*sc2)
744 >            
745 >             duduz_j(1) = duduz_j(1) - sw*pref * ri2 * xhat * scale
746 >             duduz_j(2) = duduz_j(2) - sw*pref * ri2 * yhat * scale
747 >             duduz_j(3) = duduz_j(3) - sw*pref * ri2 * zhat * scale
748  
749 <          ri2 = ri * ri
750 <          ri3 = ri2 * ri
749 >          endif
750 >       endif
751 >
752 >       if (j_is_Quadrupole) then
753 >          ri2 = riji * riji
754 >          ri3 = ri2 * riji
755            ri4 = ri2 * ri2
756 <          sc2 = scale * scale
756 >          cx2 = cx_j * cx_j
757 >          cy2 = cy_j * cy_j
758 >          cz2 = cz_j * cz_j
759  
760 <          pref = pre22 * mu_i * mu_j
761 <          vterm = pref * ri3 * (ct_ij - 3.0d0 * ct_i * ct_j * sc2)
762 <          vpair = vpair + vterm
763 <          epot = epot + sw * vterm
764 <          
765 <          a1 = 5.0d0 * ct_i * ct_j * sc2 - ct_ij
766 <
767 <          dudx=dudx+pref*sw*3.0d0*ri4*scale*(a1*xhat-ct_i*ul_j(1)-ct_j*ul_i(1))
768 <          dudy=dudy+pref*sw*3.0d0*ri4*scale*(a1*yhat-ct_i*ul_j(2)-ct_j*ul_i(2))
769 <          dudz=dudz+pref*sw*3.0d0*ri4*scale*(a1*zhat-ct_i*ul_j(3)-ct_j*ul_i(3))
770 <
771 <          duduix = duduix + pref*sw*ri3*(ul_j(1) - 3.0d0*ct_j*xhat*sc2)
772 <          duduiy = duduiy + pref*sw*ri3*(ul_j(2) - 3.0d0*ct_j*yhat*sc2)
773 <          duduiz = duduiz + pref*sw*ri3*(ul_j(3) - 3.0d0*ct_j*zhat*sc2)
774 <
775 <          dudujx = dudujx + pref*sw*ri3*(ul_i(1) - 3.0d0*ct_i*xhat*sc2)
776 <          dudujy = dudujy + pref*sw*ri3*(ul_i(2) - 3.0d0*ct_i*yhat*sc2)
777 <          dudujz = dudujz + pref*sw*ri3*(ul_i(3) - 3.0d0*ct_i*zhat*sc2)
760 >          if (summationMethod .eq. UNDAMPED_WOLF) then
761 >             pref =  pre14 * q_i / 3.0_dp
762 >             vterm1 = pref * ri3*( qxx_j * (3.0_dp*cx2 - 1.0_dp) + &
763 >                  qyy_j * (3.0_dp*cy2 - 1.0_dp) + &
764 >                  qzz_j * (3.0_dp*cz2 - 1.0_dp) )
765 >             vterm2 = pref * rcuti3*( qxx_j * (3.0_dp*cx2 - 1.0_dp) + &
766 >                  qyy_j * (3.0_dp*cy2 - 1.0_dp) + &
767 >                  qzz_j * (3.0_dp*cz2 - 1.0_dp) )
768 >             vpair = vpair + ( vterm1 - vterm2 )
769 >             epot = epot + sw*( vterm1 - vterm2 )
770 >            
771 >             dudx = dudx - (5.0_dp * &
772 >                  (vterm1*riji*xhat - vterm2*rcuti2*d(1))) + sw*pref * ( &
773 >                  (ri4 - rcuti4)*(qxx_j*(6.0_dp*cx_j*ux_j(1)) - &
774 >                  qxx_j*2.0_dp*(xhat - rcuti*d(1))) + &
775 >                  (ri4 - rcuti4)*(qyy_j*(6.0_dp*cy_j*uy_j(1)) - &
776 >                  qyy_j*2.0_dp*(xhat - rcuti*d(1))) + &
777 >                  (ri4 - rcuti4)*(qzz_j*(6.0_dp*cz_j*uz_j(1)) - &
778 >                  qzz_j*2.0_dp*(xhat - rcuti*d(1))) )
779 >             dudy = dudy - (5.0_dp * &
780 >                  (vterm1*riji*yhat - vterm2*rcuti2*d(2))) + sw*pref * ( &
781 >                  (ri4 - rcuti4)*(qxx_j*(6.0_dp*cx_j*ux_j(2)) - &
782 >                  qxx_j*2.0_dp*(yhat - rcuti*d(2))) + &
783 >                  (ri4 - rcuti4)*(qyy_j*(6.0_dp*cy_j*uy_j(2)) - &
784 >                  qyy_j*2.0_dp*(yhat - rcuti*d(2))) + &
785 >                  (ri4 - rcuti4)*(qzz_j*(6.0_dp*cz_j*uz_j(2)) - &
786 >                  qzz_j*2.0_dp*(yhat - rcuti*d(2))) )
787 >             dudz = dudz - (5.0_dp * &
788 >                  (vterm1*riji*zhat - vterm2*rcuti2*d(3))) + sw*pref * ( &
789 >                  (ri4 - rcuti4)*(qxx_j*(6.0_dp*cx_j*ux_j(3)) - &
790 >                  qxx_j*2.0_dp*(zhat - rcuti*d(3))) + &
791 >                  (ri4 - rcuti4)*(qyy_j*(6.0_dp*cy_j*uy_j(3)) - &
792 >                  qyy_j*2.0_dp*(zhat - rcuti*d(3))) + &
793 >                  (ri4 - rcuti4)*(qzz_j*(6.0_dp*cz_j*uz_j(3)) - &
794 >                  qzz_j*2.0_dp*(zhat - rcuti*d(3))) )
795 >            
796 >             dudux_j(1) = dudux_j(1) + sw*pref*(ri3*(qxx_j*6.0_dp*cx_j*xhat) -&
797 >                  rcuti4*(qxx_j*6.0_dp*cx_j*d(1)))
798 >             dudux_j(2) = dudux_j(2) + sw*pref*(ri3*(qxx_j*6.0_dp*cx_j*yhat) -&
799 >                  rcuti4*(qxx_j*6.0_dp*cx_j*d(2)))
800 >             dudux_j(3) = dudux_j(3) + sw*pref*(ri3*(qxx_j*6.0_dp*cx_j*zhat) -&
801 >                  rcuti4*(qxx_j*6.0_dp*cx_j*d(3)))
802 >            
803 >             duduy_j(1) = duduy_j(1) + sw*pref*(ri3*(qyy_j*6.0_dp*cy_j*xhat) -&
804 >                  rcuti4*(qyy_j*6.0_dp*cx_j*d(1)))
805 >             duduy_j(2) = duduy_j(2) + sw*pref*(ri3*(qyy_j*6.0_dp*cy_j*yhat) -&
806 >                  rcuti4*(qyy_j*6.0_dp*cx_j*d(2)))
807 >             duduy_j(3) = duduy_j(3) + sw*pref*(ri3*(qyy_j*6.0_dp*cy_j*zhat) -&
808 >                  rcuti4*(qyy_j*6.0_dp*cx_j*d(3)))
809 >            
810 >             duduz_j(1) = duduz_j(1) + sw*pref*(ri3*(qzz_j*6.0_dp*cz_j*xhat) -&
811 >                  rcuti4*(qzz_j*6.0_dp*cx_j*d(1)))
812 >             duduz_j(2) = duduz_j(2) + sw*pref*(ri3*(qzz_j*6.0_dp*cz_j*yhat) -&
813 >                  rcuti4*(qzz_j*6.0_dp*cx_j*d(2)))
814 >             duduz_j(3) = duduz_j(3) + sw*pref*(ri3*(qzz_j*6.0_dp*cz_j*zhat) -&
815 >                  rcuti4*(qzz_j*6.0_dp*cx_j*d(3)))
816 >        
817 >          else
818 >             pref =  pre14 * q_i / 3.0_dp
819 >             vterm = pref * ri3 * (qxx_j * (3.0_dp*cx2 - 1.0_dp) + &
820 >                  qyy_j * (3.0_dp*cy2 - 1.0_dp) + &
821 >                  qzz_j * (3.0_dp*cz2 - 1.0_dp))
822 >             vpair = vpair + vterm
823 >             epot = epot + sw*vterm
824 >            
825 >             dudx = dudx - 5.0_dp*sw*vterm*riji*xhat + sw*pref * ri4 * ( &
826 >                  qxx_j*(6.0_dp*cx_j*ux_j(1) - 2.0_dp*xhat) + &
827 >                  qyy_j*(6.0_dp*cy_j*uy_j(1) - 2.0_dp*xhat) + &
828 >                  qzz_j*(6.0_dp*cz_j*uz_j(1) - 2.0_dp*xhat) )
829 >             dudy = dudy - 5.0_dp*sw*vterm*riji*yhat + sw*pref * ri4 * ( &
830 >                  qxx_j*(6.0_dp*cx_j*ux_j(2) - 2.0_dp*yhat) + &
831 >                  qyy_j*(6.0_dp*cy_j*uy_j(2) - 2.0_dp*yhat) + &
832 >                  qzz_j*(6.0_dp*cz_j*uz_j(2) - 2.0_dp*yhat) )
833 >             dudz = dudz - 5.0_dp*sw*vterm*riji*zhat + sw*pref * ri4 * ( &
834 >                  qxx_j*(6.0_dp*cx_j*ux_j(3) - 2.0_dp*zhat) + &
835 >                  qyy_j*(6.0_dp*cy_j*uy_j(3) - 2.0_dp*zhat) + &
836 >                  qzz_j*(6.0_dp*cz_j*uz_j(3) - 2.0_dp*zhat) )
837 >            
838 >             dudux_j(1) = dudux_j(1) + sw*pref * ri3*(qxx_j*6.0_dp*cx_j*xhat)
839 >             dudux_j(2) = dudux_j(2) + sw*pref * ri3*(qxx_j*6.0_dp*cx_j*yhat)
840 >             dudux_j(3) = dudux_j(3) + sw*pref * ri3*(qxx_j*6.0_dp*cx_j*zhat)
841 >            
842 >             duduy_j(1) = duduy_j(1) + sw*pref * ri3*(qyy_j*6.0_dp*cy_j*xhat)
843 >             duduy_j(2) = duduy_j(2) + sw*pref * ri3*(qyy_j*6.0_dp*cy_j*yhat)
844 >             duduy_j(3) = duduy_j(3) + sw*pref * ri3*(qyy_j*6.0_dp*cy_j*zhat)
845 >            
846 >             duduz_j(1) = duduz_j(1) + sw*pref * ri3*(qzz_j*6.0_dp*cz_j*xhat)
847 >             duduz_j(2) = duduz_j(2) + sw*pref * ri3*(qzz_j*6.0_dp*cz_j*yhat)
848 >             duduz_j(3) = duduz_j(3) + sw*pref * ri3*(qzz_j*6.0_dp*cz_j*zhat)
849 >          
850 >          endif
851         endif
852 +    endif
853  
854 +    if (i_is_Dipole) then
855 +
856 +       if (j_is_Charge) then
857 +          
858 +          pref = pre12 * q_j * mu_i
859 +          
860 +          if (summationMethod .eq. UNDAMPED_WOLF) then
861 +             ri2 = riji * riji
862 +             ri3 = ri2 * riji
863 +
864 +             pref = pre12 * q_j * mu_i
865 +             vterm = pref * ct_i * (ri2 - rcuti2)
866 +             vpair = vpair + vterm
867 +             epot = epot + sw*vterm
868 +            
869 +             !! this has a + sign in the () because the rij vector is
870 +             !! r_j - r_i and the charge-dipole potential takes the origin
871 +             !! as the point dipole, which is atom j in this case.
872 +            
873 +             dudx = dudx + sw*pref * ( ri3*( uz_i(1) - 3.0d0*ct_i*xhat) &
874 +                  - rcuti3*( uz_i(1) - 3.0d0*ct_i*d(1)*rcuti ) )
875 +             dudy = dudy + sw*pref * ( ri3*( uz_i(2) - 3.0d0*ct_i*yhat) &
876 +                  - rcuti3*( uz_i(2) - 3.0d0*ct_i*d(2)*rcuti ) )
877 +             dudz = dudz + sw*pref * ( ri3*( uz_i(3) - 3.0d0*ct_i*zhat) &
878 +                  - rcuti3*( uz_i(3) - 3.0d0*ct_i*d(3)*rcuti ) )
879 +            
880 +             duduz_i(1) = duduz_i(1) - sw*pref*( ri2*xhat - d(1)*rcuti3 )
881 +             duduz_i(2) = duduz_i(2) - sw*pref*( ri2*yhat - d(2)*rcuti3 )
882 +             duduz_i(3) = duduz_i(3) - sw*pref*( ri2*zhat - d(3)*rcuti3 )
883 +
884 +          else
885 +             if (i_is_SplitDipole) then
886 +                BigR = sqrt(r2 + 0.25_dp * d_i * d_i)
887 +                ri = 1.0_dp / BigR
888 +                scale = rij * ri
889 +             else
890 +                ri = riji
891 +                scale = 1.0_dp
892 +             endif
893 +            
894 +             ri2 = ri * ri
895 +             ri3 = ri2 * ri
896 +             sc2 = scale * scale
897 +
898 +             pref = pre12 * q_j * mu_i
899 +             vterm = pref * ct_i * ri2 * scale
900 +             vpair = vpair + vterm
901 +             epot = epot + sw*vterm
902 +            
903 +             dudx = dudx + sw*pref * ri3 * ( uz_i(1) - 3.0d0 * ct_i * xhat*sc2)
904 +             dudy = dudy + sw*pref * ri3 * ( uz_i(2) - 3.0d0 * ct_i * yhat*sc2)
905 +             dudz = dudz + sw*pref * ri3 * ( uz_i(3) - 3.0d0 * ct_i * zhat*sc2)
906 +            
907 +             duduz_i(1) = duduz_i(1) + sw*pref * ri2 * xhat * scale
908 +             duduz_i(2) = duduz_i(2) + sw*pref * ri2 * yhat * scale
909 +             duduz_i(3) = duduz_i(3) + sw*pref * ri2 * zhat * scale
910 +          endif
911 +       endif
912 +      
913 +       if (j_is_Dipole) then
914 +
915 +          if (summationMethod .eq. UNDAMPED_WOLF) then
916 +             ri2 = riji * riji
917 +             ri3 = ri2 * riji
918 +             ri4 = ri2 * ri2
919 +
920 +             pref = pre22 * mu_i * mu_j
921 +             vterm = pref * (ri3 - rcuti3) * (ct_ij - 3.0d0 * ct_i * ct_j)
922 +             vpair = vpair + vterm
923 +             epot = epot + sw*vterm
924 +            
925 +             a1 = 5.0d0 * ct_i * ct_j - ct_ij
926 +            
927 +             dudx = dudx + sw*pref*3.0d0*ri4 &
928 +                             * (a1*xhat-ct_i*uz_j(1)-ct_j*uz_i(1)) &
929 +                         - sw*pref*3.0d0*rcuti4 &
930 +                             * (a1*rcuti*d(1)-ct_i*uz_j(1)-ct_j*uz_i(1))
931 +             dudy = dudy + sw*pref*3.0d0*ri4 &
932 +                             * (a1*yhat-ct_i*uz_j(2)-ct_j*uz_i(2)) &
933 +                         - sw*pref*3.0d0*rcuti4 &
934 +                             * (a1*rcuti*d(2)-ct_i*uz_j(2)-ct_j*uz_i(2))
935 +             dudz = dudz + sw*pref*3.0d0*ri4 &
936 +                             * (a1*zhat-ct_i*uz_j(3)-ct_j*uz_i(3)) &
937 +                         - sw*pref*3.0d0*rcuti4 &
938 +                             * (a1*rcuti*d(3)-ct_i*uz_j(3)-ct_j*uz_i(3))
939 +            
940 +             duduz_i(1) = duduz_i(1) + sw*pref*(ri3*(uz_j(1)-3.0d0*ct_j*xhat) &
941 +                  - rcuti3*(uz_j(1) - 3.0d0*ct_j*d(1)*rcuti))
942 +             duduz_i(2) = duduz_i(2) + sw*pref*(ri3*(uz_j(2)-3.0d0*ct_j*yhat) &
943 +                  - rcuti3*(uz_j(2) - 3.0d0*ct_j*d(2)*rcuti))
944 +             duduz_i(3) = duduz_i(3) + sw*pref*(ri3*(uz_j(3)-3.0d0*ct_j*zhat) &
945 +                  - rcuti3*(uz_j(3) - 3.0d0*ct_j*d(3)*rcuti))
946 +             duduz_j(1) = duduz_j(1) + sw*pref*(ri3*(uz_i(1)-3.0d0*ct_i*xhat) &
947 +                  - rcuti3*(uz_i(1) - 3.0d0*ct_i*d(1)*rcuti))
948 +             duduz_j(2) = duduz_j(2) + sw*pref*(ri3*(uz_i(2)-3.0d0*ct_i*yhat) &
949 +                  - rcuti3*(uz_i(2) - 3.0d0*ct_i*d(2)*rcuti))
950 +             duduz_j(3) = duduz_j(3) + sw*pref*(ri3*(uz_i(3)-3.0d0*ct_i*zhat) &
951 +                  - rcuti3*(uz_i(3) - 3.0d0*ct_i*d(3)*rcuti))
952 +
953 +          else
954 +             if (i_is_SplitDipole) then
955 +                if (j_is_SplitDipole) then
956 +                   BigR = sqrt(r2 + 0.25_dp * d_i * d_i + 0.25_dp * d_j * d_j)
957 +                else
958 +                   BigR = sqrt(r2 + 0.25_dp * d_i * d_i)
959 +                endif
960 +                ri = 1.0_dp / BigR
961 +                scale = rij * ri                
962 +             else
963 +                if (j_is_SplitDipole) then
964 +                   BigR = sqrt(r2 + 0.25_dp * d_j * d_j)
965 +                   ri = 1.0_dp / BigR
966 +                   scale = rij * ri                            
967 +                else                
968 +                   ri = riji
969 +                   scale = 1.0_dp
970 +                endif
971 +             endif
972 +            
973 +             ct_ij = uz_i(1)*uz_j(1) + uz_i(2)*uz_j(2) + uz_i(3)*uz_j(3)
974 +            
975 +             ri2 = ri * ri
976 +             ri3 = ri2 * ri
977 +             ri4 = ri2 * ri2
978 +             sc2 = scale * scale
979 +            
980 +             pref = pre22 * mu_i * mu_j
981 +             vterm = pref * ri3 * (ct_ij - 3.0d0 * ct_i * ct_j * sc2)
982 +             vpair = vpair + vterm
983 +             epot = epot + sw*vterm
984 +            
985 +             a1 = 5.0d0 * ct_i * ct_j * sc2 - ct_ij
986 +            
987 +             dudx = dudx + sw*pref*3.0d0*ri4*scale &
988 +                             *(a1*xhat-ct_i*uz_j(1)-ct_j*uz_i(1))
989 +             dudy = dudy + sw*pref*3.0d0*ri4*scale &
990 +                             *(a1*yhat-ct_i*uz_j(2)-ct_j*uz_i(2))
991 +             dudz = dudz + sw*pref*3.0d0*ri4*scale &
992 +                             *(a1*zhat-ct_i*uz_j(3)-ct_j*uz_i(3))
993 +            
994 +             duduz_i(1) = duduz_i(1) + sw*pref*ri3 &
995 +                                         *(uz_j(1) - 3.0d0*ct_j*xhat*sc2)
996 +             duduz_i(2) = duduz_i(2) + sw*pref*ri3 &
997 +                                         *(uz_j(2) - 3.0d0*ct_j*yhat*sc2)
998 +             duduz_i(3) = duduz_i(3) + sw*pref*ri3 &
999 +                                         *(uz_j(3) - 3.0d0*ct_j*zhat*sc2)
1000 +            
1001 +             duduz_j(1) = duduz_j(1) + sw*pref*ri3 &
1002 +                                         *(uz_i(1) - 3.0d0*ct_i*xhat*sc2)
1003 +             duduz_j(2) = duduz_j(2) + sw*pref*ri3 &
1004 +                                         *(uz_i(2) - 3.0d0*ct_i*yhat*sc2)
1005 +             duduz_j(3) = duduz_j(3) + sw*pref*ri3 &
1006 +                                         *(uz_i(3) - 3.0d0*ct_i*zhat*sc2)
1007 +          endif
1008 +       endif
1009      endif
1010 <    
1010 >
1011 >    if (i_is_Quadrupole) then
1012 >       if (j_is_Charge) then
1013 >
1014 >          ri2 = riji * riji
1015 >          ri3 = ri2 * riji
1016 >          ri4 = ri2 * ri2
1017 >          cx2 = cx_i * cx_i
1018 >          cy2 = cy_i * cy_i
1019 >          cz2 = cz_i * cz_i
1020 >
1021 >          if (summationMethod .eq. UNDAMPED_WOLF) then
1022 >             pref = pre14 * q_j / 3.0_dp
1023 >             vterm1 = pref * ri3*( qxx_i * (3.0_dp*cx2 - 1.0_dp) + &
1024 >                  qyy_i * (3.0_dp*cy2 - 1.0_dp) + &
1025 >                  qzz_i * (3.0_dp*cz2 - 1.0_dp) )
1026 >             vterm2 = pref * rcuti3*( qxx_i * (3.0_dp*cx2 - 1.0_dp) + &
1027 >                  qyy_i * (3.0_dp*cy2 - 1.0_dp) + &
1028 >                  qzz_i * (3.0_dp*cz2 - 1.0_dp) )
1029 >             vpair = vpair + ( vterm1 - vterm2 )
1030 >             epot = epot + sw*( vterm1 - vterm2 )
1031 >            
1032 >             dudx = dudx - sw*(5.0_dp*(vterm1*riji*xhat-vterm2*rcuti2*d(1))) +&
1033 >                  sw*pref * ( (ri4 - rcuti4)*(qxx_i*(6.0_dp*cx_i*ux_i(1)) - &
1034 >                  qxx_i*2.0_dp*(xhat - rcuti*d(1))) + &
1035 >                  (ri4 - rcuti4)*(qyy_i*(6.0_dp*cy_i*uy_i(1)) - &
1036 >                  qyy_i*2.0_dp*(xhat - rcuti*d(1))) + &
1037 >                  (ri4 - rcuti4)*(qzz_i*(6.0_dp*cz_i*uz_i(1)) - &
1038 >                  qzz_i*2.0_dp*(xhat - rcuti*d(1))) )
1039 >             dudy = dudy - sw*(5.0_dp*(vterm1*riji*yhat-vterm2*rcuti2*d(2))) +&
1040 >                  sw*pref * ( (ri4 - rcuti4)*(qxx_i*(6.0_dp*cx_i*ux_i(2)) - &
1041 >                  qxx_i*2.0_dp*(yhat - rcuti*d(2))) + &
1042 >                  (ri4 - rcuti4)*(qyy_i*(6.0_dp*cy_i*uy_i(2)) - &
1043 >                  qyy_i*2.0_dp*(yhat - rcuti*d(2))) + &
1044 >                  (ri4 - rcuti4)*(qzz_i*(6.0_dp*cz_i*uz_i(2)) - &
1045 >                  qzz_i*2.0_dp*(yhat - rcuti*d(2))) )
1046 >             dudz = dudz - sw*(5.0_dp*(vterm1*riji*zhat-vterm2*rcuti2*d(3))) +&
1047 >                  sw*pref * ( (ri4 - rcuti4)*(qxx_i*(6.0_dp*cx_i*ux_i(3)) - &
1048 >                  qxx_i*2.0_dp*(zhat - rcuti*d(3))) + &
1049 >                  (ri4 - rcuti4)*(qyy_i*(6.0_dp*cy_i*uy_i(3)) - &
1050 >                  qyy_i*2.0_dp*(zhat - rcuti*d(3))) + &
1051 >                  (ri4 - rcuti4)*(qzz_i*(6.0_dp*cz_i*uz_i(3)) - &
1052 >                  qzz_i*2.0_dp*(zhat - rcuti*d(3))) )
1053 >            
1054 >             dudux_i(1) = dudux_i(1) + sw*pref*(ri3*(qxx_i*6.0_dp*cx_i*xhat) -&
1055 >                  rcuti4*(qxx_i*6.0_dp*cx_i*d(1)))
1056 >             dudux_i(2) = dudux_i(2) + sw*pref*(ri3*(qxx_i*6.0_dp*cx_i*yhat) -&
1057 >                  rcuti4*(qxx_i*6.0_dp*cx_i*d(2)))
1058 >             dudux_i(3) = dudux_i(3) + sw*pref*(ri3*(qxx_i*6.0_dp*cx_i*zhat) -&
1059 >                  rcuti4*(qxx_i*6.0_dp*cx_i*d(3)))
1060 >            
1061 >             duduy_i(1) = duduy_i(1) + sw*pref*(ri3*(qyy_i*6.0_dp*cy_i*xhat) -&
1062 >                  rcuti4*(qyy_i*6.0_dp*cx_i*d(1)))
1063 >             duduy_i(2) = duduy_i(2) + sw*pref*(ri3*(qyy_i*6.0_dp*cy_i*yhat) -&
1064 >                  rcuti4*(qyy_i*6.0_dp*cx_i*d(2)))
1065 >             duduy_i(3) = duduy_i(3) + sw*pref*(ri3*(qyy_i*6.0_dp*cy_i*zhat) -&
1066 >                  rcuti4*(qyy_i*6.0_dp*cx_i*d(3)))
1067 >            
1068 >             duduz_i(1) = duduz_i(1) + sw*pref*(ri3*(qzz_i*6.0_dp*cz_i*xhat) -&
1069 >                  rcuti4*(qzz_i*6.0_dp*cx_i*d(1)))
1070 >             duduz_i(2) = duduz_i(2) + sw*pref*(ri3*(qzz_i*6.0_dp*cz_i*yhat) -&
1071 >                  rcuti4*(qzz_i*6.0_dp*cx_i*d(2)))
1072 >             duduz_i(3) = duduz_i(3) + sw*pref*(ri3*(qzz_i*6.0_dp*cz_i*zhat) -&
1073 >                  rcuti4*(qzz_i*6.0_dp*cx_i*d(3)))
1074 >
1075 >          else
1076 >             pref = pre14 * q_j / 3.0_dp
1077 >             vterm = pref * ri3 * (qxx_i * (3.0_dp*cx2 - 1.0_dp) + &
1078 >                  qyy_i * (3.0_dp*cy2 - 1.0_dp) + &
1079 >                  qzz_i * (3.0_dp*cz2 - 1.0_dp))
1080 >             vpair = vpair + vterm
1081 >             epot = epot + sw*vterm
1082 >            
1083 >             dudx = dudx - 5.0_dp*sw*vterm*riji*xhat + sw*pref*ri4 * ( &
1084 >                  qxx_i*(6.0_dp*cx_i*ux_i(1) - 2.0_dp*xhat) + &
1085 >                  qyy_i*(6.0_dp*cy_i*uy_i(1) - 2.0_dp*xhat) + &
1086 >                  qzz_i*(6.0_dp*cz_i*uz_i(1) - 2.0_dp*xhat) )
1087 >             dudy = dudy - 5.0_dp*sw*vterm*riji*yhat + sw*pref*ri4 * ( &
1088 >                  qxx_i*(6.0_dp*cx_i*ux_i(2) - 2.0_dp*yhat) + &
1089 >                  qyy_i*(6.0_dp*cy_i*uy_i(2) - 2.0_dp*yhat) + &
1090 >                  qzz_i*(6.0_dp*cz_i*uz_i(2) - 2.0_dp*yhat) )
1091 >             dudz = dudz - 5.0_dp*sw*vterm*riji*zhat + sw*pref*ri4 * ( &
1092 >                  qxx_i*(6.0_dp*cx_i*ux_i(3) - 2.0_dp*zhat) + &
1093 >                  qyy_i*(6.0_dp*cy_i*uy_i(3) - 2.0_dp*zhat) + &
1094 >                  qzz_i*(6.0_dp*cz_i*uz_i(3) - 2.0_dp*zhat) )
1095 >            
1096 >             dudux_i(1) = dudux_i(1) + sw*pref*ri3*(qxx_i*6.0_dp*cx_i*xhat)
1097 >             dudux_i(2) = dudux_i(2) + sw*pref*ri3*(qxx_i*6.0_dp*cx_i*yhat)
1098 >             dudux_i(3) = dudux_i(3) + sw*pref*ri3*(qxx_i*6.0_dp*cx_i*zhat)
1099 >            
1100 >             duduy_i(1) = duduy_i(1) + sw*pref*ri3*(qyy_i*6.0_dp*cy_i*xhat)
1101 >             duduy_i(2) = duduy_i(2) + sw*pref*ri3*(qyy_i*6.0_dp*cy_i*yhat)
1102 >             duduy_i(3) = duduy_i(3) + sw*pref*ri3*(qyy_i*6.0_dp*cy_i*zhat)
1103 >            
1104 >             duduz_i(1) = duduz_i(1) + sw*pref*ri3*(qzz_i*6.0_dp*cz_i*xhat)
1105 >             duduz_i(2) = duduz_i(2) + sw*pref*ri3*(qzz_i*6.0_dp*cz_i*yhat)
1106 >             duduz_i(3) = duduz_i(3) + sw*pref*ri3*(qzz_i*6.0_dp*cz_i*zhat)
1107 >          endif
1108 >       endif
1109 >    endif
1110 >
1111 >
1112      if (do_pot) then
1113   #ifdef IS_MPI
1114 <       pot_row(atom1) = pot_row(atom1) + 0.5d0*epot
1115 <       pot_col(atom2) = pot_col(atom2) + 0.5d0*epot
1114 >       pot_row(ELECTROSTATIC_POT,atom1) = pot_row(ELECTROSTATIC_POT,atom1) + 0.5d0*epot
1115 >       pot_col(ELECTROSTATIC_POT,atom2) = pot_col(ELECTROSTATIC_POT,atom2) + 0.5d0*epot
1116   #else
1117         pot = pot + epot
1118   #endif
1119      endif
1120 <        
1120 >
1121   #ifdef IS_MPI
1122      f_Row(1,atom1) = f_Row(1,atom1) + dudx
1123      f_Row(2,atom1) = f_Row(2,atom1) + dudy
1124      f_Row(3,atom1) = f_Row(3,atom1) + dudz
1125 <    
1125 >
1126      f_Col(1,atom2) = f_Col(1,atom2) - dudx
1127      f_Col(2,atom2) = f_Col(2,atom2) - dudy
1128      f_Col(3,atom2) = f_Col(3,atom2) - dudz
1129 <    
1129 >
1130      if (i_is_Dipole .or. i_is_Quadrupole) then
1131 <       t_Row(1,atom1) = t_Row(1,atom1) - ul_i(2)*duduiz + ul_i(3)*duduiy
1132 <       t_Row(2,atom1) = t_Row(2,atom1) - ul_i(3)*duduix + ul_i(1)*duduiz
1133 <       t_Row(3,atom1) = t_Row(3,atom1) - ul_i(1)*duduiy + ul_i(2)*duduix
1131 >       t_Row(1,atom1)=t_Row(1,atom1) - uz_i(2)*duduz_i(3) + uz_i(3)*duduz_i(2)
1132 >       t_Row(2,atom1)=t_Row(2,atom1) - uz_i(3)*duduz_i(1) + uz_i(1)*duduz_i(3)
1133 >       t_Row(3,atom1)=t_Row(3,atom1) - uz_i(1)*duduz_i(2) + uz_i(2)*duduz_i(1)
1134      endif
1135 +    if (i_is_Quadrupole) then
1136 +       t_Row(1,atom1)=t_Row(1,atom1) - ux_i(2)*dudux_i(3) + ux_i(3)*dudux_i(2)
1137 +       t_Row(2,atom1)=t_Row(2,atom1) - ux_i(3)*dudux_i(1) + ux_i(1)*dudux_i(3)
1138 +       t_Row(3,atom1)=t_Row(3,atom1) - ux_i(1)*dudux_i(2) + ux_i(2)*dudux_i(1)
1139  
1140 +       t_Row(1,atom1)=t_Row(1,atom1) - uy_i(2)*duduy_i(3) + uy_i(3)*duduy_i(2)
1141 +       t_Row(2,atom1)=t_Row(2,atom1) - uy_i(3)*duduy_i(1) + uy_i(1)*duduy_i(3)
1142 +       t_Row(3,atom1)=t_Row(3,atom1) - uy_i(1)*duduy_i(2) + uy_i(2)*duduy_i(1)
1143 +    endif
1144 +
1145      if (j_is_Dipole .or. j_is_Quadrupole) then
1146 <       t_Col(1,atom2) = t_Col(1,atom2) - ul_j(2)*dudujz + ul_j(3)*dudujy
1147 <       t_Col(2,atom2) = t_Col(2,atom2) - ul_j(3)*dudujx + ul_j(1)*dudujz
1148 <       t_Col(3,atom2) = t_Col(3,atom2) - ul_j(1)*dudujy + ul_j(2)*dudujx
1146 >       t_Col(1,atom2)=t_Col(1,atom2) - uz_j(2)*duduz_j(3) + uz_j(3)*duduz_j(2)
1147 >       t_Col(2,atom2)=t_Col(2,atom2) - uz_j(3)*duduz_j(1) + uz_j(1)*duduz_j(3)
1148 >       t_Col(3,atom2)=t_Col(3,atom2) - uz_j(1)*duduz_j(2) + uz_j(2)*duduz_j(1)
1149      endif
1150 +    if (j_is_Quadrupole) then
1151 +       t_Col(1,atom2)=t_Col(1,atom2) - ux_j(2)*dudux_j(3) + ux_j(3)*dudux_j(2)
1152 +       t_Col(2,atom2)=t_Col(2,atom2) - ux_j(3)*dudux_j(1) + ux_j(1)*dudux_j(3)
1153 +       t_Col(3,atom2)=t_Col(3,atom2) - ux_j(1)*dudux_j(2) + ux_j(2)*dudux_j(1)
1154  
1155 +       t_Col(1,atom2)=t_Col(1,atom2) - uy_j(2)*duduy_j(3) + uy_j(3)*duduy_j(2)
1156 +       t_Col(2,atom2)=t_Col(2,atom2) - uy_j(3)*duduy_j(1) + uy_j(1)*duduy_j(3)
1157 +       t_Col(3,atom2)=t_Col(3,atom2) - uy_j(1)*duduy_j(2) + uy_j(2)*duduy_j(1)
1158 +    endif
1159 +
1160   #else
1161      f(1,atom1) = f(1,atom1) + dudx
1162      f(2,atom1) = f(2,atom1) + dudy
1163      f(3,atom1) = f(3,atom1) + dudz
1164 <    
1164 >
1165      f(1,atom2) = f(1,atom2) - dudx
1166      f(2,atom2) = f(2,atom2) - dudy
1167      f(3,atom2) = f(3,atom2) - dudz
1168 <    
1168 >
1169      if (i_is_Dipole .or. i_is_Quadrupole) then
1170 <       t(1,atom1) = t(1,atom1) - ul_i(2)*duduiz + ul_i(3)*duduiy
1171 <       t(2,atom1) = t(2,atom1) - ul_i(3)*duduix + ul_i(1)*duduiz
1172 <       t(3,atom1) = t(3,atom1) - ul_i(1)*duduiy + ul_i(2)*duduix
1170 >       t(1,atom1)=t(1,atom1) - uz_i(2)*duduz_i(3) + uz_i(3)*duduz_i(2)
1171 >       t(2,atom1)=t(2,atom1) - uz_i(3)*duduz_i(1) + uz_i(1)*duduz_i(3)
1172 >       t(3,atom1)=t(3,atom1) - uz_i(1)*duduz_i(2) + uz_i(2)*duduz_i(1)
1173      endif
1174 <      
1174 >    if (i_is_Quadrupole) then
1175 >       t(1,atom1)=t(1,atom1) - ux_i(2)*dudux_i(3) + ux_i(3)*dudux_i(2)
1176 >       t(2,atom1)=t(2,atom1) - ux_i(3)*dudux_i(1) + ux_i(1)*dudux_i(3)
1177 >       t(3,atom1)=t(3,atom1) - ux_i(1)*dudux_i(2) + ux_i(2)*dudux_i(1)
1178 >
1179 >       t(1,atom1)=t(1,atom1) - uy_i(2)*duduy_i(3) + uy_i(3)*duduy_i(2)
1180 >       t(2,atom1)=t(2,atom1) - uy_i(3)*duduy_i(1) + uy_i(1)*duduy_i(3)
1181 >       t(3,atom1)=t(3,atom1) - uy_i(1)*duduy_i(2) + uy_i(2)*duduy_i(1)
1182 >    endif
1183 >
1184      if (j_is_Dipole .or. j_is_Quadrupole) then
1185 <       t(1,atom2) = t(1,atom2) - ul_j(2)*dudujz + ul_j(3)*dudujy
1186 <       t(2,atom2) = t(2,atom2) - ul_j(3)*dudujx + ul_j(1)*dudujz
1187 <       t(3,atom2) = t(3,atom2) - ul_j(1)*dudujy + ul_j(2)*dudujx
1185 >       t(1,atom2)=t(1,atom2) - uz_j(2)*duduz_j(3) + uz_j(3)*duduz_j(2)
1186 >       t(2,atom2)=t(2,atom2) - uz_j(3)*duduz_j(1) + uz_j(1)*duduz_j(3)
1187 >       t(3,atom2)=t(3,atom2) - uz_j(1)*duduz_j(2) + uz_j(2)*duduz_j(1)
1188      endif
1189 +    if (j_is_Quadrupole) then
1190 +       t(1,atom2)=t(1,atom2) - ux_j(2)*dudux_j(3) + ux_j(3)*dudux_j(2)
1191 +       t(2,atom2)=t(2,atom2) - ux_j(3)*dudux_j(1) + ux_j(1)*dudux_j(3)
1192 +       t(3,atom2)=t(3,atom2) - ux_j(1)*dudux_j(2) + ux_j(2)*dudux_j(1)
1193 +
1194 +       t(1,atom2)=t(1,atom2) - uy_j(2)*duduy_j(3) + uy_j(3)*duduy_j(2)
1195 +       t(2,atom2)=t(2,atom2) - uy_j(3)*duduy_j(1) + uy_j(1)*duduy_j(3)
1196 +       t(3,atom2)=t(3,atom2) - uy_j(1)*duduy_j(2) + uy_j(2)*duduy_j(1)
1197 +    endif
1198 +
1199   #endif
1200 <    
1200 >
1201   #ifdef IS_MPI
1202      id1 = AtomRowToGlobal(atom1)
1203      id2 = AtomColToGlobal(atom2)
# Line 624 | Line 1207 | contains
1207   #endif
1208  
1209      if (molMembershipList(id1) .ne. molMembershipList(id2)) then
1210 <      
1210 >
1211         fpair(1) = fpair(1) + dudx
1212         fpair(2) = fpair(2) + dudy
1213         fpair(3) = fpair(3) + dudz
# Line 633 | Line 1216 | contains
1216  
1217      return
1218    end subroutine doElectrostaticPair
1219 <  
1219 >
1220 >  subroutine destroyElectrostaticTypes()
1221 >
1222 >    if(allocated(ElectrostaticMap)) deallocate(ElectrostaticMap)
1223 >
1224 >  end subroutine destroyElectrostaticTypes
1225 >
1226 >  subroutine accumulate_rf(atom1, atom2, rij, eFrame, taper)
1227 >
1228 >    integer, intent(in) :: atom1, atom2
1229 >    real (kind = dp), intent(in) :: rij
1230 >    real (kind = dp), dimension(9,nLocal) :: eFrame
1231 >
1232 >    integer :: me1, me2
1233 >    real (kind = dp), intent(in) :: taper
1234 >    real (kind = dp):: mu1, mu2
1235 >    real (kind = dp), dimension(3) :: ul1
1236 >    real (kind = dp), dimension(3) :: ul2  
1237 >
1238 >    integer :: localError
1239 >
1240 > #ifdef IS_MPI
1241 >    me1 = atid_Row(atom1)
1242 >    ul1(1) = eFrame_Row(3,atom1)
1243 >    ul1(2) = eFrame_Row(6,atom1)
1244 >    ul1(3) = eFrame_Row(9,atom1)
1245 >
1246 >    me2 = atid_Col(atom2)
1247 >    ul2(1) = eFrame_Col(3,atom2)
1248 >    ul2(2) = eFrame_Col(6,atom2)
1249 >    ul2(3) = eFrame_Col(9,atom2)
1250 > #else
1251 >    me1 = atid(atom1)
1252 >    ul1(1) = eFrame(3,atom1)
1253 >    ul1(2) = eFrame(6,atom1)
1254 >    ul1(3) = eFrame(9,atom1)
1255 >
1256 >    me2 = atid(atom2)
1257 >    ul2(1) = eFrame(3,atom2)
1258 >    ul2(2) = eFrame(6,atom2)
1259 >    ul2(3) = eFrame(9,atom2)
1260 > #endif
1261 >
1262 >    mu1 = getDipoleMoment(me1)
1263 >    mu2 = getDipoleMoment(me2)
1264 >
1265 > #ifdef IS_MPI
1266 >    rf_Row(1,atom1) = rf_Row(1,atom1) + ul2(1)*mu2*taper
1267 >    rf_Row(2,atom1) = rf_Row(2,atom1) + ul2(2)*mu2*taper
1268 >    rf_Row(3,atom1) = rf_Row(3,atom1) + ul2(3)*mu2*taper
1269 >
1270 >    rf_Col(1,atom2) = rf_Col(1,atom2) + ul1(1)*mu1*taper
1271 >    rf_Col(2,atom2) = rf_Col(2,atom2) + ul1(2)*mu1*taper
1272 >    rf_Col(3,atom2) = rf_Col(3,atom2) + ul1(3)*mu1*taper
1273 > #else
1274 >    rf(1,atom1) = rf(1,atom1) + ul2(1)*mu2*taper
1275 >    rf(2,atom1) = rf(2,atom1) + ul2(2)*mu2*taper
1276 >    rf(3,atom1) = rf(3,atom1) + ul2(3)*mu2*taper
1277 >
1278 >    rf(1,atom2) = rf(1,atom2) + ul1(1)*mu1*taper
1279 >    rf(2,atom2) = rf(2,atom2) + ul1(2)*mu1*taper
1280 >    rf(3,atom2) = rf(3,atom2) + ul1(3)*mu1*taper    
1281 > #endif
1282 >    return  
1283 >  end subroutine accumulate_rf
1284 >
1285 >  subroutine accumulate_self_rf(atom1, mu1, eFrame)
1286 >
1287 >    integer, intent(in) :: atom1
1288 >    real(kind=dp), intent(in) :: mu1
1289 >    real(kind=dp), dimension(9,nLocal) :: eFrame
1290 >
1291 >    !! should work for both MPI and non-MPI version since this is not pairwise.
1292 >    rf(1,atom1) = rf(1,atom1) + eFrame(3,atom1)*mu1
1293 >    rf(2,atom1) = rf(2,atom1) + eFrame(6,atom1)*mu1
1294 >    rf(3,atom1) = rf(3,atom1) + eFrame(9,atom1)*mu1
1295 >
1296 >    return
1297 >  end subroutine accumulate_self_rf
1298 >
1299 >  subroutine reaction_field_final(a1, mu1, eFrame, rfpot, t, do_pot)
1300 >
1301 >    integer, intent(in) :: a1
1302 >    real (kind=dp), intent(in) :: mu1
1303 >    real (kind=dp), intent(inout) :: rfpot
1304 >    logical, intent(in) :: do_pot
1305 >    real (kind = dp), dimension(9,nLocal) :: eFrame
1306 >    real (kind = dp), dimension(3,nLocal) :: t
1307 >
1308 >    integer :: localError
1309 >
1310 >    if (.not.preRFCalculated) then
1311 >       call setReactionFieldPrefactor()
1312 >    endif
1313 >
1314 >    ! compute torques on dipoles:
1315 >    ! pre converts from mu in units of debye to kcal/mol
1316 >
1317 >    ! The torque contribution is dipole cross reaction_field  
1318 >
1319 >    t(1,a1) = t(1,a1) + preRF*mu1*(eFrame(6,a1)*rf(3,a1) - &
1320 >                                   eFrame(9,a1)*rf(2,a1))
1321 >    t(2,a1) = t(2,a1) + preRF*mu1*(eFrame(9,a1)*rf(1,a1) - &
1322 >                                   eFrame(3,a1)*rf(3,a1))
1323 >    t(3,a1) = t(3,a1) + preRF*mu1*(eFrame(3,a1)*rf(2,a1) - &
1324 >                                   eFrame(6,a1)*rf(1,a1))
1325 >
1326 >    ! the potential contribution is -1/2 dipole dot reaction_field
1327 >
1328 >    if (do_pot) then
1329 >       rfpot = rfpot - 0.5d0 * preRF * mu1 * &
1330 >            (rf(1,a1)*eFrame(3,a1) + rf(2,a1)*eFrame(6,a1) + &
1331 >             rf(3,a1)*eFrame(9,a1))
1332 >    endif
1333 >
1334 >    return
1335 >  end subroutine reaction_field_final
1336 >
1337 >  subroutine rf_correct_forces(atom1, atom2, d, rij, eFrame, taper, f, fpair)
1338 >
1339 >    integer, intent(in) :: atom1, atom2
1340 >    real(kind=dp), dimension(3), intent(in) :: d
1341 >    real(kind=dp), intent(in) :: rij, taper
1342 >    real( kind = dp ), dimension(9,nLocal) :: eFrame
1343 >    real( kind = dp ), dimension(3,nLocal) :: f
1344 >    real( kind = dp ), dimension(3), intent(inout) :: fpair
1345 >
1346 >    real (kind = dp), dimension(3) :: ul1
1347 >    real (kind = dp), dimension(3) :: ul2
1348 >    real (kind = dp) :: dtdr
1349 >    real (kind = dp) :: dudx, dudy, dudz, u1dotu2
1350 >    integer :: me1, me2, id1, id2
1351 >    real (kind = dp) :: mu1, mu2
1352 >
1353 >    integer :: localError
1354 >
1355 >    if (.not.preRFCalculated) then
1356 >       call setReactionFieldPrefactor()
1357 >    endif
1358 >
1359 >    if (rij.le.rrf) then
1360 >
1361 >       if (rij.lt.rt) then
1362 >          dtdr = 0.0d0
1363 >       else
1364 >          !         write(*,*) 'rf correct in taper region'
1365 >          dtdr = 6.0d0*(rij*rij - rij*rt - rij*rrf +rrf*rt)/((rrf-rt)**3)
1366 >       endif
1367 >
1368 > #ifdef IS_MPI
1369 >       me1 = atid_Row(atom1)
1370 >       ul1(1) = eFrame_Row(3,atom1)
1371 >       ul1(2) = eFrame_Row(6,atom1)
1372 >       ul1(3) = eFrame_Row(9,atom1)
1373 >
1374 >       me2 = atid_Col(atom2)
1375 >       ul2(1) = eFrame_Col(3,atom2)
1376 >       ul2(2) = eFrame_Col(6,atom2)
1377 >       ul2(3) = eFrame_Col(9,atom2)
1378 > #else
1379 >       me1 = atid(atom1)
1380 >       ul1(1) = eFrame(3,atom1)
1381 >       ul1(2) = eFrame(6,atom1)
1382 >       ul1(3) = eFrame(9,atom1)
1383 >
1384 >       me2 = atid(atom2)
1385 >       ul2(1) = eFrame(3,atom2)
1386 >       ul2(2) = eFrame(6,atom2)
1387 >       ul2(3) = eFrame(9,atom2)
1388 > #endif
1389 >
1390 >       mu1 = getDipoleMoment(me1)
1391 >       mu2 = getDipoleMoment(me2)
1392 >
1393 >       u1dotu2 = ul1(1)*ul2(1) + ul1(2)*ul2(2) + ul1(3)*ul2(3)
1394 >
1395 >       dudx = - preRF*mu1*mu2*u1dotu2*dtdr*d(1)/rij
1396 >       dudy = - preRF*mu1*mu2*u1dotu2*dtdr*d(2)/rij
1397 >       dudz = - preRF*mu1*mu2*u1dotu2*dtdr*d(3)/rij
1398 >
1399 > #ifdef IS_MPI
1400 >       f_Row(1,atom1) = f_Row(1,atom1) + dudx
1401 >       f_Row(2,atom1) = f_Row(2,atom1) + dudy
1402 >       f_Row(3,atom1) = f_Row(3,atom1) + dudz
1403 >
1404 >       f_Col(1,atom2) = f_Col(1,atom2) - dudx
1405 >       f_Col(2,atom2) = f_Col(2,atom2) - dudy
1406 >       f_Col(3,atom2) = f_Col(3,atom2) - dudz
1407 > #else
1408 >       f(1,atom1) = f(1,atom1) + dudx
1409 >       f(2,atom1) = f(2,atom1) + dudy
1410 >       f(3,atom1) = f(3,atom1) + dudz
1411 >
1412 >       f(1,atom2) = f(1,atom2) - dudx
1413 >       f(2,atom2) = f(2,atom2) - dudy
1414 >       f(3,atom2) = f(3,atom2) - dudz
1415 > #endif
1416 >
1417 > #ifdef IS_MPI
1418 >       id1 = AtomRowToGlobal(atom1)
1419 >       id2 = AtomColToGlobal(atom2)
1420 > #else
1421 >       id1 = atom1
1422 >       id2 = atom2
1423 > #endif
1424 >
1425 >       if (molMembershipList(id1) .ne. molMembershipList(id2)) then
1426 >
1427 >          fpair(1) = fpair(1) + dudx
1428 >          fpair(2) = fpair(2) + dudy
1429 >          fpair(3) = fpair(3) + dudz
1430 >
1431 >       endif
1432 >
1433 >    end if
1434 >    return
1435 >  end subroutine rf_correct_forces
1436 >
1437   end module electrostatic_module

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines