ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/UseTheForce/DarkSide/electrostatic.F90
(Generate patch)

Comparing trunk/OOPSE-4/src/UseTheForce/DarkSide/electrostatic.F90 (file contents):
Revision 2118 by gezelter, Fri Mar 11 15:53:18 2005 UTC vs.
Revision 2399 by chrisfen, Wed Oct 26 23:31:40 2005 UTC

# Line 40 | Line 40 | module electrostatic_module
40   !!
41  
42   module electrostatic_module
43 <  
43 >
44    use force_globals
45    use definitions
46    use atype_module
# Line 54 | Line 54 | module electrostatic_module
54  
55    PRIVATE
56  
57 +
58 + #define __FORTRAN90
59 + #include "UseTheForce/DarkSide/fInteractionMap.h"
60 + #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
61 +
62 +
63    !! these prefactors convert the multipole interactions into kcal / mol
64    !! all were computed assuming distances are measured in angstroms
65    !! Charge-Charge, assuming charges are measured in electrons
# Line 68 | Line 74 | module electrostatic_module
74    !! This unit is also known affectionately as an esu centi-barn.
75    real(kind=dp), parameter :: pre14 = 69.13373_dp
76  
77 +  !! variables to handle different summation methods for long-range electrostatics:
78 +  integer, save :: summationMethod = NONE
79 +  logical, save :: summationMethodChecked = .false.
80 +  real(kind=DP), save :: defaultCutoff = 0.0_DP
81 +  real(kind=DP), save :: defaultCutoff2 = 0.0_DP
82 +  logical, save :: haveDefaultCutoff = .false.
83 +  real(kind=DP), save :: dampingAlpha = 0.0_DP
84 +  logical, save :: haveDampingAlpha = .false.
85 +  real(kind=DP), save :: dielectric = 1.0_DP
86 +  logical, save :: haveDielectric = .false.
87 +  real(kind=DP), save :: constERFC = 0.0_DP
88 +  real(kind=DP), save :: constEXP = 0.0_DP
89 +  logical, save :: haveDWAconstants = .false.
90 +  real(kind=dp), save :: rcuti = 0.0_DP
91 +  real(kind=dp), save :: rcuti2 = 0.0_DP
92 +  real(kind=dp), save :: rcuti3 = 0.0_DP
93 +  real(kind=dp), save :: rcuti4 = 0.0_DP
94 +  real(kind=dp), save :: alphaPi = 0.0_DP
95 +  real(kind=dp), save :: invRootPi = 0.0_DP
96 +  real(kind=dp), save :: rrf = 1.0_DP
97 +  real(kind=dp), save :: rt = 1.0_DP
98 +  real(kind=dp), save :: rrfsq = 1.0_DP
99 +  real(kind=dp), save :: preRF = 0.0_DP
100 +  real(kind=dp), save :: preRF2 = 0.0_DP
101 +  logical, save :: preRFCalculated = .false.
102 +
103 + #ifdef __IFC
104 + ! error function for ifc version > 7.
105 +  double precision, external :: derfc
106 + #endif
107 +  
108 +  public :: setElectrostaticSummationMethod
109 +  public :: setElectrostaticCutoffRadius
110 +  public :: setDampedWolfAlpha
111 +  public :: setReactionFieldDielectric
112 +  public :: setReactionFieldPrefactor
113    public :: newElectrostaticType
114    public :: setCharge
115    public :: setDipoleMoment
# Line 76 | Line 118 | module electrostatic_module
118    public :: doElectrostaticPair
119    public :: getCharge
120    public :: getDipoleMoment
121 +  public :: destroyElectrostaticTypes
122 +  public :: rf_self_self
123 +  public :: rf_self_excludes
124  
125    type :: Electrostatic
126       integer :: c_ident
# Line 83 | Line 128 | module electrostatic_module
128       logical :: is_Dipole = .false.
129       logical :: is_SplitDipole = .false.
130       logical :: is_Quadrupole = .false.
131 +     logical :: is_Tap = .false.
132       real(kind=DP) :: charge = 0.0_DP
133       real(kind=DP) :: dipole_moment = 0.0_DP
134       real(kind=DP) :: split_dipole_distance = 0.0_DP
# Line 93 | Line 139 | contains
139  
140   contains
141  
142 +  subroutine setElectrostaticSummationMethod(the_ESM)
143 +    integer, intent(in) :: the_ESM    
144 +
145 +    if ((the_ESM .le. 0) .or. (the_ESM .gt. REACTION_FIELD)) then
146 +       call handleError("setElectrostaticSummationMethod", "Unsupported Summation Method")
147 +    endif
148 +
149 +    summationMethod = the_ESM
150 +
151 +  end subroutine setElectrostaticSummationMethod
152 +
153 +  subroutine setElectrostaticCutoffRadius(thisRcut, thisRsw)
154 +    real(kind=dp), intent(in) :: thisRcut
155 +    real(kind=dp), intent(in) :: thisRsw
156 +    defaultCutoff = thisRcut
157 +    rrf = defaultCutoff
158 +    rt = thisRsw
159 +    haveDefaultCutoff = .true.
160 +  end subroutine setElectrostaticCutoffRadius
161 +
162 +  subroutine setDampedWolfAlpha(thisAlpha)
163 +    real(kind=dp), intent(in) :: thisAlpha
164 +    dampingAlpha = thisAlpha
165 +    haveDampingAlpha = .true.
166 +  end subroutine setDampedWolfAlpha
167 +  
168 +  subroutine setReactionFieldDielectric(thisDielectric)
169 +    real(kind=dp), intent(in) :: thisDielectric
170 +    dielectric = thisDielectric
171 +    haveDielectric = .true.
172 +  end subroutine setReactionFieldDielectric
173 +
174 +  subroutine setReactionFieldPrefactor
175 +    if (haveDefaultCutoff .and. haveDielectric) then
176 +       defaultCutoff2 = defaultCutoff*defaultCutoff
177 +       preRF = (dielectric-1.0d0) / &
178 +            ((2.0d0*dielectric+1.0d0)*defaultCutoff2*defaultCutoff)
179 +       preRF2 = 2.0d0*preRF
180 +       preRFCalculated = .true.
181 +    else if (.not.haveDefaultCutoff) then
182 +       call handleError("setReactionFieldPrefactor", "Default cutoff not set")
183 +    else
184 +       call handleError("setReactionFieldPrefactor", "Dielectric not set")
185 +    endif
186 +  end subroutine setReactionFieldPrefactor
187 +
188    subroutine newElectrostaticType(c_ident, is_Charge, is_Dipole, &
189 <       is_SplitDipole, is_Quadrupole, status)
190 <    
189 >       is_SplitDipole, is_Quadrupole, is_Tap, status)
190 >
191      integer, intent(in) :: c_ident
192      logical, intent(in) :: is_Charge
193      logical, intent(in) :: is_Dipole
194      logical, intent(in) :: is_SplitDipole
195      logical, intent(in) :: is_Quadrupole
196 +    logical, intent(in) :: is_Tap
197      integer, intent(out) :: status
198      integer :: nAtypes, myATID, i, j
199  
200      status = 0
201      myATID = getFirstMatchingElement(atypes, "c_ident", c_ident)
202 <    
202 >
203      !! Be simple-minded and assume that we need an ElectrostaticMap that
204      !! is the same size as the total number of atom types
205  
206      if (.not.allocated(ElectrostaticMap)) then
207 <      
207 >
208         nAtypes = getSize(atypes)
209 <    
209 >
210         if (nAtypes == 0) then
211            status = -1
212            return
213         end if
214 <      
214 >
215         if (.not. allocated(ElectrostaticMap)) then
216            allocate(ElectrostaticMap(nAtypes))
217         endif
218 <      
218 >
219      end if
220  
221      if (myATID .gt. size(ElectrostaticMap)) then
222         status = -1
223         return
224      endif
225 <    
225 >
226      ! set the values for ElectrostaticMap for this atom type:
227  
228      ElectrostaticMap(myATID)%c_ident = c_ident
# Line 137 | Line 230 | contains
230      ElectrostaticMap(myATID)%is_Dipole = is_Dipole
231      ElectrostaticMap(myATID)%is_SplitDipole = is_SplitDipole
232      ElectrostaticMap(myATID)%is_Quadrupole = is_Quadrupole
233 <    
233 >    ElectrostaticMap(myATID)%is_Tap = is_Tap
234 >
235    end subroutine newElectrostaticType
236  
237    subroutine setCharge(c_ident, charge, status)
# Line 165 | Line 259 | contains
259         call handleError("electrostatic", "Attempt to setCharge of an atom type that is not a charge!")
260         status = -1
261         return
262 <    endif      
262 >    endif
263  
264      ElectrostaticMap(myATID)%charge = charge
265    end subroutine setCharge
# Line 256 | Line 350 | contains
350         status = -1
351         return
352      endif
353 <    
353 >
354      do i = 1, 3
355 <          ElectrostaticMap(myATID)%quadrupole_moments(i) = &
356 <               quadrupole_moments(i)
357 <       enddo
355 >       ElectrostaticMap(myATID)%quadrupole_moments(i) = &
356 >            quadrupole_moments(i)
357 >    enddo
358  
359    end subroutine setQuadrupoleMoments
360  
361 <  
361 >
362    function getCharge(atid) result (c)
363      integer, intent(in) :: atid
364      integer :: localError
365      real(kind=dp) :: c
366 <    
366 >
367      if (.not.allocated(ElectrostaticMap)) then
368         call handleError("electrostatic", "no ElectrostaticMap was present before first call of getCharge!")
369         return
370      end if
371 <    
371 >
372      if (.not.ElectrostaticMap(atid)%is_Charge) then
373         call handleError("electrostatic", "getCharge was called for an atom type that isn't a charge!")
374         return
375      endif
376 <    
376 >
377      c = ElectrostaticMap(atid)%charge
378    end function getCharge
379  
# Line 287 | Line 381 | contains
381      integer, intent(in) :: atid
382      integer :: localError
383      real(kind=dp) :: dm
384 <    
384 >
385      if (.not.allocated(ElectrostaticMap)) then
386         call handleError("electrostatic", "no ElectrostaticMap was present before first call of getDipoleMoment!")
387         return
388      end if
389 <    
389 >
390      if (.not.ElectrostaticMap(atid)%is_Dipole) then
391         call handleError("electrostatic", "getDipoleMoment was called for an atom type that isn't a dipole!")
392         return
393      endif
394 <    
394 >
395      dm = ElectrostaticMap(atid)%dipole_moment
396    end function getDipoleMoment
397  
398 +  subroutine checkSummationMethod()
399 +
400 +    if (.not.haveDefaultCutoff) then
401 +       call handleError("checkSummationMethod", "no Default Cutoff set!")
402 +    endif
403 +
404 +    rcuti = 1.0d0 / defaultCutoff
405 +    rcuti2 = rcuti*rcuti
406 +    rcuti3 = rcuti2*rcuti
407 +    rcuti4 = rcuti2*rcuti2
408 +
409 +    if (summationMethod .eq. DAMPED_WOLF) then
410 +       if (.not.haveDWAconstants) then
411 +          
412 +          if (.not.haveDampingAlpha) then
413 +             call handleError("checkSummationMethod", "no Damping Alpha set!")
414 +          endif
415 +          
416 +          if (.not.haveDefaultCutoff) then
417 +             call handleError("checkSummationMethod", "no Default Cutoff set!")
418 +          endif
419 +
420 +          constEXP = exp(-dampingAlpha*dampingAlpha*defaultCutoff*defaultCutoff)
421 +          constERFC = derfc(dampingAlpha*defaultCutoff)
422 +          invRootPi = 0.56418958354775628695d0
423 +          alphaPi = 2*dampingAlpha*invRootPi
424 +  
425 +          haveDWAconstants = .true.
426 +       endif
427 +    endif
428 +
429 +    if (summationMethod .eq. REACTION_FIELD) then
430 +       if (.not.haveDielectric) then
431 +          call handleError("checkSummationMethod", "no reaction field Dielectric set!")
432 +       endif
433 +    endif
434 +
435 +    summationMethodChecked = .true.
436 +  end subroutine checkSummationMethod
437 +
438 +
439 +
440    subroutine doElectrostaticPair(atom1, atom2, d, rij, r2, sw, &
441 <       vpair, fpair, pot, eFrame, f, t, do_pot)
442 <    
443 <    logical, intent(in) :: do_pot
444 <    
441 >       vpair, fpair, pot, eFrame, f, t, do_pot, indirect_only)
442 >
443 >    logical, intent(in) :: do_pot, indirect_only
444 >
445      integer, intent(in) :: atom1, atom2
446      integer :: localError
447  
# Line 318 | Line 454 | contains
454      real( kind = dp ), dimension(9,nLocal) :: eFrame
455      real( kind = dp ), dimension(3,nLocal) :: f
456      real( kind = dp ), dimension(3,nLocal) :: t
321    
322    real (kind = dp), dimension(3) :: ul_i
323    real (kind = dp), dimension(3) :: ul_j
457  
458 +    real (kind = dp), dimension(3) :: ux_i, uy_i, uz_i
459 +    real (kind = dp), dimension(3) :: ux_j, uy_j, uz_j
460 +    real (kind = dp), dimension(3) :: dudux_i, duduy_i, duduz_i
461 +    real (kind = dp), dimension(3) :: dudux_j, duduy_j, duduz_j
462 +
463      logical :: i_is_Charge, i_is_Dipole, i_is_SplitDipole, i_is_Quadrupole
464      logical :: j_is_Charge, j_is_Dipole, j_is_SplitDipole, j_is_Quadrupole
465 +    logical :: i_is_Tap, j_is_Tap
466      integer :: me1, me2, id1, id2
467      real (kind=dp) :: q_i, q_j, mu_i, mu_j, d_i, d_j
468 +    real (kind=dp) :: qxx_i, qyy_i, qzz_i
469 +    real (kind=dp) :: qxx_j, qyy_j, qzz_j
470 +    real (kind=dp) :: cx_i, cy_i, cz_i
471 +    real (kind=dp) :: cx_j, cy_j, cz_j
472 +    real (kind=dp) :: cx2, cy2, cz2
473      real (kind=dp) :: ct_i, ct_j, ct_ij, a1
474      real (kind=dp) :: riji, ri, ri2, ri3, ri4
475 <    real (kind=dp) :: pref, vterm, epot, dudr    
475 >    real (kind=dp) :: pref, vterm, epot, dudr, vterm1, vterm2
476      real (kind=dp) :: xhat, yhat, zhat
477      real (kind=dp) :: dudx, dudy, dudz
334    real (kind=dp) :: drdxj, drdyj, drdzj
335    real (kind=dp) :: duduix, duduiy, duduiz, dudujx, dudujy, dudujz
478      real (kind=dp) :: scale, sc2, bigR
479 +    real (kind=dp) :: varERFC, varEXP
480 +    real (kind=dp) :: limScale
481 +    real (kind=dp) :: preVal, rfVal
482  
483      if (.not.allocated(ElectrostaticMap)) then
484         call handleError("electrostatic", "no ElectrostaticMap was present before first call of do_electrostatic_pair!")
485         return
486      end if
487  
488 +    if (.not.summationMethodChecked) then
489 +       call checkSummationMethod()
490 +    endif
491 +
492 +    if (.not.preRFCalculated) then
493 +       call setReactionFieldPrefactor()
494 +    endif
495 +
496   #ifdef IS_MPI
497      me1 = atid_Row(atom1)
498      me2 = atid_Col(atom2)
# Line 351 | Line 504 | contains
504      !! some variables we'll need independent of electrostatic type:
505  
506      riji = 1.0d0 / rij
507 <
507 >  
508      xhat = d(1) * riji
509      yhat = d(2) * riji
510      zhat = d(3) * riji
511  
359    drdxj = xhat
360    drdyj = yhat
361    drdzj = zhat
362
512      !! logicals
364
513      i_is_Charge = ElectrostaticMap(me1)%is_Charge
514      i_is_Dipole = ElectrostaticMap(me1)%is_Dipole
515      i_is_SplitDipole = ElectrostaticMap(me1)%is_SplitDipole
516      i_is_Quadrupole = ElectrostaticMap(me1)%is_Quadrupole
517 +    i_is_Tap = ElectrostaticMap(me1)%is_Tap
518  
519      j_is_Charge = ElectrostaticMap(me2)%is_Charge
520      j_is_Dipole = ElectrostaticMap(me2)%is_Dipole
521      j_is_SplitDipole = ElectrostaticMap(me2)%is_SplitDipole
522      j_is_Quadrupole = ElectrostaticMap(me2)%is_Quadrupole
523 +    j_is_Tap = ElectrostaticMap(me2)%is_Tap
524  
525      if (i_is_Charge) then
526         q_i = ElectrostaticMap(me1)%charge      
527      endif
528 <    
528 >
529      if (i_is_Dipole) then
530         mu_i = ElectrostaticMap(me1)%dipole_moment
531   #ifdef IS_MPI
532 <       ul_i(1) = eFrame_Row(3,atom1)
533 <       ul_i(2) = eFrame_Row(6,atom1)
534 <       ul_i(3) = eFrame_Row(9,atom1)
532 >       uz_i(1) = eFrame_Row(3,atom1)
533 >       uz_i(2) = eFrame_Row(6,atom1)
534 >       uz_i(3) = eFrame_Row(9,atom1)
535   #else
536 <       ul_i(1) = eFrame(3,atom1)
537 <       ul_i(2) = eFrame(6,atom1)
538 <       ul_i(3) = eFrame(9,atom1)
536 >       uz_i(1) = eFrame(3,atom1)
537 >       uz_i(2) = eFrame(6,atom1)
538 >       uz_i(3) = eFrame(9,atom1)
539   #endif
540 <       ct_i = ul_i(1)*drdxj + ul_i(2)*drdyj + ul_i(3)*drdzj
540 >       ct_i = uz_i(1)*xhat + uz_i(2)*yhat + uz_i(3)*zhat
541  
542         if (i_is_SplitDipole) then
543            d_i = ElectrostaticMap(me1)%split_dipole_distance
544         endif
545 <      
545 >
546      endif
547  
548 +    if (i_is_Quadrupole) then
549 +       qxx_i = ElectrostaticMap(me1)%quadrupole_moments(1)
550 +       qyy_i = ElectrostaticMap(me1)%quadrupole_moments(2)
551 +       qzz_i = ElectrostaticMap(me1)%quadrupole_moments(3)
552 + #ifdef IS_MPI
553 +       ux_i(1) = eFrame_Row(1,atom1)
554 +       ux_i(2) = eFrame_Row(4,atom1)
555 +       ux_i(3) = eFrame_Row(7,atom1)
556 +       uy_i(1) = eFrame_Row(2,atom1)
557 +       uy_i(2) = eFrame_Row(5,atom1)
558 +       uy_i(3) = eFrame_Row(8,atom1)
559 +       uz_i(1) = eFrame_Row(3,atom1)
560 +       uz_i(2) = eFrame_Row(6,atom1)
561 +       uz_i(3) = eFrame_Row(9,atom1)
562 + #else
563 +       ux_i(1) = eFrame(1,atom1)
564 +       ux_i(2) = eFrame(4,atom1)
565 +       ux_i(3) = eFrame(7,atom1)
566 +       uy_i(1) = eFrame(2,atom1)
567 +       uy_i(2) = eFrame(5,atom1)
568 +       uy_i(3) = eFrame(8,atom1)
569 +       uz_i(1) = eFrame(3,atom1)
570 +       uz_i(2) = eFrame(6,atom1)
571 +       uz_i(3) = eFrame(9,atom1)
572 + #endif
573 +       cx_i = ux_i(1)*xhat + ux_i(2)*yhat + ux_i(3)*zhat
574 +       cy_i = uy_i(1)*xhat + uy_i(2)*yhat + uy_i(3)*zhat
575 +       cz_i = uz_i(1)*xhat + uz_i(2)*yhat + uz_i(3)*zhat
576 +    endif
577 +
578      if (j_is_Charge) then
579         q_j = ElectrostaticMap(me2)%charge      
580      endif
581 <    
581 >
582      if (j_is_Dipole) then
583         mu_j = ElectrostaticMap(me2)%dipole_moment
584   #ifdef IS_MPI
585 <       ul_j(1) = eFrame_Col(3,atom2)
586 <       ul_j(2) = eFrame_Col(6,atom2)
587 <       ul_j(3) = eFrame_Col(9,atom2)
585 >       uz_j(1) = eFrame_Col(3,atom2)
586 >       uz_j(2) = eFrame_Col(6,atom2)
587 >       uz_j(3) = eFrame_Col(9,atom2)
588   #else
589 <       ul_j(1) = eFrame(3,atom2)
590 <       ul_j(2) = eFrame(6,atom2)
591 <       ul_j(3) = eFrame(9,atom2)
589 >       uz_j(1) = eFrame(3,atom2)
590 >       uz_j(2) = eFrame(6,atom2)
591 >       uz_j(3) = eFrame(9,atom2)
592   #endif
593 <       ct_j = ul_j(1)*drdxj + ul_j(2)*drdyj + ul_j(3)*drdzj
593 >       ct_j = uz_j(1)*xhat + uz_j(2)*yhat + uz_j(3)*zhat
594  
595         if (j_is_SplitDipole) then
596            d_j = ElectrostaticMap(me2)%split_dipole_distance
597         endif
598      endif
599  
600 +    if (j_is_Quadrupole) then
601 +       qxx_j = ElectrostaticMap(me2)%quadrupole_moments(1)
602 +       qyy_j = ElectrostaticMap(me2)%quadrupole_moments(2)
603 +       qzz_j = ElectrostaticMap(me2)%quadrupole_moments(3)
604 + #ifdef IS_MPI
605 +       ux_j(1) = eFrame_Col(1,atom2)
606 +       ux_j(2) = eFrame_Col(4,atom2)
607 +       ux_j(3) = eFrame_Col(7,atom2)
608 +       uy_j(1) = eFrame_Col(2,atom2)
609 +       uy_j(2) = eFrame_Col(5,atom2)
610 +       uy_j(3) = eFrame_Col(8,atom2)
611 +       uz_j(1) = eFrame_Col(3,atom2)
612 +       uz_j(2) = eFrame_Col(6,atom2)
613 +       uz_j(3) = eFrame_Col(9,atom2)
614 + #else
615 +       ux_j(1) = eFrame(1,atom2)
616 +       ux_j(2) = eFrame(4,atom2)
617 +       ux_j(3) = eFrame(7,atom2)
618 +       uy_j(1) = eFrame(2,atom2)
619 +       uy_j(2) = eFrame(5,atom2)
620 +       uy_j(3) = eFrame(8,atom2)
621 +       uz_j(1) = eFrame(3,atom2)
622 +       uz_j(2) = eFrame(6,atom2)
623 +       uz_j(3) = eFrame(9,atom2)
624 + #endif
625 +       cx_j = ux_j(1)*xhat + ux_j(2)*yhat + ux_j(3)*zhat
626 +       cy_j = uy_j(1)*xhat + uy_j(2)*yhat + uy_j(3)*zhat
627 +       cz_j = uz_j(1)*xhat + uz_j(2)*yhat + uz_j(3)*zhat
628 +    endif
629 +  
630      epot = 0.0_dp
631      dudx = 0.0_dp
632      dudy = 0.0_dp
633      dudz = 0.0_dp
634  
635 <    duduix = 0.0_dp
636 <    duduiy = 0.0_dp
637 <    duduiz = 0.0_dp
635 >    dudux_i = 0.0_dp
636 >    duduy_i = 0.0_dp
637 >    duduz_i = 0.0_dp
638  
639 <    dudujx = 0.0_dp
640 <    dudujy = 0.0_dp
641 <    dudujz = 0.0_dp
639 >    dudux_j = 0.0_dp
640 >    duduy_j = 0.0_dp
641 >    duduz_j = 0.0_dp
642  
643      if (i_is_Charge) then
644  
645         if (j_is_Charge) then
436          
437          vterm = pre11 * q_i * q_j * riji
438          vpair = vpair + vterm
439          epot = epot + sw*vterm
646  
647 <          dudr  = - sw * vterm * riji
647 >          if (summationMethod .eq. UNDAMPED_WOLF) then
648 >             vterm = pre11 * q_i * q_j * (riji - rcuti)
649 >             vpair = vpair + vterm
650 >             epot = epot + sw*vterm
651 >            
652 >             dudr  = -sw*pre11*q_i*q_j * (riji*riji-rcuti2)*riji
653 >            
654 >             dudx = dudx + dudr * d(1)
655 >             dudy = dudy + dudr * d(2)
656 >             dudz = dudz + dudr * d(3)
657  
658 <          dudx = dudx + dudr * drdxj
659 <          dudy = dudy + dudr * drdyj
660 <          dudz = dudz + dudr * drdzj
661 <      
662 <       endif
658 >          elseif (summationMethod .eq. DAMPED_WOLF) then
659 >             varERFC = derfc(dampingAlpha*rij)
660 >             varEXP = exp(-dampingAlpha*dampingAlpha*rij*rij)
661 >             vterm = pre11 * q_i * q_j * (varERFC*riji - constERFC*rcuti)
662 >             vpair = vpair + vterm
663 >             epot = epot + sw*vterm
664 >            
665 >             dudr  = -sw*pre11*q_i*q_j * ( riji*((varERFC*riji*riji &
666 >                                                  + alphaPi*varEXP) &
667 >                                                 - (constERFC*rcuti2 &
668 >                                                    + alphaPi*constEXP)) )
669 >            
670 >             dudx = dudx + dudr * d(1)
671 >             dudy = dudy + dudr * d(2)
672 >             dudz = dudz + dudr * d(3)
673  
674 <       if (j_is_Dipole) then
674 >          elseif (summationMethod .eq. REACTION_FIELD) then
675 >             preVal = pre11 * q_i * q_j
676 >             rfVal = preRF*rij*rij
677 >             vterm = preVal * ( riji + rfVal )
678 >            
679 >             vpair = vpair + vterm
680 >             epot = epot + sw*vterm
681 >            
682 >             dudr  = sw * preVal * ( 2.0d0*rfVal - riji )*riji
683 >            
684 >             dudx = dudx + dudr * xhat
685 >             dudy = dudy + dudr * yhat
686 >             dudz = dudz + dudr * zhat
687  
451          if (j_is_SplitDipole) then
452             BigR = sqrt(r2 + 0.25_dp * d_j * d_j)
453             ri = 1.0_dp / BigR
454             scale = rij * ri
688            else
689 <             ri = riji
690 <             scale = 1.0_dp
691 <          endif
459 <
460 <          ri2 = ri * ri
461 <          ri3 = ri2 * ri
462 <          sc2 = scale * scale
689 >             vterm = pre11 * q_i * q_j * riji
690 >             vpair = vpair + vterm
691 >             epot = epot + sw*vterm
692              
693 <          pref = pre12 * q_i * mu_j
694 <          vterm = pref * ct_j * ri2 * scale
695 <          vpair = vpair + vterm
696 <          epot = epot + sw * vterm
693 >             dudr  = - sw * vterm * riji
694 >            
695 >             dudx = dudx + dudr * xhat
696 >             dudy = dudy + dudr * yhat
697 >             dudz = dudz + dudr * zhat
698  
699 <          !! this has a + sign in the () because the rij vector is
470 <          !! r_j - r_i and the charge-dipole potential takes the origin
471 <          !! as the point dipole, which is atom j in this case.
699 >          endif
700  
473          dudx = dudx + pref * sw * ri3 * ( ul_j(1) + 3.0d0*ct_j*xhat*sc2)
474          dudy = dudy + pref * sw * ri3 * ( ul_j(2) + 3.0d0*ct_j*yhat*sc2)
475          dudz = dudz + pref * sw * ri3 * ( ul_j(3) + 3.0d0*ct_j*zhat*sc2)
476
477          dudujx = dudujx - pref * sw * ri2 * xhat * scale
478          dudujy = dudujy - pref * sw * ri2 * yhat * scale
479          dudujz = dudujz - pref * sw * ri2 * zhat * scale
480          
701         endif
702  
703 <    endif
484 <  
485 <    if (i_is_Dipole) then
486 <      
487 <       if (j_is_Charge) then
703 >       if (j_is_Dipole) then
704  
705 <          if (i_is_SplitDipole) then
490 <             BigR = sqrt(r2 + 0.25_dp * d_i * d_i)
491 <             ri = 1.0_dp / BigR
492 <             scale = rij * ri
493 <          else
494 <             ri = riji
495 <             scale = 1.0_dp
496 <          endif
705 >          pref = pre12 * q_i * mu_j
706  
707 <          ri2 = ri * ri
708 <          ri3 = ri2 * ri
709 <          sc2 = scale * scale
707 >          if (summationMethod .eq. UNDAMPED_WOLF) then
708 >             ri2 = riji * riji
709 >             ri3 = ri2 * riji
710 >
711 >             pref = pre12 * q_i * mu_j
712 >             vterm = - pref * ct_j * (ri2 - rcuti2)
713 >             vpair = vpair + vterm
714 >             epot = epot + sw*vterm
715              
716 <          pref = pre12 * q_j * mu_i
717 <          vterm = pref * ct_i * ri2 * scale
718 <          vpair = vpair + vterm
719 <          epot = epot + sw * vterm
716 >             !! this has a + sign in the () because the rij vector is
717 >             !! r_j - r_i and the charge-dipole potential takes the origin
718 >             !! as the point dipole, which is atom j in this case.
719 >            
720 >             dudx = dudx - sw*pref * ( ri3*( uz_j(1) - 3.0d0*ct_j*xhat) &
721 >                  - rcuti3*( uz_j(1) - 3.0d0*ct_j*d(1)*rcuti ) )
722 >             dudy = dudy - sw*pref * ( ri3*( uz_j(2) - 3.0d0*ct_j*yhat) &
723 >                  - rcuti3*( uz_j(2) - 3.0d0*ct_j*d(2)*rcuti ) )
724 >             dudz = dudz - sw*pref * ( ri3*( uz_j(3) - 3.0d0*ct_j*zhat) &
725 >                  - rcuti3*( uz_j(3) - 3.0d0*ct_j*d(3)*rcuti ) )
726 >            
727 >             duduz_j(1) = duduz_j(1) - sw*pref*( ri2*xhat - d(1)*rcuti3 )
728 >             duduz_j(2) = duduz_j(2) - sw*pref*( ri2*yhat - d(2)*rcuti3 )
729 >             duduz_j(3) = duduz_j(3) - sw*pref*( ri2*zhat - d(3)*rcuti3 )
730  
731 <          dudx = dudx + pref * sw * ri3 * ( ul_i(1) - 3.0d0 * ct_i * xhat*sc2)
732 <          dudy = dudy + pref * sw * ri3 * ( ul_i(2) - 3.0d0 * ct_i * yhat*sc2)
733 <          dudz = dudz + pref * sw * ri3 * ( ul_i(3) - 3.0d0 * ct_i * zhat*sc2)
731 >          elseif (summationMethod .eq. REACTION_FIELD) then
732 >             ri2 = riji * riji
733 >             ri3 = ri2 * riji
734 >    
735 >             pref = pre12 * q_i * mu_j
736 >             vterm = - pref * ct_j * ( ri2 - preRF2*rij )
737 >             vpair = vpair + vterm
738 >             epot = epot + sw*vterm
739 >            
740 >             !! this has a + sign in the () because the rij vector is
741 >             !! r_j - r_i and the charge-dipole potential takes the origin
742 >             !! as the point dipole, which is atom j in this case.
743 >            
744 >             dudx = dudx - sw*pref*( ri3*(uz_j(1) - 3.0d0*ct_j*xhat) - &
745 >                                     preRF2*uz_j(1) )
746 >             dudy = dudy - sw*pref*( ri3*(uz_j(2) - 3.0d0*ct_j*yhat) - &
747 >                                     preRF2*uz_j(2) )
748 >             dudz = dudz - sw*pref*( ri3*(uz_j(3) - 3.0d0*ct_j*zhat) - &
749 >                                     preRF2*uz_j(3) )        
750 >             duduz_j(1) = duduz_j(1) - sw*pref * xhat * ( ri2 - preRF2*rij )
751 >             duduz_j(2) = duduz_j(2) - sw*pref * yhat * ( ri2 - preRF2*rij )
752 >             duduz_j(3) = duduz_j(3) - sw*pref * zhat * ( ri2 - preRF2*rij )
753  
511          duduix = duduix + pref * sw * ri2 * xhat * scale
512          duduiy = duduiy + pref * sw * ri2 * yhat * scale
513          duduiz = duduiz + pref * sw * ri2 * zhat * scale
514       endif
515
516       if (j_is_Dipole) then
517
518          if (i_is_SplitDipole) then
519             if (j_is_SplitDipole) then
520                BigR = sqrt(r2 + 0.25_dp * d_i * d_i + 0.25_dp * d_j * d_j)
521             else
522                BigR = sqrt(r2 + 0.25_dp * d_i * d_i)
523             endif
524             ri = 1.0_dp / BigR
525             scale = rij * ri                
754            else
755               if (j_is_SplitDipole) then
756                  BigR = sqrt(r2 + 0.25_dp * d_j * d_j)
757                  ri = 1.0_dp / BigR
758 <                scale = rij * ri                            
759 <             else                
758 >                scale = rij * ri
759 >             else
760                  ri = riji
761                  scale = 1.0_dp
762               endif
763 <          endif
763 >            
764 >             ri2 = ri * ri
765 >             ri3 = ri2 * ri
766 >             sc2 = scale * scale
767  
768 <          ct_ij = ul_i(1)*ul_j(1) + ul_i(2)*ul_j(2) + ul_i(3)*ul_j(3)
768 >             pref = pre12 * q_i * mu_j
769 >             vterm = - pref * ct_j * ri2 * scale
770 >             vpair = vpair + vterm
771 >             epot = epot + sw*vterm
772 >            
773 >             !! this has a + sign in the () because the rij vector is
774 >             !! r_j - r_i and the charge-dipole potential takes the origin
775 >             !! as the point dipole, which is atom j in this case.
776 >            
777 >             dudx = dudx - sw*pref * ri3 * ( uz_j(1) - 3.0d0*ct_j*xhat*sc2)
778 >             dudy = dudy - sw*pref * ri3 * ( uz_j(2) - 3.0d0*ct_j*yhat*sc2)
779 >             dudz = dudz - sw*pref * ri3 * ( uz_j(3) - 3.0d0*ct_j*zhat*sc2)
780 >            
781 >             duduz_j(1) = duduz_j(1) - sw*pref * ri2 * xhat * scale
782 >             duduz_j(2) = duduz_j(2) - sw*pref * ri2 * yhat * scale
783 >             duduz_j(3) = duduz_j(3) - sw*pref * ri2 * zhat * scale
784  
785 <          ri2 = ri * ri
786 <          ri3 = ri2 * ri
785 >          endif
786 >       endif
787 >
788 >       if (j_is_Quadrupole) then
789 >          ri2 = riji * riji
790 >          ri3 = ri2 * riji
791            ri4 = ri2 * ri2
792 <          sc2 = scale * scale
792 >          cx2 = cx_j * cx_j
793 >          cy2 = cy_j * cy_j
794 >          cz2 = cz_j * cz_j
795  
796 <          pref = pre22 * mu_i * mu_j
797 <          vterm = pref * ri3 * (ct_ij - 3.0d0 * ct_i * ct_j * sc2)
798 <          vpair = vpair + vterm
799 <          epot = epot + sw * vterm
800 <          
801 <          a1 = 5.0d0 * ct_i * ct_j * sc2 - ct_ij
802 <
803 <          dudx=dudx+pref*sw*3.0d0*ri4*scale*(a1*xhat-ct_i*ul_j(1)-ct_j*ul_i(1))
804 <          dudy=dudy+pref*sw*3.0d0*ri4*scale*(a1*yhat-ct_i*ul_j(2)-ct_j*ul_i(2))
805 <          dudz=dudz+pref*sw*3.0d0*ri4*scale*(a1*zhat-ct_i*ul_j(3)-ct_j*ul_i(3))
806 <
807 <          duduix = duduix + pref*sw*ri3*(ul_j(1) - 3.0d0*ct_j*xhat*sc2)
808 <          duduiy = duduiy + pref*sw*ri3*(ul_j(2) - 3.0d0*ct_j*yhat*sc2)
809 <          duduiz = duduiz + pref*sw*ri3*(ul_j(3) - 3.0d0*ct_j*zhat*sc2)
810 <
811 <          dudujx = dudujx + pref*sw*ri3*(ul_i(1) - 3.0d0*ct_i*xhat*sc2)
812 <          dudujy = dudujy + pref*sw*ri3*(ul_i(2) - 3.0d0*ct_i*yhat*sc2)
813 <          dudujz = dudujz + pref*sw*ri3*(ul_i(3) - 3.0d0*ct_i*zhat*sc2)
796 >          if (summationMethod .eq. UNDAMPED_WOLF) then
797 >             pref =  pre14 * q_i / 3.0_dp
798 >             vterm1 = pref * ri3*( qxx_j * (3.0_dp*cx2 - 1.0_dp) + &
799 >                  qyy_j * (3.0_dp*cy2 - 1.0_dp) + &
800 >                  qzz_j * (3.0_dp*cz2 - 1.0_dp) )
801 >             vterm2 = pref * rcuti3*( qxx_j * (3.0_dp*cx2 - 1.0_dp) + &
802 >                  qyy_j * (3.0_dp*cy2 - 1.0_dp) + &
803 >                  qzz_j * (3.0_dp*cz2 - 1.0_dp) )
804 >             vpair = vpair + ( vterm1 - vterm2 )
805 >             epot = epot + sw*( vterm1 - vterm2 )
806 >            
807 >             dudx = dudx - (5.0_dp * &
808 >                  (vterm1*riji*xhat - vterm2*rcuti2*d(1))) + sw*pref * ( &
809 >                  (ri4 - rcuti4)*(qxx_j*(6.0_dp*cx_j*ux_j(1)) - &
810 >                  qxx_j*2.0_dp*(xhat - rcuti*d(1))) + &
811 >                  (ri4 - rcuti4)*(qyy_j*(6.0_dp*cy_j*uy_j(1)) - &
812 >                  qyy_j*2.0_dp*(xhat - rcuti*d(1))) + &
813 >                  (ri4 - rcuti4)*(qzz_j*(6.0_dp*cz_j*uz_j(1)) - &
814 >                  qzz_j*2.0_dp*(xhat - rcuti*d(1))) )
815 >             dudy = dudy - (5.0_dp * &
816 >                  (vterm1*riji*yhat - vterm2*rcuti2*d(2))) + sw*pref * ( &
817 >                  (ri4 - rcuti4)*(qxx_j*(6.0_dp*cx_j*ux_j(2)) - &
818 >                  qxx_j*2.0_dp*(yhat - rcuti*d(2))) + &
819 >                  (ri4 - rcuti4)*(qyy_j*(6.0_dp*cy_j*uy_j(2)) - &
820 >                  qyy_j*2.0_dp*(yhat - rcuti*d(2))) + &
821 >                  (ri4 - rcuti4)*(qzz_j*(6.0_dp*cz_j*uz_j(2)) - &
822 >                  qzz_j*2.0_dp*(yhat - rcuti*d(2))) )
823 >             dudz = dudz - (5.0_dp * &
824 >                  (vterm1*riji*zhat - vterm2*rcuti2*d(3))) + sw*pref * ( &
825 >                  (ri4 - rcuti4)*(qxx_j*(6.0_dp*cx_j*ux_j(3)) - &
826 >                  qxx_j*2.0_dp*(zhat - rcuti*d(3))) + &
827 >                  (ri4 - rcuti4)*(qyy_j*(6.0_dp*cy_j*uy_j(3)) - &
828 >                  qyy_j*2.0_dp*(zhat - rcuti*d(3))) + &
829 >                  (ri4 - rcuti4)*(qzz_j*(6.0_dp*cz_j*uz_j(3)) - &
830 >                  qzz_j*2.0_dp*(zhat - rcuti*d(3))) )
831 >            
832 >             dudux_j(1) = dudux_j(1) + sw*pref*(ri3*(qxx_j*6.0_dp*cx_j*xhat) -&
833 >                  rcuti4*(qxx_j*6.0_dp*cx_j*d(1)))
834 >             dudux_j(2) = dudux_j(2) + sw*pref*(ri3*(qxx_j*6.0_dp*cx_j*yhat) -&
835 >                  rcuti4*(qxx_j*6.0_dp*cx_j*d(2)))
836 >             dudux_j(3) = dudux_j(3) + sw*pref*(ri3*(qxx_j*6.0_dp*cx_j*zhat) -&
837 >                  rcuti4*(qxx_j*6.0_dp*cx_j*d(3)))
838 >            
839 >             duduy_j(1) = duduy_j(1) + sw*pref*(ri3*(qyy_j*6.0_dp*cy_j*xhat) -&
840 >                  rcuti4*(qyy_j*6.0_dp*cx_j*d(1)))
841 >             duduy_j(2) = duduy_j(2) + sw*pref*(ri3*(qyy_j*6.0_dp*cy_j*yhat) -&
842 >                  rcuti4*(qyy_j*6.0_dp*cx_j*d(2)))
843 >             duduy_j(3) = duduy_j(3) + sw*pref*(ri3*(qyy_j*6.0_dp*cy_j*zhat) -&
844 >                  rcuti4*(qyy_j*6.0_dp*cx_j*d(3)))
845 >            
846 >             duduz_j(1) = duduz_j(1) + sw*pref*(ri3*(qzz_j*6.0_dp*cz_j*xhat) -&
847 >                  rcuti4*(qzz_j*6.0_dp*cx_j*d(1)))
848 >             duduz_j(2) = duduz_j(2) + sw*pref*(ri3*(qzz_j*6.0_dp*cz_j*yhat) -&
849 >                  rcuti4*(qzz_j*6.0_dp*cx_j*d(2)))
850 >             duduz_j(3) = duduz_j(3) + sw*pref*(ri3*(qzz_j*6.0_dp*cz_j*zhat) -&
851 >                  rcuti4*(qzz_j*6.0_dp*cx_j*d(3)))
852 >        
853 >          else
854 >             pref =  pre14 * q_i / 3.0_dp
855 >             vterm = pref * ri3 * (qxx_j * (3.0_dp*cx2 - 1.0_dp) + &
856 >                  qyy_j * (3.0_dp*cy2 - 1.0_dp) + &
857 >                  qzz_j * (3.0_dp*cz2 - 1.0_dp))
858 >             vpair = vpair + vterm
859 >             epot = epot + sw*vterm
860 >            
861 >             dudx = dudx - 5.0_dp*sw*vterm*riji*xhat + sw*pref * ri4 * ( &
862 >                  qxx_j*(6.0_dp*cx_j*ux_j(1) - 2.0_dp*xhat) + &
863 >                  qyy_j*(6.0_dp*cy_j*uy_j(1) - 2.0_dp*xhat) + &
864 >                  qzz_j*(6.0_dp*cz_j*uz_j(1) - 2.0_dp*xhat) )
865 >             dudy = dudy - 5.0_dp*sw*vterm*riji*yhat + sw*pref * ri4 * ( &
866 >                  qxx_j*(6.0_dp*cx_j*ux_j(2) - 2.0_dp*yhat) + &
867 >                  qyy_j*(6.0_dp*cy_j*uy_j(2) - 2.0_dp*yhat) + &
868 >                  qzz_j*(6.0_dp*cz_j*uz_j(2) - 2.0_dp*yhat) )
869 >             dudz = dudz - 5.0_dp*sw*vterm*riji*zhat + sw*pref * ri4 * ( &
870 >                  qxx_j*(6.0_dp*cx_j*ux_j(3) - 2.0_dp*zhat) + &
871 >                  qyy_j*(6.0_dp*cy_j*uy_j(3) - 2.0_dp*zhat) + &
872 >                  qzz_j*(6.0_dp*cz_j*uz_j(3) - 2.0_dp*zhat) )
873 >            
874 >             dudux_j(1) = dudux_j(1) + sw*pref * ri3*(qxx_j*6.0_dp*cx_j*xhat)
875 >             dudux_j(2) = dudux_j(2) + sw*pref * ri3*(qxx_j*6.0_dp*cx_j*yhat)
876 >             dudux_j(3) = dudux_j(3) + sw*pref * ri3*(qxx_j*6.0_dp*cx_j*zhat)
877 >            
878 >             duduy_j(1) = duduy_j(1) + sw*pref * ri3*(qyy_j*6.0_dp*cy_j*xhat)
879 >             duduy_j(2) = duduy_j(2) + sw*pref * ri3*(qyy_j*6.0_dp*cy_j*yhat)
880 >             duduy_j(3) = duduy_j(3) + sw*pref * ri3*(qyy_j*6.0_dp*cy_j*zhat)
881 >            
882 >             duduz_j(1) = duduz_j(1) + sw*pref * ri3*(qzz_j*6.0_dp*cz_j*xhat)
883 >             duduz_j(2) = duduz_j(2) + sw*pref * ri3*(qzz_j*6.0_dp*cz_j*yhat)
884 >             duduz_j(3) = duduz_j(3) + sw*pref * ri3*(qzz_j*6.0_dp*cz_j*zhat)
885 >          
886 >          endif
887         endif
888 +    endif
889  
890 +    if (i_is_Dipole) then
891 +
892 +       if (j_is_Charge) then
893 +          
894 +          pref = pre12 * q_j * mu_i
895 +          
896 +          if (summationMethod .eq. UNDAMPED_WOLF) then
897 +             ri2 = riji * riji
898 +             ri3 = ri2 * riji
899 +
900 +             pref = pre12 * q_j * mu_i
901 +             vterm = pref * ct_i * (ri2 - rcuti2)
902 +             vpair = vpair + vterm
903 +             epot = epot + sw*vterm
904 +            
905 +             dudx = dudx + sw*pref * ( ri3*( uz_i(1) - 3.0d0*ct_i*xhat) &
906 +                  - rcuti3*( uz_i(1) - 3.0d0*ct_i*d(1)*rcuti ) )
907 +             dudy = dudy + sw*pref * ( ri3*( uz_i(2) - 3.0d0*ct_i*yhat) &
908 +                  - rcuti3*( uz_i(2) - 3.0d0*ct_i*d(2)*rcuti ) )
909 +             dudz = dudz + sw*pref * ( ri3*( uz_i(3) - 3.0d0*ct_i*zhat) &
910 +                  - rcuti3*( uz_i(3) - 3.0d0*ct_i*d(3)*rcuti ) )
911 +            
912 +             duduz_i(1) = duduz_i(1) + sw*pref*( ri2*xhat - d(1)*rcuti3 )
913 +             duduz_i(2) = duduz_i(2) + sw*pref*( ri2*yhat - d(2)*rcuti3 )
914 +             duduz_i(3) = duduz_i(3) + sw*pref*( ri2*zhat - d(3)*rcuti3 )
915 +
916 +          elseif (summationMethod .eq. REACTION_FIELD) then
917 +             ri2 = riji * riji
918 +             ri3 = ri2 * riji
919 +
920 +             pref = pre12 * q_j * mu_i
921 +             vterm = pref * ct_i * ( ri2 - preRF2*rij )
922 +             vpair = vpair + vterm
923 +             epot = epot + sw*vterm
924 +            
925 +             dudx = dudx + sw*pref * ( ri3*(uz_i(1) - 3.0d0*ct_i*xhat) - &
926 +                  preRF2*uz_i(1) )
927 +             dudy = dudy + sw*pref * ( ri3*(uz_i(2) - 3.0d0*ct_i*yhat) - &
928 +                  preRF2*uz_i(2) )
929 +             dudz = dudz + sw*pref * ( ri3*(uz_i(3) - 3.0d0*ct_i*zhat) - &
930 +                  preRF2*uz_i(3) )
931 +            
932 +             duduz_i(1) = duduz_i(1) + sw*pref * xhat * ( ri2 - preRF2*rij )
933 +             duduz_i(2) = duduz_i(2) + sw*pref * yhat * ( ri2 - preRF2*rij )
934 +             duduz_i(3) = duduz_i(3) + sw*pref * zhat * ( ri2 - preRF2*rij )
935 +
936 +          else
937 +             if (i_is_SplitDipole) then
938 +                BigR = sqrt(r2 + 0.25_dp * d_i * d_i)
939 +                ri = 1.0_dp / BigR
940 +                scale = rij * ri
941 +             else
942 +                ri = riji
943 +                scale = 1.0_dp
944 +             endif
945 +            
946 +             ri2 = ri * ri
947 +             ri3 = ri2 * ri
948 +             sc2 = scale * scale
949 +
950 +             pref = pre12 * q_j * mu_i
951 +             vterm = pref * ct_i * ri2 * scale
952 +             vpair = vpair + vterm
953 +             epot = epot + sw*vterm
954 +            
955 +             dudx = dudx + sw*pref * ri3 * ( uz_i(1) - 3.0d0 * ct_i * xhat*sc2)
956 +             dudy = dudy + sw*pref * ri3 * ( uz_i(2) - 3.0d0 * ct_i * yhat*sc2)
957 +             dudz = dudz + sw*pref * ri3 * ( uz_i(3) - 3.0d0 * ct_i * zhat*sc2)
958 +            
959 +             duduz_i(1) = duduz_i(1) + sw*pref * ri2 * xhat * scale
960 +             duduz_i(2) = duduz_i(2) + sw*pref * ri2 * yhat * scale
961 +             duduz_i(3) = duduz_i(3) + sw*pref * ri2 * zhat * scale
962 +          endif
963 +       endif
964 +      
965 +       if (j_is_Dipole) then
966 +
967 +          if (summationMethod .eq. UNDAMPED_WOLF) then
968 +             ri2 = riji * riji
969 +             ri3 = ri2 * riji
970 +             ri4 = ri2 * ri2
971 +
972 +             pref = pre22 * mu_i * mu_j
973 +             vterm = pref * (ri3 - rcuti3) * (ct_ij - 3.0d0 * ct_i * ct_j)
974 +             vpair = vpair + vterm
975 +             epot = epot + sw*vterm
976 +            
977 +             a1 = 5.0d0 * ct_i * ct_j - ct_ij
978 +            
979 +             dudx = dudx + sw*pref*3.0d0*ri4 &
980 +                             * (a1*xhat-ct_i*uz_j(1)-ct_j*uz_i(1)) &
981 +                         - sw*pref*3.0d0*rcuti4 &
982 +                             * (a1*rcuti*d(1)-ct_i*uz_j(1)-ct_j*uz_i(1))
983 +             dudy = dudy + sw*pref*3.0d0*ri4 &
984 +                             * (a1*yhat-ct_i*uz_j(2)-ct_j*uz_i(2)) &
985 +                         - sw*pref*3.0d0*rcuti4 &
986 +                             * (a1*rcuti*d(2)-ct_i*uz_j(2)-ct_j*uz_i(2))
987 +             dudz = dudz + sw*pref*3.0d0*ri4 &
988 +                             * (a1*zhat-ct_i*uz_j(3)-ct_j*uz_i(3)) &
989 +                         - sw*pref*3.0d0*rcuti4 &
990 +                             * (a1*rcuti*d(3)-ct_i*uz_j(3)-ct_j*uz_i(3))
991 +            
992 +             duduz_i(1) = duduz_i(1) + sw*pref*(ri3*(uz_j(1)-3.0d0*ct_j*xhat) &
993 +                  - rcuti3*(uz_j(1) - 3.0d0*ct_j*d(1)*rcuti))
994 +             duduz_i(2) = duduz_i(2) + sw*pref*(ri3*(uz_j(2)-3.0d0*ct_j*yhat) &
995 +                  - rcuti3*(uz_j(2) - 3.0d0*ct_j*d(2)*rcuti))
996 +             duduz_i(3) = duduz_i(3) + sw*pref*(ri3*(uz_j(3)-3.0d0*ct_j*zhat) &
997 +                  - rcuti3*(uz_j(3) - 3.0d0*ct_j*d(3)*rcuti))
998 +             duduz_j(1) = duduz_j(1) + sw*pref*(ri3*(uz_i(1)-3.0d0*ct_i*xhat) &
999 +                  - rcuti3*(uz_i(1) - 3.0d0*ct_i*d(1)*rcuti))
1000 +             duduz_j(2) = duduz_j(2) + sw*pref*(ri3*(uz_i(2)-3.0d0*ct_i*yhat) &
1001 +                  - rcuti3*(uz_i(2) - 3.0d0*ct_i*d(2)*rcuti))
1002 +             duduz_j(3) = duduz_j(3) + sw*pref*(ri3*(uz_i(3)-3.0d0*ct_i*zhat) &
1003 +                  - rcuti3*(uz_i(3) - 3.0d0*ct_i*d(3)*rcuti))
1004 +
1005 +         elseif (summationMethod .eq. REACTION_FIELD) then
1006 +             ct_ij = uz_i(1)*uz_j(1) + uz_i(2)*uz_j(2) + uz_i(3)*uz_j(3)
1007 +
1008 +             ri2 = riji * riji
1009 +             ri3 = ri2 * riji
1010 +             ri4 = ri2 * ri2
1011 +
1012 +             pref = pre22 * mu_i * mu_j
1013 +              
1014 +             vterm = pref*( ri3*(ct_ij - 3.0d0 * ct_i * ct_j) - &
1015 +                  preRF2*ct_ij )
1016 +             vpair = vpair + vterm
1017 +             epot = epot + sw*vterm
1018 +            
1019 +             a1 = 5.0d0 * ct_i * ct_j - ct_ij
1020 +            
1021 +             dudx = dudx + sw*pref*3.0d0*ri4 &
1022 +                             * (a1*xhat-ct_i*uz_j(1)-ct_j*uz_i(1))
1023 +             dudy = dudy + sw*pref*3.0d0*ri4 &
1024 +                             * (a1*yhat-ct_i*uz_j(2)-ct_j*uz_i(2))
1025 +             dudz = dudz + sw*pref*3.0d0*ri4 &
1026 +                             * (a1*zhat-ct_i*uz_j(3)-ct_j*uz_i(3))
1027 +            
1028 +             duduz_i(1) = duduz_i(1) + sw*pref*(ri3*(uz_j(1)-3.0d0*ct_j*xhat) &
1029 +                  - preRF2*uz_j(1))
1030 +             duduz_i(2) = duduz_i(2) + sw*pref*(ri3*(uz_j(2)-3.0d0*ct_j*yhat) &
1031 +                  - preRF2*uz_j(2))
1032 +             duduz_i(3) = duduz_i(3) + sw*pref*(ri3*(uz_j(3)-3.0d0*ct_j*zhat) &
1033 +                  - preRF2*uz_j(3))
1034 +             duduz_j(1) = duduz_j(1) + sw*pref*(ri3*(uz_i(1)-3.0d0*ct_i*xhat) &
1035 +                  - preRF2*uz_i(1))
1036 +             duduz_j(2) = duduz_j(2) + sw*pref*(ri3*(uz_i(2)-3.0d0*ct_i*yhat) &
1037 +                  - preRF2*uz_i(2))
1038 +             duduz_j(3) = duduz_j(3) + sw*pref*(ri3*(uz_i(3)-3.0d0*ct_i*zhat) &
1039 +                  - preRF2*uz_i(3))
1040 +
1041 +          else
1042 +             if (i_is_SplitDipole) then
1043 +                if (j_is_SplitDipole) then
1044 +                   BigR = sqrt(r2 + 0.25_dp * d_i * d_i + 0.25_dp * d_j * d_j)
1045 +                else
1046 +                   BigR = sqrt(r2 + 0.25_dp * d_i * d_i)
1047 +                endif
1048 +                ri = 1.0_dp / BigR
1049 +                scale = rij * ri                
1050 +             else
1051 +                if (j_is_SplitDipole) then
1052 +                   BigR = sqrt(r2 + 0.25_dp * d_j * d_j)
1053 +                   ri = 1.0_dp / BigR
1054 +                   scale = rij * ri                            
1055 +                else                
1056 +                   ri = riji
1057 +                   scale = 1.0_dp
1058 +                endif
1059 +             endif
1060 +            
1061 +             ct_ij = uz_i(1)*uz_j(1) + uz_i(2)*uz_j(2) + uz_i(3)*uz_j(3)
1062 +            
1063 +             ri2 = ri * ri
1064 +             ri3 = ri2 * ri
1065 +             ri4 = ri2 * ri2
1066 +             sc2 = scale * scale
1067 +            
1068 +             pref = pre22 * mu_i * mu_j
1069 +             vterm = pref * ri3 * (ct_ij - 3.0d0 * ct_i * ct_j * sc2)
1070 +             vpair = vpair + vterm
1071 +             epot = epot + sw*vterm
1072 +            
1073 +             a1 = 5.0d0 * ct_i * ct_j * sc2 - ct_ij
1074 +            
1075 +             dudx = dudx + sw*pref*3.0d0*ri4*scale &
1076 +                             *(a1*xhat-ct_i*uz_j(1)-ct_j*uz_i(1))
1077 +             dudy = dudy + sw*pref*3.0d0*ri4*scale &
1078 +                             *(a1*yhat-ct_i*uz_j(2)-ct_j*uz_i(2))
1079 +             dudz = dudz + sw*pref*3.0d0*ri4*scale &
1080 +                             *(a1*zhat-ct_i*uz_j(3)-ct_j*uz_i(3))
1081 +            
1082 +             duduz_i(1) = duduz_i(1) + sw*pref*ri3 &
1083 +                                         *(uz_j(1) - 3.0d0*ct_j*xhat*sc2)
1084 +             duduz_i(2) = duduz_i(2) + sw*pref*ri3 &
1085 +                                         *(uz_j(2) - 3.0d0*ct_j*yhat*sc2)
1086 +             duduz_i(3) = duduz_i(3) + sw*pref*ri3 &
1087 +                                         *(uz_j(3) - 3.0d0*ct_j*zhat*sc2)
1088 +            
1089 +             duduz_j(1) = duduz_j(1) + sw*pref*ri3 &
1090 +                                         *(uz_i(1) - 3.0d0*ct_i*xhat*sc2)
1091 +             duduz_j(2) = duduz_j(2) + sw*pref*ri3 &
1092 +                                         *(uz_i(2) - 3.0d0*ct_i*yhat*sc2)
1093 +             duduz_j(3) = duduz_j(3) + sw*pref*ri3 &
1094 +                                         *(uz_i(3) - 3.0d0*ct_i*zhat*sc2)
1095 +          endif
1096 +       endif
1097      endif
1098 <    
1098 >
1099 >    if (i_is_Quadrupole) then
1100 >       if (j_is_Charge) then
1101 >
1102 >          ri2 = riji * riji
1103 >          ri3 = ri2 * riji
1104 >          ri4 = ri2 * ri2
1105 >          cx2 = cx_i * cx_i
1106 >          cy2 = cy_i * cy_i
1107 >          cz2 = cz_i * cz_i
1108 >
1109 >          if (summationMethod .eq. UNDAMPED_WOLF) then
1110 >             pref = pre14 * q_j / 3.0_dp
1111 >             vterm1 = pref * ri3*( qxx_i * (3.0_dp*cx2 - 1.0_dp) + &
1112 >                  qyy_i * (3.0_dp*cy2 - 1.0_dp) + &
1113 >                  qzz_i * (3.0_dp*cz2 - 1.0_dp) )
1114 >             vterm2 = pref * rcuti3*( qxx_i * (3.0_dp*cx2 - 1.0_dp) + &
1115 >                  qyy_i * (3.0_dp*cy2 - 1.0_dp) + &
1116 >                  qzz_i * (3.0_dp*cz2 - 1.0_dp) )
1117 >             vpair = vpair + ( vterm1 - vterm2 )
1118 >             epot = epot + sw*( vterm1 - vterm2 )
1119 >            
1120 >             dudx = dudx - sw*(5.0_dp*(vterm1*riji*xhat-vterm2*rcuti2*d(1))) +&
1121 >                  sw*pref * ( (ri4 - rcuti4)*(qxx_i*(6.0_dp*cx_i*ux_i(1)) - &
1122 >                  qxx_i*2.0_dp*(xhat - rcuti*d(1))) + &
1123 >                  (ri4 - rcuti4)*(qyy_i*(6.0_dp*cy_i*uy_i(1)) - &
1124 >                  qyy_i*2.0_dp*(xhat - rcuti*d(1))) + &
1125 >                  (ri4 - rcuti4)*(qzz_i*(6.0_dp*cz_i*uz_i(1)) - &
1126 >                  qzz_i*2.0_dp*(xhat - rcuti*d(1))) )
1127 >             dudy = dudy - sw*(5.0_dp*(vterm1*riji*yhat-vterm2*rcuti2*d(2))) +&
1128 >                  sw*pref * ( (ri4 - rcuti4)*(qxx_i*(6.0_dp*cx_i*ux_i(2)) - &
1129 >                  qxx_i*2.0_dp*(yhat - rcuti*d(2))) + &
1130 >                  (ri4 - rcuti4)*(qyy_i*(6.0_dp*cy_i*uy_i(2)) - &
1131 >                  qyy_i*2.0_dp*(yhat - rcuti*d(2))) + &
1132 >                  (ri4 - rcuti4)*(qzz_i*(6.0_dp*cz_i*uz_i(2)) - &
1133 >                  qzz_i*2.0_dp*(yhat - rcuti*d(2))) )
1134 >             dudz = dudz - sw*(5.0_dp*(vterm1*riji*zhat-vterm2*rcuti2*d(3))) +&
1135 >                  sw*pref * ( (ri4 - rcuti4)*(qxx_i*(6.0_dp*cx_i*ux_i(3)) - &
1136 >                  qxx_i*2.0_dp*(zhat - rcuti*d(3))) + &
1137 >                  (ri4 - rcuti4)*(qyy_i*(6.0_dp*cy_i*uy_i(3)) - &
1138 >                  qyy_i*2.0_dp*(zhat - rcuti*d(3))) + &
1139 >                  (ri4 - rcuti4)*(qzz_i*(6.0_dp*cz_i*uz_i(3)) - &
1140 >                  qzz_i*2.0_dp*(zhat - rcuti*d(3))) )
1141 >            
1142 >             dudux_i(1) = dudux_i(1) + sw*pref*(ri3*(qxx_i*6.0_dp*cx_i*xhat) -&
1143 >                  rcuti4*(qxx_i*6.0_dp*cx_i*d(1)))
1144 >             dudux_i(2) = dudux_i(2) + sw*pref*(ri3*(qxx_i*6.0_dp*cx_i*yhat) -&
1145 >                  rcuti4*(qxx_i*6.0_dp*cx_i*d(2)))
1146 >             dudux_i(3) = dudux_i(3) + sw*pref*(ri3*(qxx_i*6.0_dp*cx_i*zhat) -&
1147 >                  rcuti4*(qxx_i*6.0_dp*cx_i*d(3)))
1148 >            
1149 >             duduy_i(1) = duduy_i(1) + sw*pref*(ri3*(qyy_i*6.0_dp*cy_i*xhat) -&
1150 >                  rcuti4*(qyy_i*6.0_dp*cx_i*d(1)))
1151 >             duduy_i(2) = duduy_i(2) + sw*pref*(ri3*(qyy_i*6.0_dp*cy_i*yhat) -&
1152 >                  rcuti4*(qyy_i*6.0_dp*cx_i*d(2)))
1153 >             duduy_i(3) = duduy_i(3) + sw*pref*(ri3*(qyy_i*6.0_dp*cy_i*zhat) -&
1154 >                  rcuti4*(qyy_i*6.0_dp*cx_i*d(3)))
1155 >            
1156 >             duduz_i(1) = duduz_i(1) + sw*pref*(ri3*(qzz_i*6.0_dp*cz_i*xhat) -&
1157 >                  rcuti4*(qzz_i*6.0_dp*cx_i*d(1)))
1158 >             duduz_i(2) = duduz_i(2) + sw*pref*(ri3*(qzz_i*6.0_dp*cz_i*yhat) -&
1159 >                  rcuti4*(qzz_i*6.0_dp*cx_i*d(2)))
1160 >             duduz_i(3) = duduz_i(3) + sw*pref*(ri3*(qzz_i*6.0_dp*cz_i*zhat) -&
1161 >                  rcuti4*(qzz_i*6.0_dp*cx_i*d(3)))
1162 >
1163 >          else
1164 >             pref = pre14 * q_j / 3.0_dp
1165 >             vterm = pref * ri3 * (qxx_i * (3.0_dp*cx2 - 1.0_dp) + &
1166 >                  qyy_i * (3.0_dp*cy2 - 1.0_dp) + &
1167 >                  qzz_i * (3.0_dp*cz2 - 1.0_dp))
1168 >             vpair = vpair + vterm
1169 >             epot = epot + sw*vterm
1170 >            
1171 >             dudx = dudx - 5.0_dp*sw*vterm*riji*xhat + sw*pref*ri4 * ( &
1172 >                  qxx_i*(6.0_dp*cx_i*ux_i(1) - 2.0_dp*xhat) + &
1173 >                  qyy_i*(6.0_dp*cy_i*uy_i(1) - 2.0_dp*xhat) + &
1174 >                  qzz_i*(6.0_dp*cz_i*uz_i(1) - 2.0_dp*xhat) )
1175 >             dudy = dudy - 5.0_dp*sw*vterm*riji*yhat + sw*pref*ri4 * ( &
1176 >                  qxx_i*(6.0_dp*cx_i*ux_i(2) - 2.0_dp*yhat) + &
1177 >                  qyy_i*(6.0_dp*cy_i*uy_i(2) - 2.0_dp*yhat) + &
1178 >                  qzz_i*(6.0_dp*cz_i*uz_i(2) - 2.0_dp*yhat) )
1179 >             dudz = dudz - 5.0_dp*sw*vterm*riji*zhat + sw*pref*ri4 * ( &
1180 >                  qxx_i*(6.0_dp*cx_i*ux_i(3) - 2.0_dp*zhat) + &
1181 >                  qyy_i*(6.0_dp*cy_i*uy_i(3) - 2.0_dp*zhat) + &
1182 >                  qzz_i*(6.0_dp*cz_i*uz_i(3) - 2.0_dp*zhat) )
1183 >            
1184 >             dudux_i(1) = dudux_i(1) + sw*pref*ri3*(qxx_i*6.0_dp*cx_i*xhat)
1185 >             dudux_i(2) = dudux_i(2) + sw*pref*ri3*(qxx_i*6.0_dp*cx_i*yhat)
1186 >             dudux_i(3) = dudux_i(3) + sw*pref*ri3*(qxx_i*6.0_dp*cx_i*zhat)
1187 >            
1188 >             duduy_i(1) = duduy_i(1) + sw*pref*ri3*(qyy_i*6.0_dp*cy_i*xhat)
1189 >             duduy_i(2) = duduy_i(2) + sw*pref*ri3*(qyy_i*6.0_dp*cy_i*yhat)
1190 >             duduy_i(3) = duduy_i(3) + sw*pref*ri3*(qyy_i*6.0_dp*cy_i*zhat)
1191 >            
1192 >             duduz_i(1) = duduz_i(1) + sw*pref*ri3*(qzz_i*6.0_dp*cz_i*xhat)
1193 >             duduz_i(2) = duduz_i(2) + sw*pref*ri3*(qzz_i*6.0_dp*cz_i*yhat)
1194 >             duduz_i(3) = duduz_i(3) + sw*pref*ri3*(qzz_i*6.0_dp*cz_i*zhat)
1195 >          endif
1196 >       endif
1197 >    endif
1198 >
1199 >
1200      if (do_pot) then
1201   #ifdef IS_MPI
1202 <       pot_row(atom1) = pot_row(atom1) + 0.5d0*epot
1203 <       pot_col(atom2) = pot_col(atom2) + 0.5d0*epot
1202 >       pot_row(ELECTROSTATIC_POT,atom1) = pot_row(ELECTROSTATIC_POT,atom1) + 0.5d0*epot
1203 >       pot_col(ELECTROSTATIC_POT,atom2) = pot_col(ELECTROSTATIC_POT,atom2) + 0.5d0*epot
1204   #else
1205         pot = pot + epot
1206   #endif
1207      endif
1208 <        
1208 >
1209   #ifdef IS_MPI
1210      f_Row(1,atom1) = f_Row(1,atom1) + dudx
1211      f_Row(2,atom1) = f_Row(2,atom1) + dudy
1212      f_Row(3,atom1) = f_Row(3,atom1) + dudz
1213 <    
1213 >
1214      f_Col(1,atom2) = f_Col(1,atom2) - dudx
1215      f_Col(2,atom2) = f_Col(2,atom2) - dudy
1216      f_Col(3,atom2) = f_Col(3,atom2) - dudz
1217 <    
1217 >
1218      if (i_is_Dipole .or. i_is_Quadrupole) then
1219 <       t_Row(1,atom1) = t_Row(1,atom1) - ul_i(2)*duduiz + ul_i(3)*duduiy
1220 <       t_Row(2,atom1) = t_Row(2,atom1) - ul_i(3)*duduix + ul_i(1)*duduiz
1221 <       t_Row(3,atom1) = t_Row(3,atom1) - ul_i(1)*duduiy + ul_i(2)*duduix
1219 >       t_Row(1,atom1)=t_Row(1,atom1) - uz_i(2)*duduz_i(3) + uz_i(3)*duduz_i(2)
1220 >       t_Row(2,atom1)=t_Row(2,atom1) - uz_i(3)*duduz_i(1) + uz_i(1)*duduz_i(3)
1221 >       t_Row(3,atom1)=t_Row(3,atom1) - uz_i(1)*duduz_i(2) + uz_i(2)*duduz_i(1)
1222      endif
1223 +    if (i_is_Quadrupole) then
1224 +       t_Row(1,atom1)=t_Row(1,atom1) - ux_i(2)*dudux_i(3) + ux_i(3)*dudux_i(2)
1225 +       t_Row(2,atom1)=t_Row(2,atom1) - ux_i(3)*dudux_i(1) + ux_i(1)*dudux_i(3)
1226 +       t_Row(3,atom1)=t_Row(3,atom1) - ux_i(1)*dudux_i(2) + ux_i(2)*dudux_i(1)
1227  
1228 +       t_Row(1,atom1)=t_Row(1,atom1) - uy_i(2)*duduy_i(3) + uy_i(3)*duduy_i(2)
1229 +       t_Row(2,atom1)=t_Row(2,atom1) - uy_i(3)*duduy_i(1) + uy_i(1)*duduy_i(3)
1230 +       t_Row(3,atom1)=t_Row(3,atom1) - uy_i(1)*duduy_i(2) + uy_i(2)*duduy_i(1)
1231 +    endif
1232 +
1233      if (j_is_Dipole .or. j_is_Quadrupole) then
1234 <       t_Col(1,atom2) = t_Col(1,atom2) - ul_j(2)*dudujz + ul_j(3)*dudujy
1235 <       t_Col(2,atom2) = t_Col(2,atom2) - ul_j(3)*dudujx + ul_j(1)*dudujz
1236 <       t_Col(3,atom2) = t_Col(3,atom2) - ul_j(1)*dudujy + ul_j(2)*dudujx
1234 >       t_Col(1,atom2)=t_Col(1,atom2) - uz_j(2)*duduz_j(3) + uz_j(3)*duduz_j(2)
1235 >       t_Col(2,atom2)=t_Col(2,atom2) - uz_j(3)*duduz_j(1) + uz_j(1)*duduz_j(3)
1236 >       t_Col(3,atom2)=t_Col(3,atom2) - uz_j(1)*duduz_j(2) + uz_j(2)*duduz_j(1)
1237      endif
1238 +    if (j_is_Quadrupole) then
1239 +       t_Col(1,atom2)=t_Col(1,atom2) - ux_j(2)*dudux_j(3) + ux_j(3)*dudux_j(2)
1240 +       t_Col(2,atom2)=t_Col(2,atom2) - ux_j(3)*dudux_j(1) + ux_j(1)*dudux_j(3)
1241 +       t_Col(3,atom2)=t_Col(3,atom2) - ux_j(1)*dudux_j(2) + ux_j(2)*dudux_j(1)
1242  
1243 +       t_Col(1,atom2)=t_Col(1,atom2) - uy_j(2)*duduy_j(3) + uy_j(3)*duduy_j(2)
1244 +       t_Col(2,atom2)=t_Col(2,atom2) - uy_j(3)*duduy_j(1) + uy_j(1)*duduy_j(3)
1245 +       t_Col(3,atom2)=t_Col(3,atom2) - uy_j(1)*duduy_j(2) + uy_j(2)*duduy_j(1)
1246 +    endif
1247 +
1248   #else
1249      f(1,atom1) = f(1,atom1) + dudx
1250      f(2,atom1) = f(2,atom1) + dudy
1251      f(3,atom1) = f(3,atom1) + dudz
1252 <    
1252 >
1253      f(1,atom2) = f(1,atom2) - dudx
1254      f(2,atom2) = f(2,atom2) - dudy
1255      f(3,atom2) = f(3,atom2) - dudz
1256 <    
1256 >
1257      if (i_is_Dipole .or. i_is_Quadrupole) then
1258 <       t(1,atom1) = t(1,atom1) - ul_i(2)*duduiz + ul_i(3)*duduiy
1259 <       t(2,atom1) = t(2,atom1) - ul_i(3)*duduix + ul_i(1)*duduiz
1260 <       t(3,atom1) = t(3,atom1) - ul_i(1)*duduiy + ul_i(2)*duduix
1258 >       t(1,atom1)=t(1,atom1) - uz_i(2)*duduz_i(3) + uz_i(3)*duduz_i(2)
1259 >       t(2,atom1)=t(2,atom1) - uz_i(3)*duduz_i(1) + uz_i(1)*duduz_i(3)
1260 >       t(3,atom1)=t(3,atom1) - uz_i(1)*duduz_i(2) + uz_i(2)*duduz_i(1)
1261      endif
1262 <      
1262 >    if (i_is_Quadrupole) then
1263 >       t(1,atom1)=t(1,atom1) - ux_i(2)*dudux_i(3) + ux_i(3)*dudux_i(2)
1264 >       t(2,atom1)=t(2,atom1) - ux_i(3)*dudux_i(1) + ux_i(1)*dudux_i(3)
1265 >       t(3,atom1)=t(3,atom1) - ux_i(1)*dudux_i(2) + ux_i(2)*dudux_i(1)
1266 >
1267 >       t(1,atom1)=t(1,atom1) - uy_i(2)*duduy_i(3) + uy_i(3)*duduy_i(2)
1268 >       t(2,atom1)=t(2,atom1) - uy_i(3)*duduy_i(1) + uy_i(1)*duduy_i(3)
1269 >       t(3,atom1)=t(3,atom1) - uy_i(1)*duduy_i(2) + uy_i(2)*duduy_i(1)
1270 >    endif
1271 >
1272      if (j_is_Dipole .or. j_is_Quadrupole) then
1273 <       t(1,atom2) = t(1,atom2) - ul_j(2)*dudujz + ul_j(3)*dudujy
1274 <       t(2,atom2) = t(2,atom2) - ul_j(3)*dudujx + ul_j(1)*dudujz
1275 <       t(3,atom2) = t(3,atom2) - ul_j(1)*dudujy + ul_j(2)*dudujx
1273 >       t(1,atom2)=t(1,atom2) - uz_j(2)*duduz_j(3) + uz_j(3)*duduz_j(2)
1274 >       t(2,atom2)=t(2,atom2) - uz_j(3)*duduz_j(1) + uz_j(1)*duduz_j(3)
1275 >       t(3,atom2)=t(3,atom2) - uz_j(1)*duduz_j(2) + uz_j(2)*duduz_j(1)
1276      endif
1277 +    if (j_is_Quadrupole) then
1278 +       t(1,atom2)=t(1,atom2) - ux_j(2)*dudux_j(3) + ux_j(3)*dudux_j(2)
1279 +       t(2,atom2)=t(2,atom2) - ux_j(3)*dudux_j(1) + ux_j(1)*dudux_j(3)
1280 +       t(3,atom2)=t(3,atom2) - ux_j(1)*dudux_j(2) + ux_j(2)*dudux_j(1)
1281 +
1282 +       t(1,atom2)=t(1,atom2) - uy_j(2)*duduy_j(3) + uy_j(3)*duduy_j(2)
1283 +       t(2,atom2)=t(2,atom2) - uy_j(3)*duduy_j(1) + uy_j(1)*duduy_j(3)
1284 +       t(3,atom2)=t(3,atom2) - uy_j(1)*duduy_j(2) + uy_j(2)*duduy_j(1)
1285 +    endif
1286 +
1287   #endif
1288 <    
1288 >
1289   #ifdef IS_MPI
1290      id1 = AtomRowToGlobal(atom1)
1291      id2 = AtomColToGlobal(atom2)
# Line 624 | Line 1295 | contains
1295   #endif
1296  
1297      if (molMembershipList(id1) .ne. molMembershipList(id2)) then
1298 <      
1298 >
1299         fpair(1) = fpair(1) + dudx
1300         fpair(2) = fpair(2) + dudy
1301         fpair(3) = fpair(3) + dudz
# Line 633 | Line 1304 | contains
1304  
1305      return
1306    end subroutine doElectrostaticPair
1307 <  
1307 >
1308 >  subroutine destroyElectrostaticTypes()
1309 >
1310 >    if(allocated(ElectrostaticMap)) deallocate(ElectrostaticMap)
1311 >
1312 >  end subroutine destroyElectrostaticTypes
1313 >
1314 >  subroutine rf_self_self(atom1, eFrame, rfpot, t, do_pot)
1315 >    logical, intent(in) :: do_pot
1316 >    integer, intent(in) :: atom1
1317 >    integer :: atid1
1318 >    real(kind=dp), dimension(9,nLocal) :: eFrame
1319 >    real(kind=dp), dimension(3,nLocal) :: t
1320 >    real(kind=dp) :: mu1
1321 >    real(kind=dp) :: preVal, epot, rfpot
1322 >    real(kind=dp) :: eix, eiy, eiz
1323 >
1324 >    if (.not.preRFCalculated) then
1325 >       call setReactionFieldPrefactor()
1326 >    endif
1327 >
1328 >    ! this is a local only array, so we use the local atom type id's:
1329 >    atid1 = atid(atom1)
1330 >    
1331 >    if (ElectrostaticMap(atid1)%is_Dipole) then
1332 >       mu1 = getDipoleMoment(atid1)
1333 >      
1334 >       preVal = pre22 * preRF2 * mu1*mu1
1335 >       rfpot = rfpot - 0.5d0*preVal
1336 >      
1337 >       ! The self-correction term adds into the reaction field vector
1338 >      
1339 >       eix = preVal * eFrame(3,atom1)
1340 >       eiy = preVal * eFrame(6,atom1)
1341 >       eiz = preVal * eFrame(9,atom1)
1342 >      
1343 >       ! once again, this is self-self, so only the local arrays are needed
1344 >       ! even for MPI jobs:
1345 >      
1346 >       t(1,atom1)=t(1,atom1) - eFrame(6,atom1)*eiz + &
1347 >            eFrame(9,atom1)*eiy
1348 >       t(2,atom1)=t(2,atom1) - eFrame(9,atom1)*eix + &
1349 >            eFrame(3,atom1)*eiz
1350 >       t(3,atom1)=t(3,atom1) - eFrame(3,atom1)*eiy + &
1351 >            eFrame(6,atom1)*eix
1352 >      
1353 >    endif
1354 >    
1355 >    return
1356 >  end subroutine rf_self_self
1357 >
1358 >  subroutine rf_self_excludes(atom1, atom2, sw, eFrame, d, rij, vpair, rfpot, &
1359 >       f, t, do_pot)
1360 >    logical, intent(in) :: do_pot
1361 >    integer, intent(in) :: atom1
1362 >    integer, intent(in) :: atom2
1363 >    logical :: i_is_Charge, j_is_Charge
1364 >    logical :: i_is_Dipole, j_is_Dipole
1365 >    integer :: atid1
1366 >    integer :: atid2
1367 >    real(kind=dp), intent(in) :: rij
1368 >    real(kind=dp), intent(in) :: sw
1369 >    real(kind=dp), intent(in), dimension(3) :: d
1370 >    real(kind=dp), intent(inout) :: vpair
1371 >    real(kind=dp), dimension(9,nLocal) :: eFrame
1372 >    real(kind=dp), dimension(3,nLocal) :: f
1373 >    real(kind=dp), dimension(3,nLocal) :: t
1374 >    real (kind = dp), dimension(3) :: duduz_i
1375 >    real (kind = dp), dimension(3) :: duduz_j
1376 >    real (kind = dp), dimension(3) :: uz_i
1377 >    real (kind = dp), dimension(3) :: uz_j
1378 >    real(kind=dp) :: q_i, q_j, mu_i, mu_j
1379 >    real(kind=dp) :: xhat, yhat, zhat
1380 >    real(kind=dp) :: ct_i, ct_j
1381 >    real(kind=dp) :: ri2, ri3, riji, vterm
1382 >    real(kind=dp) :: pref, preVal, rfVal, rfpot
1383 >    real(kind=dp) :: dudx, dudy, dudz, dudr
1384 >
1385 >    if (.not.preRFCalculated) then
1386 >       call setReactionFieldPrefactor()
1387 >    endif
1388 >
1389 >    dudx = 0.0d0
1390 >    dudy = 0.0d0
1391 >    dudz = 0.0d0
1392 >
1393 >    riji = 1.0d0/rij
1394 >
1395 >    xhat = d(1) * riji
1396 >    yhat = d(2) * riji
1397 >    zhat = d(3) * riji
1398 >
1399 >    ! this is a local only array, so we use the local atom type id's:
1400 >    atid1 = atid(atom1)
1401 >    atid2 = atid(atom2)
1402 >    i_is_Charge = ElectrostaticMap(atid1)%is_Charge
1403 >    j_is_Charge = ElectrostaticMap(atid2)%is_Charge
1404 >    i_is_Dipole = ElectrostaticMap(atid1)%is_Dipole
1405 >    j_is_Dipole = ElectrostaticMap(atid2)%is_Dipole
1406 >
1407 >    if (i_is_Charge.and.j_is_Charge) then
1408 >       q_i = ElectrostaticMap(atid1)%charge
1409 >       q_j = ElectrostaticMap(atid2)%charge
1410 >      
1411 >       preVal = pre11 * q_i * q_j
1412 >       rfVal = preRF*rij*rij
1413 >       vterm = preVal * rfVal
1414 >
1415 >       rfpot = rfpot + sw*vterm
1416 >      
1417 >       dudr  = sw*preVal * 2.0d0*rfVal*riji
1418 >              
1419 >       dudx = dudx + dudr * xhat
1420 >       dudy = dudy + dudr * yhat
1421 >       dudz = dudz + dudr * zhat
1422 >
1423 >    elseif (i_is_Charge.and.j_is_Dipole) then
1424 >       q_i = ElectrostaticMap(atid1)%charge
1425 >       mu_j = ElectrostaticMap(atid2)%dipole_moment
1426 >       uz_j(1) = eFrame(3,atom2)
1427 >       uz_j(2) = eFrame(6,atom2)
1428 >       uz_j(3) = eFrame(9,atom2)
1429 >       ct_j = uz_j(1)*xhat + uz_j(2)*yhat + uz_j(3)*zhat
1430 >
1431 >       ri2 = riji * riji
1432 >       ri3 = ri2 * riji
1433 >      
1434 >       pref = pre12 * q_i * mu_j
1435 >       vterm = - pref * ct_j * ( ri2 - preRF2*rij )
1436 >       rfpot = rfpot + sw*vterm
1437 >
1438 >       dudx = dudx - sw*pref*( ri3*(uz_j(1)-3.0d0*ct_j*xhat) - preRF2*uz_j(1) )
1439 >       dudy = dudy - sw*pref*( ri3*(uz_j(2)-3.0d0*ct_j*yhat) - preRF2*uz_j(2) )
1440 >       dudz = dudz - sw*pref*( ri3*(uz_j(3)-3.0d0*ct_j*zhat) - preRF2*uz_j(3) )
1441 >
1442 >       duduz_j(1) = duduz_j(1) - sw * pref * xhat * ( ri2 - preRF2*rij )
1443 >       duduz_j(2) = duduz_j(2) - sw * pref * yhat * ( ri2 - preRF2*rij )
1444 >       duduz_j(3) = duduz_j(3) - sw * pref * zhat * ( ri2 - preRF2*rij )
1445 >              
1446 >    elseif (i_is_Dipole.and.j_is_Charge) then
1447 >       mu_i = ElectrostaticMap(atid1)%dipole_moment
1448 >       q_j = ElectrostaticMap(atid2)%charge
1449 >       uz_i(1) = eFrame(3,atom1)
1450 >       uz_i(2) = eFrame(6,atom1)
1451 >       uz_i(3) = eFrame(9,atom1)
1452 >       ct_i = uz_i(1)*xhat + uz_i(2)*yhat + uz_i(3)*zhat
1453 >
1454 >       ri2 = riji * riji
1455 >       ri3 = ri2 * riji
1456 >      
1457 >       pref = pre12 * q_j * mu_i
1458 >       vterm = pref * ct_i * ( ri2 - preRF2*rij )
1459 >       rfpot = rfpot + sw*vterm
1460 >      
1461 >       dudx = dudx + sw*pref*( ri3*(uz_i(1)-3.0d0*ct_i*xhat) - preRF2*uz_i(1) )
1462 >       dudy = dudy + sw*pref*( ri3*(uz_i(2)-3.0d0*ct_i*yhat) - preRF2*uz_i(2) )
1463 >       dudz = dudz + sw*pref*( ri3*(uz_i(3)-3.0d0*ct_i*zhat) - preRF2*uz_i(3) )
1464 >      
1465 >       duduz_i(1) = duduz_i(1) + sw * pref * xhat * ( ri2 - preRF2*rij )
1466 >       duduz_i(2) = duduz_i(2) + sw * pref * yhat * ( ri2 - preRF2*rij )
1467 >       duduz_i(3) = duduz_i(3) + sw * pref * zhat * ( ri2 - preRF2*rij )
1468 >      
1469 >    endif
1470 >    
1471 >    ! accumulate the forces and torques resulting from the RF self term
1472 >    f(1,atom1) = f(1,atom1) + dudx
1473 >    f(2,atom1) = f(2,atom1) + dudy
1474 >    f(3,atom1) = f(3,atom1) + dudz
1475 >    
1476 >    f(1,atom2) = f(1,atom2) - dudx
1477 >    f(2,atom2) = f(2,atom2) - dudy
1478 >    f(3,atom2) = f(3,atom2) - dudz
1479 >    
1480 >    if (i_is_Dipole) then
1481 >       t(1,atom1)=t(1,atom1) - uz_i(2)*duduz_i(3) + uz_i(3)*duduz_i(2)
1482 >       t(2,atom1)=t(2,atom1) - uz_i(3)*duduz_i(1) + uz_i(1)*duduz_i(3)
1483 >       t(3,atom1)=t(3,atom1) - uz_i(1)*duduz_i(2) + uz_i(2)*duduz_i(1)
1484 >    elseif (j_is_Dipole) then
1485 >       t(1,atom2)=t(1,atom2) - uz_j(2)*duduz_j(3) + uz_j(3)*duduz_j(2)
1486 >       t(2,atom2)=t(2,atom2) - uz_j(3)*duduz_j(1) + uz_j(1)*duduz_j(3)
1487 >       t(3,atom2)=t(3,atom2) - uz_j(1)*duduz_j(2) + uz_j(2)*duduz_j(1)
1488 >    endif
1489 >
1490 >    return
1491 >  end subroutine rf_self_excludes
1492 >
1493   end module electrostatic_module

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines