ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/UseTheForce/DarkSide/electrostatic.F90
(Generate patch)

Comparing trunk/OOPSE-4/src/UseTheForce/DarkSide/electrostatic.F90 (file contents):
Revision 2118 by gezelter, Fri Mar 11 15:53:18 2005 UTC vs.
Revision 2416 by chrisfen, Thu Nov 3 23:22:51 2005 UTC

# Line 40 | Line 40 | module electrostatic_module
40   !!
41  
42   module electrostatic_module
43 <  
43 >
44    use force_globals
45    use definitions
46    use atype_module
# Line 54 | Line 54 | module electrostatic_module
54  
55    PRIVATE
56  
57 +
58 + #define __FORTRAN90
59 + #include "UseTheForce/DarkSide/fInteractionMap.h"
60 + #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
61 + #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
62 +
63 +
64    !! these prefactors convert the multipole interactions into kcal / mol
65    !! all were computed assuming distances are measured in angstroms
66    !! Charge-Charge, assuming charges are measured in electrons
# Line 68 | Line 75 | module electrostatic_module
75    !! This unit is also known affectionately as an esu centi-barn.
76    real(kind=dp), parameter :: pre14 = 69.13373_dp
77  
78 +  !! variables to handle different summation methods for long-range
79 +  !! electrostatics:
80 +  integer, save :: summationMethod = NONE
81 +  integer, save :: screeningMethod = UNDAMPED
82 +  logical, save :: summationMethodChecked = .false.
83 +  real(kind=DP), save :: defaultCutoff = 0.0_DP
84 +  real(kind=DP), save :: defaultCutoff2 = 0.0_DP
85 +  logical, save :: haveDefaultCutoff = .false.
86 +  real(kind=DP), save :: dampingAlpha = 0.0_DP
87 +  real(kind=DP), save :: alpha2 = 0.0_DP
88 +  logical, save :: haveDampingAlpha = .false.
89 +  real(kind=DP), save :: dielectric = 1.0_DP
90 +  logical, save :: haveDielectric = .false.
91 +  real(kind=DP), save :: constEXP = 0.0_DP
92 +  real(kind=dp), save :: rcuti = 0.0_DP
93 +  real(kind=dp), save :: rcuti2 = 0.0_DP
94 +  real(kind=dp), save :: rcuti3 = 0.0_DP
95 +  real(kind=dp), save :: rcuti4 = 0.0_DP
96 +  real(kind=dp), save :: alphaPi = 0.0_DP
97 +  real(kind=dp), save :: invRootPi = 0.0_DP
98 +  real(kind=dp), save :: rrf = 1.0_DP
99 +  real(kind=dp), save :: rt = 1.0_DP
100 +  real(kind=dp), save :: rrfsq = 1.0_DP
101 +  real(kind=dp), save :: preRF = 0.0_DP
102 +  real(kind=dp), save :: preRF2 = 0.0_DP
103 +  real(kind=dp), save :: f0 = 1.0_DP
104 +  real(kind=dp), save :: f1 = 1.0_DP
105 +  real(kind=dp), save :: f2 = 0.0_DP
106 +  real(kind=dp), save :: f0c = 1.0_DP
107 +  real(kind=dp), save :: f1c = 1.0_DP
108 +  real(kind=dp), save :: f2c = 0.0_DP
109 +
110 + #ifdef __IFC
111 + ! error function for ifc version > 7.
112 +  double precision, external :: derfc
113 + #endif
114 +  
115 +  public :: setElectrostaticSummationMethod
116 +  public :: setScreeningMethod
117 +  public :: setElectrostaticCutoffRadius
118 +  public :: setDampingAlpha
119 +  public :: setReactionFieldDielectric
120    public :: newElectrostaticType
121    public :: setCharge
122    public :: setDipoleMoment
# Line 76 | Line 125 | module electrostatic_module
125    public :: doElectrostaticPair
126    public :: getCharge
127    public :: getDipoleMoment
128 +  public :: destroyElectrostaticTypes
129 +  public :: self_self
130 +  public :: rf_self_excludes
131  
132    type :: Electrostatic
133       integer :: c_ident
# Line 83 | Line 135 | module electrostatic_module
135       logical :: is_Dipole = .false.
136       logical :: is_SplitDipole = .false.
137       logical :: is_Quadrupole = .false.
138 +     logical :: is_Tap = .false.
139       real(kind=DP) :: charge = 0.0_DP
140       real(kind=DP) :: dipole_moment = 0.0_DP
141       real(kind=DP) :: split_dipole_distance = 0.0_DP
# Line 92 | Line 145 | contains
145    type(Electrostatic), dimension(:), allocatable :: ElectrostaticMap
146  
147   contains
148 +
149 +  subroutine setElectrostaticSummationMethod(the_ESM)
150 +    integer, intent(in) :: the_ESM    
151 +
152 +    if ((the_ESM .le. 0) .or. (the_ESM .gt. REACTION_FIELD)) then
153 +       call handleError("setElectrostaticSummationMethod", "Unsupported Summation Method")
154 +    endif
155 +
156 +    summationMethod = the_ESM
157 +
158 +  end subroutine setElectrostaticSummationMethod
159 +
160 +  subroutine setScreeningMethod(the_SM)
161 +    integer, intent(in) :: the_SM    
162 +    screeningMethod = the_SM
163 +  end subroutine setScreeningMethod
164 +
165 +  subroutine setElectrostaticCutoffRadius(thisRcut, thisRsw)
166 +    real(kind=dp), intent(in) :: thisRcut
167 +    real(kind=dp), intent(in) :: thisRsw
168 +    defaultCutoff = thisRcut
169 +    rrf = defaultCutoff
170 +    rt = thisRsw
171 +    haveDefaultCutoff = .true.
172 +  end subroutine setElectrostaticCutoffRadius
173 +
174 +  subroutine setDampingAlpha(thisAlpha)
175 +    real(kind=dp), intent(in) :: thisAlpha
176 +    dampingAlpha = thisAlpha
177 +    alpha2 = dampingAlpha*dampingAlpha
178 +    haveDampingAlpha = .true.
179 +  end subroutine setDampingAlpha
180 +  
181 +  subroutine setReactionFieldDielectric(thisDielectric)
182 +    real(kind=dp), intent(in) :: thisDielectric
183 +    dielectric = thisDielectric
184 +    haveDielectric = .true.
185 +  end subroutine setReactionFieldDielectric
186  
187    subroutine newElectrostaticType(c_ident, is_Charge, is_Dipole, &
188 <       is_SplitDipole, is_Quadrupole, status)
189 <    
188 >       is_SplitDipole, is_Quadrupole, is_Tap, status)
189 >
190      integer, intent(in) :: c_ident
191      logical, intent(in) :: is_Charge
192      logical, intent(in) :: is_Dipole
193      logical, intent(in) :: is_SplitDipole
194      logical, intent(in) :: is_Quadrupole
195 +    logical, intent(in) :: is_Tap
196      integer, intent(out) :: status
197      integer :: nAtypes, myATID, i, j
198  
199      status = 0
200      myATID = getFirstMatchingElement(atypes, "c_ident", c_ident)
201 <    
201 >
202      !! Be simple-minded and assume that we need an ElectrostaticMap that
203      !! is the same size as the total number of atom types
204  
205      if (.not.allocated(ElectrostaticMap)) then
206 <      
206 >
207         nAtypes = getSize(atypes)
208 <    
208 >
209         if (nAtypes == 0) then
210            status = -1
211            return
212         end if
213 <      
213 >
214         if (.not. allocated(ElectrostaticMap)) then
215            allocate(ElectrostaticMap(nAtypes))
216         endif
217 <      
217 >
218      end if
219  
220      if (myATID .gt. size(ElectrostaticMap)) then
221         status = -1
222         return
223      endif
224 <    
224 >
225      ! set the values for ElectrostaticMap for this atom type:
226  
227      ElectrostaticMap(myATID)%c_ident = c_ident
# Line 137 | Line 229 | contains
229      ElectrostaticMap(myATID)%is_Dipole = is_Dipole
230      ElectrostaticMap(myATID)%is_SplitDipole = is_SplitDipole
231      ElectrostaticMap(myATID)%is_Quadrupole = is_Quadrupole
232 <    
232 >    ElectrostaticMap(myATID)%is_Tap = is_Tap
233 >
234    end subroutine newElectrostaticType
235  
236    subroutine setCharge(c_ident, charge, status)
# Line 165 | Line 258 | contains
258         call handleError("electrostatic", "Attempt to setCharge of an atom type that is not a charge!")
259         status = -1
260         return
261 <    endif      
261 >    endif
262  
263      ElectrostaticMap(myATID)%charge = charge
264    end subroutine setCharge
# Line 256 | Line 349 | contains
349         status = -1
350         return
351      endif
352 <    
352 >
353      do i = 1, 3
354 <          ElectrostaticMap(myATID)%quadrupole_moments(i) = &
355 <               quadrupole_moments(i)
356 <       enddo
354 >       ElectrostaticMap(myATID)%quadrupole_moments(i) = &
355 >            quadrupole_moments(i)
356 >    enddo
357  
358    end subroutine setQuadrupoleMoments
359  
360 <  
360 >
361    function getCharge(atid) result (c)
362      integer, intent(in) :: atid
363      integer :: localError
364      real(kind=dp) :: c
365 <    
365 >
366      if (.not.allocated(ElectrostaticMap)) then
367         call handleError("electrostatic", "no ElectrostaticMap was present before first call of getCharge!")
368         return
369      end if
370 <    
370 >
371      if (.not.ElectrostaticMap(atid)%is_Charge) then
372         call handleError("electrostatic", "getCharge was called for an atom type that isn't a charge!")
373         return
374      endif
375 <    
375 >
376      c = ElectrostaticMap(atid)%charge
377    end function getCharge
378  
# Line 287 | Line 380 | contains
380      integer, intent(in) :: atid
381      integer :: localError
382      real(kind=dp) :: dm
383 <    
383 >
384      if (.not.allocated(ElectrostaticMap)) then
385         call handleError("electrostatic", "no ElectrostaticMap was present before first call of getDipoleMoment!")
386         return
387      end if
388 <    
388 >
389      if (.not.ElectrostaticMap(atid)%is_Dipole) then
390         call handleError("electrostatic", "getDipoleMoment was called for an atom type that isn't a dipole!")
391         return
392      endif
393 <    
393 >
394      dm = ElectrostaticMap(atid)%dipole_moment
395    end function getDipoleMoment
396 +
397 +  subroutine checkSummationMethod()
398 +
399 +    if (.not.haveDefaultCutoff) then
400 +       call handleError("checkSummationMethod", "no Default Cutoff set!")
401 +    endif
402 +
403 +    rcuti = 1.0d0 / defaultCutoff
404 +    rcuti2 = rcuti*rcuti
405 +    rcuti3 = rcuti2*rcuti
406 +    rcuti4 = rcuti2*rcuti2
407 +
408 +    if (screeningMethod .eq. DAMPED) then
409 +       if (.not.haveDampingAlpha) then
410 +          call handleError("checkSummationMethod", "no Damping Alpha set!")
411 +       endif
412 +      
413 +       if (.not.haveDefaultCutoff) then
414 +          call handleError("checkSummationMethod", "no Default Cutoff set!")
415 +       endif
416 +
417 +       constEXP = exp(-alpha2*defaultCutoff*defaultCutoff)
418 +       invRootPi = 0.56418958354775628695d0
419 +       alphaPi = 2.0d0*dampingAlpha*invRootPi
420 +       f0c = derfc(dampingAlpha*defaultCutoff)
421 +       f1c = alphaPi*defaultCutoff*constEXP + f0c
422 +       f2c = alphaPi*2.0d0*alpha2*constEXP*rcuti2
423 +
424 +    endif
425 +
426 +    if (summationMethod .eq. REACTION_FIELD) then
427 +       if (haveDielectric) then
428 +          defaultCutoff2 = defaultCutoff*defaultCutoff
429 +          preRF = (dielectric-1.0d0) / &
430 +               ((2.0d0*dielectric+1.0d0)*defaultCutoff2*defaultCutoff)
431 +          preRF2 = 2.0d0*preRF
432 +       else
433 +          call handleError("checkSummationMethod", "Dielectric not set")
434 +       endif
435 +      
436 +    endif
437  
438 +    summationMethodChecked = .true.
439 +  end subroutine checkSummationMethod
440 +
441 +
442    subroutine doElectrostaticPair(atom1, atom2, d, rij, r2, sw, &
443         vpair, fpair, pot, eFrame, f, t, do_pot)
444 <    
444 >
445      logical, intent(in) :: do_pot
446 <    
446 >
447      integer, intent(in) :: atom1, atom2
448      integer :: localError
449  
450      real(kind=dp), intent(in) :: rij, r2, sw
451      real(kind=dp), intent(in), dimension(3) :: d
452      real(kind=dp), intent(inout) :: vpair
453 <    real(kind=dp), intent(inout), dimension(3) :: fpair
453 >    real(kind=dp), intent(inout), dimension(3) :: fpair    
454  
455      real( kind = dp ) :: pot
456      real( kind = dp ), dimension(9,nLocal) :: eFrame
457      real( kind = dp ), dimension(3,nLocal) :: f
458 +    real( kind = dp ), dimension(3,nLocal) :: felec
459      real( kind = dp ), dimension(3,nLocal) :: t
321    
322    real (kind = dp), dimension(3) :: ul_i
323    real (kind = dp), dimension(3) :: ul_j
460  
461 +    real (kind = dp), dimension(3) :: ux_i, uy_i, uz_i
462 +    real (kind = dp), dimension(3) :: ux_j, uy_j, uz_j
463 +    real (kind = dp), dimension(3) :: dudux_i, duduy_i, duduz_i
464 +    real (kind = dp), dimension(3) :: dudux_j, duduy_j, duduz_j
465 +
466      logical :: i_is_Charge, i_is_Dipole, i_is_SplitDipole, i_is_Quadrupole
467      logical :: j_is_Charge, j_is_Dipole, j_is_SplitDipole, j_is_Quadrupole
468 +    logical :: i_is_Tap, j_is_Tap
469      integer :: me1, me2, id1, id2
470      real (kind=dp) :: q_i, q_j, mu_i, mu_j, d_i, d_j
471 +    real (kind=dp) :: qxx_i, qyy_i, qzz_i
472 +    real (kind=dp) :: qxx_j, qyy_j, qzz_j
473 +    real (kind=dp) :: cx_i, cy_i, cz_i
474 +    real (kind=dp) :: cx_j, cy_j, cz_j
475 +    real (kind=dp) :: cx2, cy2, cz2
476      real (kind=dp) :: ct_i, ct_j, ct_ij, a1
477      real (kind=dp) :: riji, ri, ri2, ri3, ri4
478 <    real (kind=dp) :: pref, vterm, epot, dudr    
478 >    real (kind=dp) :: pref, vterm, epot, dudr, vterm1, vterm2
479      real (kind=dp) :: xhat, yhat, zhat
480      real (kind=dp) :: dudx, dudy, dudz
334    real (kind=dp) :: drdxj, drdyj, drdzj
335    real (kind=dp) :: duduix, duduiy, duduiz, dudujx, dudujy, dudujz
481      real (kind=dp) :: scale, sc2, bigR
482 +    real (kind=dp) :: varEXP
483 +    real (kind=dp) :: limScale
484 +    real (kind=dp) :: preVal, rfVal
485  
486      if (.not.allocated(ElectrostaticMap)) then
487         call handleError("electrostatic", "no ElectrostaticMap was present before first call of do_electrostatic_pair!")
488         return
489      end if
490  
491 +    if (.not.summationMethodChecked) then
492 +       call checkSummationMethod()
493 +    endif
494 +
495   #ifdef IS_MPI
496      me1 = atid_Row(atom1)
497      me2 = atid_Col(atom2)
# Line 348 | Line 500 | contains
500      me2 = atid(atom2)
501   #endif
502  
503 + !!$    if (rij .ge. defaultCutoff) then
504 + !!$       write(*,*) 'warning: rij = ', rij, ' rcut = ', defaultCutoff, ' sw = ', sw
505 + !!$    endif
506 +
507      !! some variables we'll need independent of electrostatic type:
508  
509      riji = 1.0d0 / rij
510 <
510 >  
511      xhat = d(1) * riji
512      yhat = d(2) * riji
513      zhat = d(3) * riji
514  
359    drdxj = xhat
360    drdyj = yhat
361    drdzj = zhat
362
515      !! logicals
364
516      i_is_Charge = ElectrostaticMap(me1)%is_Charge
517      i_is_Dipole = ElectrostaticMap(me1)%is_Dipole
518      i_is_SplitDipole = ElectrostaticMap(me1)%is_SplitDipole
519      i_is_Quadrupole = ElectrostaticMap(me1)%is_Quadrupole
520 +    i_is_Tap = ElectrostaticMap(me1)%is_Tap
521  
522      j_is_Charge = ElectrostaticMap(me2)%is_Charge
523      j_is_Dipole = ElectrostaticMap(me2)%is_Dipole
524      j_is_SplitDipole = ElectrostaticMap(me2)%is_SplitDipole
525      j_is_Quadrupole = ElectrostaticMap(me2)%is_Quadrupole
526 +    j_is_Tap = ElectrostaticMap(me2)%is_Tap
527  
528      if (i_is_Charge) then
529         q_i = ElectrostaticMap(me1)%charge      
530      endif
531 <    
531 >
532      if (i_is_Dipole) then
533         mu_i = ElectrostaticMap(me1)%dipole_moment
534   #ifdef IS_MPI
535 <       ul_i(1) = eFrame_Row(3,atom1)
536 <       ul_i(2) = eFrame_Row(6,atom1)
537 <       ul_i(3) = eFrame_Row(9,atom1)
535 >       uz_i(1) = eFrame_Row(3,atom1)
536 >       uz_i(2) = eFrame_Row(6,atom1)
537 >       uz_i(3) = eFrame_Row(9,atom1)
538   #else
539 <       ul_i(1) = eFrame(3,atom1)
540 <       ul_i(2) = eFrame(6,atom1)
541 <       ul_i(3) = eFrame(9,atom1)
539 >       uz_i(1) = eFrame(3,atom1)
540 >       uz_i(2) = eFrame(6,atom1)
541 >       uz_i(3) = eFrame(9,atom1)
542   #endif
543 <       ct_i = ul_i(1)*drdxj + ul_i(2)*drdyj + ul_i(3)*drdzj
543 >       ct_i = uz_i(1)*xhat + uz_i(2)*yhat + uz_i(3)*zhat
544  
545         if (i_is_SplitDipole) then
546            d_i = ElectrostaticMap(me1)%split_dipole_distance
547         endif
548 <      
548 >
549      endif
550  
551 +    if (i_is_Quadrupole) then
552 +       qxx_i = ElectrostaticMap(me1)%quadrupole_moments(1)
553 +       qyy_i = ElectrostaticMap(me1)%quadrupole_moments(2)
554 +       qzz_i = ElectrostaticMap(me1)%quadrupole_moments(3)
555 + #ifdef IS_MPI
556 +       ux_i(1) = eFrame_Row(1,atom1)
557 +       ux_i(2) = eFrame_Row(4,atom1)
558 +       ux_i(3) = eFrame_Row(7,atom1)
559 +       uy_i(1) = eFrame_Row(2,atom1)
560 +       uy_i(2) = eFrame_Row(5,atom1)
561 +       uy_i(3) = eFrame_Row(8,atom1)
562 +       uz_i(1) = eFrame_Row(3,atom1)
563 +       uz_i(2) = eFrame_Row(6,atom1)
564 +       uz_i(3) = eFrame_Row(9,atom1)
565 + #else
566 +       ux_i(1) = eFrame(1,atom1)
567 +       ux_i(2) = eFrame(4,atom1)
568 +       ux_i(3) = eFrame(7,atom1)
569 +       uy_i(1) = eFrame(2,atom1)
570 +       uy_i(2) = eFrame(5,atom1)
571 +       uy_i(3) = eFrame(8,atom1)
572 +       uz_i(1) = eFrame(3,atom1)
573 +       uz_i(2) = eFrame(6,atom1)
574 +       uz_i(3) = eFrame(9,atom1)
575 + #endif
576 +       cx_i = ux_i(1)*xhat + ux_i(2)*yhat + ux_i(3)*zhat
577 +       cy_i = uy_i(1)*xhat + uy_i(2)*yhat + uy_i(3)*zhat
578 +       cz_i = uz_i(1)*xhat + uz_i(2)*yhat + uz_i(3)*zhat
579 +    endif
580 +
581      if (j_is_Charge) then
582         q_j = ElectrostaticMap(me2)%charge      
583      endif
584 <    
584 >
585      if (j_is_Dipole) then
586         mu_j = ElectrostaticMap(me2)%dipole_moment
587   #ifdef IS_MPI
588 <       ul_j(1) = eFrame_Col(3,atom2)
589 <       ul_j(2) = eFrame_Col(6,atom2)
590 <       ul_j(3) = eFrame_Col(9,atom2)
588 >       uz_j(1) = eFrame_Col(3,atom2)
589 >       uz_j(2) = eFrame_Col(6,atom2)
590 >       uz_j(3) = eFrame_Col(9,atom2)
591   #else
592 <       ul_j(1) = eFrame(3,atom2)
593 <       ul_j(2) = eFrame(6,atom2)
594 <       ul_j(3) = eFrame(9,atom2)
592 >       uz_j(1) = eFrame(3,atom2)
593 >       uz_j(2) = eFrame(6,atom2)
594 >       uz_j(3) = eFrame(9,atom2)
595   #endif
596 <       ct_j = ul_j(1)*drdxj + ul_j(2)*drdyj + ul_j(3)*drdzj
596 >       ct_j = uz_j(1)*xhat + uz_j(2)*yhat + uz_j(3)*zhat
597  
598         if (j_is_SplitDipole) then
599            d_j = ElectrostaticMap(me2)%split_dipole_distance
600         endif
601      endif
602  
603 +    if (j_is_Quadrupole) then
604 +       qxx_j = ElectrostaticMap(me2)%quadrupole_moments(1)
605 +       qyy_j = ElectrostaticMap(me2)%quadrupole_moments(2)
606 +       qzz_j = ElectrostaticMap(me2)%quadrupole_moments(3)
607 + #ifdef IS_MPI
608 +       ux_j(1) = eFrame_Col(1,atom2)
609 +       ux_j(2) = eFrame_Col(4,atom2)
610 +       ux_j(3) = eFrame_Col(7,atom2)
611 +       uy_j(1) = eFrame_Col(2,atom2)
612 +       uy_j(2) = eFrame_Col(5,atom2)
613 +       uy_j(3) = eFrame_Col(8,atom2)
614 +       uz_j(1) = eFrame_Col(3,atom2)
615 +       uz_j(2) = eFrame_Col(6,atom2)
616 +       uz_j(3) = eFrame_Col(9,atom2)
617 + #else
618 +       ux_j(1) = eFrame(1,atom2)
619 +       ux_j(2) = eFrame(4,atom2)
620 +       ux_j(3) = eFrame(7,atom2)
621 +       uy_j(1) = eFrame(2,atom2)
622 +       uy_j(2) = eFrame(5,atom2)
623 +       uy_j(3) = eFrame(8,atom2)
624 +       uz_j(1) = eFrame(3,atom2)
625 +       uz_j(2) = eFrame(6,atom2)
626 +       uz_j(3) = eFrame(9,atom2)
627 + #endif
628 +       cx_j = ux_j(1)*xhat + ux_j(2)*yhat + ux_j(3)*zhat
629 +       cy_j = uy_j(1)*xhat + uy_j(2)*yhat + uy_j(3)*zhat
630 +       cz_j = uz_j(1)*xhat + uz_j(2)*yhat + uz_j(3)*zhat
631 +    endif
632 +  
633      epot = 0.0_dp
634      dudx = 0.0_dp
635      dudy = 0.0_dp
636      dudz = 0.0_dp
637  
638 <    duduix = 0.0_dp
639 <    duduiy = 0.0_dp
640 <    duduiz = 0.0_dp
638 >    dudux_i = 0.0_dp
639 >    duduy_i = 0.0_dp
640 >    duduz_i = 0.0_dp
641  
642 <    dudujx = 0.0_dp
643 <    dudujy = 0.0_dp
644 <    dudujz = 0.0_dp
642 >    dudux_j = 0.0_dp
643 >    duduy_j = 0.0_dp
644 >    duduz_j = 0.0_dp
645  
646      if (i_is_Charge) then
647  
648         if (j_is_Charge) then
436          
437          vterm = pre11 * q_i * q_j * riji
438          vpair = vpair + vterm
439          epot = epot + sw*vterm
649  
650 <          dudr  = - sw * vterm * riji
650 >          if (summationMethod .eq. SHIFTED_POTENTIAL) then
651 >             if (screeningMethod .eq. DAMPED) then
652 >                f0 = derfc(dampingAlpha*rij)
653 >                varEXP = exp(-alpha2*rij*rij)
654 >                f1 = alphaPi*rij*varEXP + f0c
655 >             endif
656  
657 <          dudx = dudx + dudr * drdxj
658 <          dudy = dudy + dudr * drdyj
659 <          dudz = dudz + dudr * drdzj
660 <      
661 <       endif
657 >             vterm = pre11 * q_i * q_j * (riji*f0 - rcuti*f0c)
658 >             vpair = vpair + vterm
659 >             epot = epot + sw*vterm
660 >            
661 >             dudr  = -sw*pre11*q_i*q_j * riji * riji * f1
662 >            
663 >             dudx = dudx + dudr * xhat
664 >             dudy = dudy + dudr * yhat
665 >             dudz = dudz + dudr * zhat
666  
667 <       if (j_is_Dipole) then
667 >          elseif (summationMethod .eq. SHIFTED_FORCE) then
668 >             if (screeningMethod .eq. DAMPED) then
669 >                f0 = derfc(dampingAlpha*rij)
670 >                varEXP = exp(-alpha2*rij*rij)
671 >                f1 = alphaPi*rij*varEXP + f0
672 >             endif
673 >            
674 >             vterm = pre11 * q_i * q_j * ( riji*f0 - rcuti*f0c + &
675 >                  f1c*rcuti2*(rij-defaultCutoff) )
676 >            
677 >             vpair = vpair + vterm
678 >             epot = epot + sw*vterm
679 >            
680 >             dudr  = -sw*pre11*q_i*q_j * (riji*riji*f1 - rcuti2*f1c)
681 >                          
682 >             dudx = dudx + dudr * xhat
683 >             dudy = dudy + dudr * yhat
684 >             dudz = dudz + dudr * zhat
685  
686 <          if (j_is_SplitDipole) then
687 <             BigR = sqrt(r2 + 0.25_dp * d_j * d_j)
688 <             ri = 1.0_dp / BigR
689 <             scale = rij * ri
455 <          else
456 <             ri = riji
457 <             scale = 1.0_dp
458 <          endif
459 <
460 <          ri2 = ri * ri
461 <          ri3 = ri2 * ri
462 <          sc2 = scale * scale
686 >          elseif (summationMethod .eq. REACTION_FIELD) then
687 >             preVal = pre11 * q_i * q_j
688 >             rfVal = preRF*rij*rij
689 >             vterm = preVal * ( riji + rfVal )
690              
691 <          pref = pre12 * q_i * mu_j
692 <          vterm = pref * ct_j * ri2 * scale
693 <          vpair = vpair + vterm
694 <          epot = epot + sw * vterm
691 >             vpair = vpair + vterm
692 >             epot = epot + sw*vterm
693 >            
694 >             dudr  = sw * preVal * ( 2.0d0*rfVal - riji )*riji
695 >            
696 >             dudx = dudx + dudr * xhat
697 >             dudy = dudy + dudr * yhat
698 >             dudz = dudz + dudr * zhat
699  
469          !! this has a + sign in the () because the rij vector is
470          !! r_j - r_i and the charge-dipole potential takes the origin
471          !! as the point dipole, which is atom j in this case.
472
473          dudx = dudx + pref * sw * ri3 * ( ul_j(1) + 3.0d0*ct_j*xhat*sc2)
474          dudy = dudy + pref * sw * ri3 * ( ul_j(2) + 3.0d0*ct_j*yhat*sc2)
475          dudz = dudz + pref * sw * ri3 * ( ul_j(3) + 3.0d0*ct_j*zhat*sc2)
476
477          dudujx = dudujx - pref * sw * ri2 * xhat * scale
478          dudujy = dudujy - pref * sw * ri2 * yhat * scale
479          dudujz = dudujz - pref * sw * ri2 * zhat * scale
480          
481       endif
482
483    endif
484  
485    if (i_is_Dipole) then
486      
487       if (j_is_Charge) then
488
489          if (i_is_SplitDipole) then
490             BigR = sqrt(r2 + 0.25_dp * d_i * d_i)
491             ri = 1.0_dp / BigR
492             scale = rij * ri
700            else
701 <             ri = riji
702 <             scale = 1.0_dp
703 <          endif
497 <
498 <          ri2 = ri * ri
499 <          ri3 = ri2 * ri
500 <          sc2 = scale * scale
701 >             vterm = pre11 * q_i * q_j * riji
702 >             vpair = vpair + vterm
703 >             epot = epot + sw*vterm
704              
705 <          pref = pre12 * q_j * mu_i
706 <          vterm = pref * ct_i * ri2 * scale
707 <          vpair = vpair + vterm
708 <          epot = epot + sw * vterm
705 >             dudr  = - sw * vterm * riji
706 >            
707 >             dudx = dudx + dudr * xhat
708 >             dudy = dudy + dudr * yhat
709 >             dudz = dudz + dudr * zhat
710  
711 <          dudx = dudx + pref * sw * ri3 * ( ul_i(1) - 3.0d0 * ct_i * xhat*sc2)
508 <          dudy = dudy + pref * sw * ri3 * ( ul_i(2) - 3.0d0 * ct_i * yhat*sc2)
509 <          dudz = dudz + pref * sw * ri3 * ( ul_i(3) - 3.0d0 * ct_i * zhat*sc2)
711 >          endif
712  
511          duduix = duduix + pref * sw * ri2 * xhat * scale
512          duduiy = duduiy + pref * sw * ri2 * yhat * scale
513          duduiz = duduiz + pref * sw * ri2 * zhat * scale
713         endif
714  
715         if (j_is_Dipole) then
716  
717 <          if (i_is_SplitDipole) then
718 <             if (j_is_SplitDipole) then
719 <                BigR = sqrt(r2 + 0.25_dp * d_i * d_i + 0.25_dp * d_j * d_j)
720 <             else
721 <                BigR = sqrt(r2 + 0.25_dp * d_i * d_i)
722 <             endif
723 <             ri = 1.0_dp / BigR
724 <             scale = rij * ri                
717 >          pref = pre12 * q_i * mu_j
718 >
719 > !!$          if (summationMethod .eq. UNDAMPED_WOLF) then
720 > !!$             ri2 = riji * riji
721 > !!$             ri3 = ri2 * riji
722 > !!$
723 > !!$             pref = pre12 * q_i * mu_j
724 > !!$             vterm = - pref * ct_j * (ri2 - rcuti2)
725 > !!$             vpair = vpair + vterm
726 > !!$             epot = epot + sw*vterm
727 > !!$            
728 > !!$             !! this has a + sign in the () because the rij vector is
729 > !!$             !! r_j - r_i and the charge-dipole potential takes the origin
730 > !!$             !! as the point dipole, which is atom j in this case.
731 > !!$            
732 > !!$             dudx = dudx - sw*pref * ( ri3*( uz_j(1) - 3.0d0*ct_j*xhat) &
733 > !!$                  - rcuti3*( uz_j(1) - 3.0d0*ct_j*d(1)*rcuti ) )
734 > !!$             dudy = dudy - sw*pref * ( ri3*( uz_j(2) - 3.0d0*ct_j*yhat) &
735 > !!$                  - rcuti3*( uz_j(2) - 3.0d0*ct_j*d(2)*rcuti ) )
736 > !!$             dudz = dudz - sw*pref * ( ri3*( uz_j(3) - 3.0d0*ct_j*zhat) &
737 > !!$                  - rcuti3*( uz_j(3) - 3.0d0*ct_j*d(3)*rcuti ) )
738 > !!$            
739 > !!$             duduz_j(1) = duduz_j(1) - sw*pref*( ri2*xhat - d(1)*rcuti3 )
740 > !!$             duduz_j(2) = duduz_j(2) - sw*pref*( ri2*yhat - d(2)*rcuti3 )
741 > !!$             duduz_j(3) = duduz_j(3) - sw*pref*( ri2*zhat - d(3)*rcuti3 )
742 > !!$
743 > !!$          elseif (summationMethod .eq. REACTION_FIELD) then
744 >
745 >          if (summationMethod .eq. REACTION_FIELD) then
746 >             ri2 = riji * riji
747 >             ri3 = ri2 * riji
748 >    
749 >             pref = pre12 * q_i * mu_j
750 >             vterm = - pref * ct_j * ( ri2 - preRF2*rij )
751 >             vpair = vpair + vterm
752 >             epot = epot + sw*vterm
753 >            
754 >             !! this has a + sign in the () because the rij vector is
755 >             !! r_j - r_i and the charge-dipole potential takes the origin
756 >             !! as the point dipole, which is atom j in this case.
757 >            
758 >             dudx = dudx - sw*pref*( ri3*(uz_j(1) - 3.0d0*ct_j*xhat) - &
759 >                                     preRF2*uz_j(1) )
760 >             dudy = dudy - sw*pref*( ri3*(uz_j(2) - 3.0d0*ct_j*yhat) - &
761 >                                     preRF2*uz_j(2) )
762 >             dudz = dudz - sw*pref*( ri3*(uz_j(3) - 3.0d0*ct_j*zhat) - &
763 >                                     preRF2*uz_j(3) )        
764 >             duduz_j(1) = duduz_j(1) - sw*pref * xhat * ( ri2 - preRF2*rij )
765 >             duduz_j(2) = duduz_j(2) - sw*pref * yhat * ( ri2 - preRF2*rij )
766 >             duduz_j(3) = duduz_j(3) - sw*pref * zhat * ( ri2 - preRF2*rij )
767 >
768            else
769               if (j_is_SplitDipole) then
770                  BigR = sqrt(r2 + 0.25_dp * d_j * d_j)
771                  ri = 1.0_dp / BigR
772 <                scale = rij * ri                            
773 <             else                
772 >                scale = rij * ri
773 >             else
774                  ri = riji
775                  scale = 1.0_dp
776               endif
777 <          endif
777 >            
778 >             ri2 = ri * ri
779 >             ri3 = ri2 * ri
780 >             sc2 = scale * scale
781  
782 <          ct_ij = ul_i(1)*ul_j(1) + ul_i(2)*ul_j(2) + ul_i(3)*ul_j(3)
782 >             pref = pre12 * q_i * mu_j
783 >             vterm = - pref * ct_j * ri2 * scale
784 >             vpair = vpair + vterm
785 >             epot = epot + sw*vterm
786 >            
787 >             !! this has a + sign in the () because the rij vector is
788 >             !! r_j - r_i and the charge-dipole potential takes the origin
789 >             !! as the point dipole, which is atom j in this case.
790 >            
791 >             dudx = dudx - sw*pref * ri3 * ( uz_j(1) - 3.0d0*ct_j*xhat*sc2)
792 >             dudy = dudy - sw*pref * ri3 * ( uz_j(2) - 3.0d0*ct_j*yhat*sc2)
793 >             dudz = dudz - sw*pref * ri3 * ( uz_j(3) - 3.0d0*ct_j*zhat*sc2)
794 >            
795 >             duduz_j(1) = duduz_j(1) - sw*pref * ri2 * xhat * scale
796 >             duduz_j(2) = duduz_j(2) - sw*pref * ri2 * yhat * scale
797 >             duduz_j(3) = duduz_j(3) - sw*pref * ri2 * zhat * scale
798  
799 <          ri2 = ri * ri
800 <          ri3 = ri2 * ri
799 >          endif
800 >       endif
801 >
802 >       if (j_is_Quadrupole) then
803 >          ri2 = riji * riji
804 >          ri3 = ri2 * riji
805            ri4 = ri2 * ri2
806 <          sc2 = scale * scale
806 >          cx2 = cx_j * cx_j
807 >          cy2 = cy_j * cy_j
808 >          cz2 = cz_j * cz_j
809  
810 <          pref = pre22 * mu_i * mu_j
811 <          vterm = pref * ri3 * (ct_ij - 3.0d0 * ct_i * ct_j * sc2)
812 <          vpair = vpair + vterm
813 <          epot = epot + sw * vterm
814 <          
815 <          a1 = 5.0d0 * ct_i * ct_j * sc2 - ct_ij
816 <
817 <          dudx=dudx+pref*sw*3.0d0*ri4*scale*(a1*xhat-ct_i*ul_j(1)-ct_j*ul_i(1))
818 <          dudy=dudy+pref*sw*3.0d0*ri4*scale*(a1*yhat-ct_i*ul_j(2)-ct_j*ul_i(2))
819 <          dudz=dudz+pref*sw*3.0d0*ri4*scale*(a1*zhat-ct_i*ul_j(3)-ct_j*ul_i(3))
820 <
821 <          duduix = duduix + pref*sw*ri3*(ul_j(1) - 3.0d0*ct_j*xhat*sc2)
822 <          duduiy = duduiy + pref*sw*ri3*(ul_j(2) - 3.0d0*ct_j*yhat*sc2)
823 <          duduiz = duduiz + pref*sw*ri3*(ul_j(3) - 3.0d0*ct_j*zhat*sc2)
824 <
825 <          dudujx = dudujx + pref*sw*ri3*(ul_i(1) - 3.0d0*ct_i*xhat*sc2)
826 <          dudujy = dudujy + pref*sw*ri3*(ul_i(2) - 3.0d0*ct_i*yhat*sc2)
827 <          dudujz = dudujz + pref*sw*ri3*(ul_i(3) - 3.0d0*ct_i*zhat*sc2)
810 > !!$          if (summationMethod .eq. UNDAMPED_WOLF) then
811 > !!$             pref =  pre14 * q_i / 3.0_dp
812 > !!$             vterm1 = pref * ri3*( qxx_j * (3.0_dp*cx2 - 1.0_dp) + &
813 > !!$                  qyy_j * (3.0_dp*cy2 - 1.0_dp) + &
814 > !!$                  qzz_j * (3.0_dp*cz2 - 1.0_dp) )
815 > !!$             vterm2 = pref * rcuti3*( qxx_j * (3.0_dp*cx2 - 1.0_dp) + &
816 > !!$                  qyy_j * (3.0_dp*cy2 - 1.0_dp) + &
817 > !!$                  qzz_j * (3.0_dp*cz2 - 1.0_dp) )
818 > !!$             vpair = vpair + ( vterm1 - vterm2 )
819 > !!$             epot = epot + sw*( vterm1 - vterm2 )
820 > !!$            
821 > !!$             dudx = dudx - (5.0_dp * &
822 > !!$                  (vterm1*riji*xhat - vterm2*rcuti2*d(1))) + sw*pref * ( &
823 > !!$                  (ri4 - rcuti4)*(qxx_j*(6.0_dp*cx_j*ux_j(1)) - &
824 > !!$                  qxx_j*2.0_dp*(xhat - rcuti*d(1))) + &
825 > !!$                  (ri4 - rcuti4)*(qyy_j*(6.0_dp*cy_j*uy_j(1)) - &
826 > !!$                  qyy_j*2.0_dp*(xhat - rcuti*d(1))) + &
827 > !!$                  (ri4 - rcuti4)*(qzz_j*(6.0_dp*cz_j*uz_j(1)) - &
828 > !!$                  qzz_j*2.0_dp*(xhat - rcuti*d(1))) )
829 > !!$             dudy = dudy - (5.0_dp * &
830 > !!$                  (vterm1*riji*yhat - vterm2*rcuti2*d(2))) + sw*pref * ( &
831 > !!$                  (ri4 - rcuti4)*(qxx_j*(6.0_dp*cx_j*ux_j(2)) - &
832 > !!$                  qxx_j*2.0_dp*(yhat - rcuti*d(2))) + &
833 > !!$                  (ri4 - rcuti4)*(qyy_j*(6.0_dp*cy_j*uy_j(2)) - &
834 > !!$                  qyy_j*2.0_dp*(yhat - rcuti*d(2))) + &
835 > !!$                  (ri4 - rcuti4)*(qzz_j*(6.0_dp*cz_j*uz_j(2)) - &
836 > !!$                  qzz_j*2.0_dp*(yhat - rcuti*d(2))) )
837 > !!$             dudz = dudz - (5.0_dp * &
838 > !!$                  (vterm1*riji*zhat - vterm2*rcuti2*d(3))) + sw*pref * ( &
839 > !!$                  (ri4 - rcuti4)*(qxx_j*(6.0_dp*cx_j*ux_j(3)) - &
840 > !!$                  qxx_j*2.0_dp*(zhat - rcuti*d(3))) + &
841 > !!$                  (ri4 - rcuti4)*(qyy_j*(6.0_dp*cy_j*uy_j(3)) - &
842 > !!$                  qyy_j*2.0_dp*(zhat - rcuti*d(3))) + &
843 > !!$                  (ri4 - rcuti4)*(qzz_j*(6.0_dp*cz_j*uz_j(3)) - &
844 > !!$                  qzz_j*2.0_dp*(zhat - rcuti*d(3))) )
845 > !!$            
846 > !!$             dudux_j(1) = dudux_j(1) + sw*pref*(ri3*(qxx_j*6.0_dp*cx_j*xhat) -&
847 > !!$                  rcuti4*(qxx_j*6.0_dp*cx_j*d(1)))
848 > !!$             dudux_j(2) = dudux_j(2) + sw*pref*(ri3*(qxx_j*6.0_dp*cx_j*yhat) -&
849 > !!$                  rcuti4*(qxx_j*6.0_dp*cx_j*d(2)))
850 > !!$             dudux_j(3) = dudux_j(3) + sw*pref*(ri3*(qxx_j*6.0_dp*cx_j*zhat) -&
851 > !!$                  rcuti4*(qxx_j*6.0_dp*cx_j*d(3)))
852 > !!$            
853 > !!$             duduy_j(1) = duduy_j(1) + sw*pref*(ri3*(qyy_j*6.0_dp*cy_j*xhat) -&
854 > !!$                  rcuti4*(qyy_j*6.0_dp*cx_j*d(1)))
855 > !!$             duduy_j(2) = duduy_j(2) + sw*pref*(ri3*(qyy_j*6.0_dp*cy_j*yhat) -&
856 > !!$                  rcuti4*(qyy_j*6.0_dp*cx_j*d(2)))
857 > !!$             duduy_j(3) = duduy_j(3) + sw*pref*(ri3*(qyy_j*6.0_dp*cy_j*zhat) -&
858 > !!$                  rcuti4*(qyy_j*6.0_dp*cx_j*d(3)))
859 > !!$            
860 > !!$             duduz_j(1) = duduz_j(1) + sw*pref*(ri3*(qzz_j*6.0_dp*cz_j*xhat) -&
861 > !!$                  rcuti4*(qzz_j*6.0_dp*cx_j*d(1)))
862 > !!$             duduz_j(2) = duduz_j(2) + sw*pref*(ri3*(qzz_j*6.0_dp*cz_j*yhat) -&
863 > !!$                  rcuti4*(qzz_j*6.0_dp*cx_j*d(2)))
864 > !!$             duduz_j(3) = duduz_j(3) + sw*pref*(ri3*(qzz_j*6.0_dp*cz_j*zhat) -&
865 > !!$                  rcuti4*(qzz_j*6.0_dp*cx_j*d(3)))
866 > !!$        
867 > !!$          else
868 >             pref =  pre14 * q_i / 3.0_dp
869 >             vterm = pref * ri3 * (qxx_j * (3.0_dp*cx2 - 1.0_dp) + &
870 >                  qyy_j * (3.0_dp*cy2 - 1.0_dp) + &
871 >                  qzz_j * (3.0_dp*cz2 - 1.0_dp))
872 >             vpair = vpair + vterm
873 >             epot = epot + sw*vterm
874 >            
875 >             dudx = dudx - 5.0_dp*sw*vterm*riji*xhat + sw*pref * ri4 * ( &
876 >                  qxx_j*(6.0_dp*cx_j*ux_j(1) - 2.0_dp*xhat) + &
877 >                  qyy_j*(6.0_dp*cy_j*uy_j(1) - 2.0_dp*xhat) + &
878 >                  qzz_j*(6.0_dp*cz_j*uz_j(1) - 2.0_dp*xhat) )
879 >             dudy = dudy - 5.0_dp*sw*vterm*riji*yhat + sw*pref * ri4 * ( &
880 >                  qxx_j*(6.0_dp*cx_j*ux_j(2) - 2.0_dp*yhat) + &
881 >                  qyy_j*(6.0_dp*cy_j*uy_j(2) - 2.0_dp*yhat) + &
882 >                  qzz_j*(6.0_dp*cz_j*uz_j(2) - 2.0_dp*yhat) )
883 >             dudz = dudz - 5.0_dp*sw*vterm*riji*zhat + sw*pref * ri4 * ( &
884 >                  qxx_j*(6.0_dp*cx_j*ux_j(3) - 2.0_dp*zhat) + &
885 >                  qyy_j*(6.0_dp*cy_j*uy_j(3) - 2.0_dp*zhat) + &
886 >                  qzz_j*(6.0_dp*cz_j*uz_j(3) - 2.0_dp*zhat) )
887 >            
888 >             dudux_j(1) = dudux_j(1) + sw*pref * ri3*(qxx_j*6.0_dp*cx_j*xhat)
889 >             dudux_j(2) = dudux_j(2) + sw*pref * ri3*(qxx_j*6.0_dp*cx_j*yhat)
890 >             dudux_j(3) = dudux_j(3) + sw*pref * ri3*(qxx_j*6.0_dp*cx_j*zhat)
891 >            
892 >             duduy_j(1) = duduy_j(1) + sw*pref * ri3*(qyy_j*6.0_dp*cy_j*xhat)
893 >             duduy_j(2) = duduy_j(2) + sw*pref * ri3*(qyy_j*6.0_dp*cy_j*yhat)
894 >             duduy_j(3) = duduy_j(3) + sw*pref * ri3*(qyy_j*6.0_dp*cy_j*zhat)
895 >            
896 >             duduz_j(1) = duduz_j(1) + sw*pref * ri3*(qzz_j*6.0_dp*cz_j*xhat)
897 >             duduz_j(2) = duduz_j(2) + sw*pref * ri3*(qzz_j*6.0_dp*cz_j*yhat)
898 >             duduz_j(3) = duduz_j(3) + sw*pref * ri3*(qzz_j*6.0_dp*cz_j*zhat)
899 >          
900 > !!$          endif
901         endif
902 +    endif
903  
904 +    if (i_is_Dipole) then
905 +
906 +       if (j_is_Charge) then
907 +          
908 +          pref = pre12 * q_j * mu_i
909 +          
910 + !!$          if (summationMethod .eq. UNDAMPED_WOLF) then
911 + !!$             ri2 = riji * riji
912 + !!$             ri3 = ri2 * riji
913 + !!$
914 + !!$             pref = pre12 * q_j * mu_i
915 + !!$             vterm = pref * ct_i * (ri2 - rcuti2)
916 + !!$             vpair = vpair + vterm
917 + !!$             epot = epot + sw*vterm
918 + !!$            
919 + !!$             dudx = dudx + sw*pref * ( ri3*( uz_i(1) - 3.0d0*ct_i*xhat) &
920 + !!$                  - rcuti3*( uz_i(1) - 3.0d0*ct_i*d(1)*rcuti ) )
921 + !!$             dudy = dudy + sw*pref * ( ri3*( uz_i(2) - 3.0d0*ct_i*yhat) &
922 + !!$                  - rcuti3*( uz_i(2) - 3.0d0*ct_i*d(2)*rcuti ) )
923 + !!$             dudz = dudz + sw*pref * ( ri3*( uz_i(3) - 3.0d0*ct_i*zhat) &
924 + !!$                  - rcuti3*( uz_i(3) - 3.0d0*ct_i*d(3)*rcuti ) )
925 + !!$            
926 + !!$             duduz_i(1) = duduz_i(1) + sw*pref*( ri2*xhat - d(1)*rcuti3 )
927 + !!$             duduz_i(2) = duduz_i(2) + sw*pref*( ri2*yhat - d(2)*rcuti3 )
928 + !!$             duduz_i(3) = duduz_i(3) + sw*pref*( ri2*zhat - d(3)*rcuti3 )
929 + !!$
930 + !!$          elseif (summationMethod .eq. REACTION_FIELD) then
931 +          if (summationMethod .eq. REACTION_FIELD) then
932 +             ri2 = riji * riji
933 +             ri3 = ri2 * riji
934 +
935 +             pref = pre12 * q_j * mu_i
936 +             vterm = pref * ct_i * ( ri2 - preRF2*rij )
937 +             vpair = vpair + vterm
938 +             epot = epot + sw*vterm
939 +            
940 +             dudx = dudx + sw*pref * ( ri3*(uz_i(1) - 3.0d0*ct_i*xhat) - &
941 +                  preRF2*uz_i(1) )
942 +             dudy = dudy + sw*pref * ( ri3*(uz_i(2) - 3.0d0*ct_i*yhat) - &
943 +                  preRF2*uz_i(2) )
944 +             dudz = dudz + sw*pref * ( ri3*(uz_i(3) - 3.0d0*ct_i*zhat) - &
945 +                  preRF2*uz_i(3) )
946 +            
947 +             duduz_i(1) = duduz_i(1) + sw*pref * xhat * ( ri2 - preRF2*rij )
948 +             duduz_i(2) = duduz_i(2) + sw*pref * yhat * ( ri2 - preRF2*rij )
949 +             duduz_i(3) = duduz_i(3) + sw*pref * zhat * ( ri2 - preRF2*rij )
950 +
951 +          else
952 +             if (i_is_SplitDipole) then
953 +                BigR = sqrt(r2 + 0.25_dp * d_i * d_i)
954 +                ri = 1.0_dp / BigR
955 +                scale = rij * ri
956 +             else
957 +                ri = riji
958 +                scale = 1.0_dp
959 +             endif
960 +            
961 +             ri2 = ri * ri
962 +             ri3 = ri2 * ri
963 +             sc2 = scale * scale
964 +
965 +             pref = pre12 * q_j * mu_i
966 +             vterm = pref * ct_i * ri2 * scale
967 +             vpair = vpair + vterm
968 +             epot = epot + sw*vterm
969 +            
970 +             dudx = dudx + sw*pref * ri3 * ( uz_i(1) - 3.0d0 * ct_i * xhat*sc2)
971 +             dudy = dudy + sw*pref * ri3 * ( uz_i(2) - 3.0d0 * ct_i * yhat*sc2)
972 +             dudz = dudz + sw*pref * ri3 * ( uz_i(3) - 3.0d0 * ct_i * zhat*sc2)
973 +            
974 +             duduz_i(1) = duduz_i(1) + sw*pref * ri2 * xhat * scale
975 +             duduz_i(2) = duduz_i(2) + sw*pref * ri2 * yhat * scale
976 +             duduz_i(3) = duduz_i(3) + sw*pref * ri2 * zhat * scale
977 +          endif
978 +       endif
979 +      
980 +       if (j_is_Dipole) then
981 +
982 + !!$          if (summationMethod .eq. UNDAMPED_WOLF) then
983 + !!$             ct_ij = uz_i(1)*uz_j(1) + uz_i(2)*uz_j(2) + uz_i(3)*uz_j(3)
984 + !!$
985 + !!$             ri2 = riji * riji
986 + !!$             ri3 = ri2 * riji
987 + !!$             ri4 = ri2 * ri2
988 + !!$
989 + !!$             pref = pre22 * mu_i * mu_j
990 + !!$             vterm = pref * (ri3 - rcuti3) * (ct_ij - 3.0d0 * ct_i * ct_j)
991 + !!$             vpair = vpair + vterm
992 + !!$             epot = epot + sw*vterm
993 + !!$            
994 + !!$             a1 = 5.0d0 * ct_i * ct_j - ct_ij
995 + !!$            
996 + !!$             dudx = dudx + sw*pref*3.0d0*( &
997 + !!$                  ri4*(a1*xhat-ct_i*uz_j(1)-ct_j*uz_i(1)) &
998 + !!$                  - rcuti4*(a1*xhat-ct_i*uz_j(1)-ct_j*uz_i(1)) )
999 + !!$             dudy = dudy + sw*pref*3.0d0*( &
1000 + !!$                  ri4*(a1*yhat-ct_i*uz_j(2)-ct_j*uz_i(2)) &
1001 + !!$                  - rcuti4*(a1*yhat-ct_i*uz_j(2)-ct_j*uz_i(2)) )
1002 + !!$             dudz = dudz + sw*pref*3.0d0*( &
1003 + !!$                  ri4*(a1*zhat-ct_i*uz_j(3)-ct_j*uz_i(3)) &
1004 + !!$                  - rcuti4*(a1*zhat-ct_i*uz_j(3)-ct_j*uz_i(3)) )
1005 + !!$            
1006 + !!$             duduz_i(1) = duduz_i(1) + sw*pref*(ri3*(uz_j(1)-3.0d0*ct_j*xhat) &
1007 + !!$                  - rcuti3*(uz_j(1) - 3.0d0*ct_j*xhat))
1008 + !!$             duduz_i(2) = duduz_i(2) + sw*pref*(ri3*(uz_j(2)-3.0d0*ct_j*yhat) &
1009 + !!$                  - rcuti3*(uz_j(2) - 3.0d0*ct_j*yhat))
1010 + !!$             duduz_i(3) = duduz_i(3) + sw*pref*(ri3*(uz_j(3)-3.0d0*ct_j*zhat) &
1011 + !!$                  - rcuti3*(uz_j(3) - 3.0d0*ct_j*zhat))
1012 + !!$             duduz_j(1) = duduz_j(1) + sw*pref*(ri3*(uz_i(1)-3.0d0*ct_i*xhat) &
1013 + !!$                  - rcuti3*(uz_i(1) - 3.0d0*ct_i*xhat))
1014 + !!$             duduz_j(2) = duduz_j(2) + sw*pref*(ri3*(uz_i(2)-3.0d0*ct_i*yhat) &
1015 + !!$                  - rcuti3*(uz_i(2) - 3.0d0*ct_i*yhat))
1016 + !!$             duduz_j(3) = duduz_j(3) + sw*pref*(ri3*(uz_i(3)-3.0d0*ct_i*zhat) &
1017 + !!$                  - rcuti3*(uz_i(3) - 3.0d0*ct_i*zhat))
1018 + !!$          
1019 + !!$          elseif (summationMethod .eq. REACTION_FIELD) then
1020 +          if (summationMethod .eq. REACTION_FIELD) then
1021 +             ct_ij = uz_i(1)*uz_j(1) + uz_i(2)*uz_j(2) + uz_i(3)*uz_j(3)
1022 +
1023 +             ri2 = riji * riji
1024 +             ri3 = ri2 * riji
1025 +             ri4 = ri2 * ri2
1026 +
1027 +             pref = pre22 * mu_i * mu_j
1028 +              
1029 +             vterm = pref*( ri3*(ct_ij - 3.0d0 * ct_i * ct_j) - &
1030 +                  preRF2*ct_ij )
1031 +             vpair = vpair + vterm
1032 +             epot = epot + sw*vterm
1033 +            
1034 +             a1 = 5.0d0 * ct_i * ct_j - ct_ij
1035 +            
1036 +             dudx = dudx + sw*pref*3.0d0*ri4 &
1037 +                             * (a1*xhat-ct_i*uz_j(1)-ct_j*uz_i(1))
1038 +             dudy = dudy + sw*pref*3.0d0*ri4 &
1039 +                             * (a1*yhat-ct_i*uz_j(2)-ct_j*uz_i(2))
1040 +             dudz = dudz + sw*pref*3.0d0*ri4 &
1041 +                             * (a1*zhat-ct_i*uz_j(3)-ct_j*uz_i(3))
1042 +            
1043 +             duduz_i(1) = duduz_i(1) + sw*pref*(ri3*(uz_j(1)-3.0d0*ct_j*xhat) &
1044 +                  - preRF2*uz_j(1))
1045 +             duduz_i(2) = duduz_i(2) + sw*pref*(ri3*(uz_j(2)-3.0d0*ct_j*yhat) &
1046 +                  - preRF2*uz_j(2))
1047 +             duduz_i(3) = duduz_i(3) + sw*pref*(ri3*(uz_j(3)-3.0d0*ct_j*zhat) &
1048 +                  - preRF2*uz_j(3))
1049 +             duduz_j(1) = duduz_j(1) + sw*pref*(ri3*(uz_i(1)-3.0d0*ct_i*xhat) &
1050 +                  - preRF2*uz_i(1))
1051 +             duduz_j(2) = duduz_j(2) + sw*pref*(ri3*(uz_i(2)-3.0d0*ct_i*yhat) &
1052 +                  - preRF2*uz_i(2))
1053 +             duduz_j(3) = duduz_j(3) + sw*pref*(ri3*(uz_i(3)-3.0d0*ct_i*zhat) &
1054 +                  - preRF2*uz_i(3))
1055 +
1056 +          else
1057 +             if (i_is_SplitDipole) then
1058 +                if (j_is_SplitDipole) then
1059 +                   BigR = sqrt(r2 + 0.25_dp * d_i * d_i + 0.25_dp * d_j * d_j)
1060 +                else
1061 +                   BigR = sqrt(r2 + 0.25_dp * d_i * d_i)
1062 +                endif
1063 +                ri = 1.0_dp / BigR
1064 +                scale = rij * ri                
1065 +             else
1066 +                if (j_is_SplitDipole) then
1067 +                   BigR = sqrt(r2 + 0.25_dp * d_j * d_j)
1068 +                   ri = 1.0_dp / BigR
1069 +                   scale = rij * ri                            
1070 +                else                
1071 +                   ri = riji
1072 +                   scale = 1.0_dp
1073 +                endif
1074 +             endif
1075 +            
1076 +             ct_ij = uz_i(1)*uz_j(1) + uz_i(2)*uz_j(2) + uz_i(3)*uz_j(3)
1077 +            
1078 +             ri2 = ri * ri
1079 +             ri3 = ri2 * ri
1080 +             ri4 = ri2 * ri2
1081 +             sc2 = scale * scale
1082 +            
1083 +             pref = pre22 * mu_i * mu_j
1084 +             vterm = pref * ri3 * (ct_ij - 3.0d0 * ct_i * ct_j * sc2)
1085 +             vpair = vpair + vterm
1086 +             epot = epot + sw*vterm
1087 +            
1088 +             a1 = 5.0d0 * ct_i * ct_j * sc2 - ct_ij
1089 +            
1090 +             dudx = dudx + sw*pref*3.0d0*ri4*scale &
1091 +                             *(a1*xhat-ct_i*uz_j(1)-ct_j*uz_i(1))
1092 +             dudy = dudy + sw*pref*3.0d0*ri4*scale &
1093 +                             *(a1*yhat-ct_i*uz_j(2)-ct_j*uz_i(2))
1094 +             dudz = dudz + sw*pref*3.0d0*ri4*scale &
1095 +                             *(a1*zhat-ct_i*uz_j(3)-ct_j*uz_i(3))
1096 +            
1097 +             duduz_i(1) = duduz_i(1) + sw*pref*ri3 &
1098 +                                         *(uz_j(1) - 3.0d0*ct_j*xhat*sc2)
1099 +             duduz_i(2) = duduz_i(2) + sw*pref*ri3 &
1100 +                                         *(uz_j(2) - 3.0d0*ct_j*yhat*sc2)
1101 +             duduz_i(3) = duduz_i(3) + sw*pref*ri3 &
1102 +                                         *(uz_j(3) - 3.0d0*ct_j*zhat*sc2)
1103 +            
1104 +             duduz_j(1) = duduz_j(1) + sw*pref*ri3 &
1105 +                                         *(uz_i(1) - 3.0d0*ct_i*xhat*sc2)
1106 +             duduz_j(2) = duduz_j(2) + sw*pref*ri3 &
1107 +                                         *(uz_i(2) - 3.0d0*ct_i*yhat*sc2)
1108 +             duduz_j(3) = duduz_j(3) + sw*pref*ri3 &
1109 +                                         *(uz_i(3) - 3.0d0*ct_i*zhat*sc2)
1110 +          endif
1111 +       endif
1112      endif
1113 <    
1113 >
1114 >    if (i_is_Quadrupole) then
1115 >       if (j_is_Charge) then
1116 >
1117 >          ri2 = riji * riji
1118 >          ri3 = ri2 * riji
1119 >          ri4 = ri2 * ri2
1120 >          cx2 = cx_i * cx_i
1121 >          cy2 = cy_i * cy_i
1122 >          cz2 = cz_i * cz_i
1123 >
1124 > !!$          if (summationMethod .eq. UNDAMPED_WOLF) then
1125 > !!$             pref = pre14 * q_j / 3.0_dp
1126 > !!$             vterm1 = pref * ri3*( qxx_i * (3.0_dp*cx2 - 1.0_dp) + &
1127 > !!$                  qyy_i * (3.0_dp*cy2 - 1.0_dp) + &
1128 > !!$                  qzz_i * (3.0_dp*cz2 - 1.0_dp) )
1129 > !!$             vterm2 = pref * rcuti3*( qxx_i * (3.0_dp*cx2 - 1.0_dp) + &
1130 > !!$                  qyy_i * (3.0_dp*cy2 - 1.0_dp) + &
1131 > !!$                  qzz_i * (3.0_dp*cz2 - 1.0_dp) )
1132 > !!$             vpair = vpair + ( vterm1 - vterm2 )
1133 > !!$             epot = epot + sw*( vterm1 - vterm2 )
1134 > !!$            
1135 > !!$             dudx = dudx - sw*(5.0_dp*(vterm1*riji*xhat-vterm2*rcuti2*d(1))) +&
1136 > !!$                  sw*pref * ( (ri4 - rcuti4)*(qxx_i*(6.0_dp*cx_i*ux_i(1)) - &
1137 > !!$                  qxx_i*2.0_dp*(xhat - rcuti*d(1))) + &
1138 > !!$                  (ri4 - rcuti4)*(qyy_i*(6.0_dp*cy_i*uy_i(1)) - &
1139 > !!$                  qyy_i*2.0_dp*(xhat - rcuti*d(1))) + &
1140 > !!$                  (ri4 - rcuti4)*(qzz_i*(6.0_dp*cz_i*uz_i(1)) - &
1141 > !!$                  qzz_i*2.0_dp*(xhat - rcuti*d(1))) )
1142 > !!$             dudy = dudy - sw*(5.0_dp*(vterm1*riji*yhat-vterm2*rcuti2*d(2))) +&
1143 > !!$                  sw*pref * ( (ri4 - rcuti4)*(qxx_i*(6.0_dp*cx_i*ux_i(2)) - &
1144 > !!$                  qxx_i*2.0_dp*(yhat - rcuti*d(2))) + &
1145 > !!$                  (ri4 - rcuti4)*(qyy_i*(6.0_dp*cy_i*uy_i(2)) - &
1146 > !!$                  qyy_i*2.0_dp*(yhat - rcuti*d(2))) + &
1147 > !!$                  (ri4 - rcuti4)*(qzz_i*(6.0_dp*cz_i*uz_i(2)) - &
1148 > !!$                  qzz_i*2.0_dp*(yhat - rcuti*d(2))) )
1149 > !!$             dudz = dudz - sw*(5.0_dp*(vterm1*riji*zhat-vterm2*rcuti2*d(3))) +&
1150 > !!$                  sw*pref * ( (ri4 - rcuti4)*(qxx_i*(6.0_dp*cx_i*ux_i(3)) - &
1151 > !!$                  qxx_i*2.0_dp*(zhat - rcuti*d(3))) + &
1152 > !!$                  (ri4 - rcuti4)*(qyy_i*(6.0_dp*cy_i*uy_i(3)) - &
1153 > !!$                  qyy_i*2.0_dp*(zhat - rcuti*d(3))) + &
1154 > !!$                  (ri4 - rcuti4)*(qzz_i*(6.0_dp*cz_i*uz_i(3)) - &
1155 > !!$                  qzz_i*2.0_dp*(zhat - rcuti*d(3))) )
1156 > !!$            
1157 > !!$             dudux_i(1) = dudux_i(1) + sw*pref*(ri3*(qxx_i*6.0_dp*cx_i*xhat) -&
1158 > !!$                  rcuti4*(qxx_i*6.0_dp*cx_i*d(1)))
1159 > !!$             dudux_i(2) = dudux_i(2) + sw*pref*(ri3*(qxx_i*6.0_dp*cx_i*yhat) -&
1160 > !!$                  rcuti4*(qxx_i*6.0_dp*cx_i*d(2)))
1161 > !!$             dudux_i(3) = dudux_i(3) + sw*pref*(ri3*(qxx_i*6.0_dp*cx_i*zhat) -&
1162 > !!$                  rcuti4*(qxx_i*6.0_dp*cx_i*d(3)))
1163 > !!$            
1164 > !!$             duduy_i(1) = duduy_i(1) + sw*pref*(ri3*(qyy_i*6.0_dp*cy_i*xhat) -&
1165 > !!$                  rcuti4*(qyy_i*6.0_dp*cx_i*d(1)))
1166 > !!$             duduy_i(2) = duduy_i(2) + sw*pref*(ri3*(qyy_i*6.0_dp*cy_i*yhat) -&
1167 > !!$                  rcuti4*(qyy_i*6.0_dp*cx_i*d(2)))
1168 > !!$             duduy_i(3) = duduy_i(3) + sw*pref*(ri3*(qyy_i*6.0_dp*cy_i*zhat) -&
1169 > !!$                  rcuti4*(qyy_i*6.0_dp*cx_i*d(3)))
1170 > !!$            
1171 > !!$             duduz_i(1) = duduz_i(1) + sw*pref*(ri3*(qzz_i*6.0_dp*cz_i*xhat) -&
1172 > !!$                  rcuti4*(qzz_i*6.0_dp*cx_i*d(1)))
1173 > !!$             duduz_i(2) = duduz_i(2) + sw*pref*(ri3*(qzz_i*6.0_dp*cz_i*yhat) -&
1174 > !!$                  rcuti4*(qzz_i*6.0_dp*cx_i*d(2)))
1175 > !!$             duduz_i(3) = duduz_i(3) + sw*pref*(ri3*(qzz_i*6.0_dp*cz_i*zhat) -&
1176 > !!$                  rcuti4*(qzz_i*6.0_dp*cx_i*d(3)))
1177 > !!$
1178 > !!$          else
1179 >             pref = pre14 * q_j / 3.0_dp
1180 >             vterm = pref * ri3 * (qxx_i * (3.0_dp*cx2 - 1.0_dp) + &
1181 >                  qyy_i * (3.0_dp*cy2 - 1.0_dp) + &
1182 >                  qzz_i * (3.0_dp*cz2 - 1.0_dp))
1183 >             vpair = vpair + vterm
1184 >             epot = epot + sw*vterm
1185 >            
1186 >             dudx = dudx - 5.0_dp*sw*vterm*riji*xhat + sw*pref*ri4 * ( &
1187 >                  qxx_i*(6.0_dp*cx_i*ux_i(1) - 2.0_dp*xhat) + &
1188 >                  qyy_i*(6.0_dp*cy_i*uy_i(1) - 2.0_dp*xhat) + &
1189 >                  qzz_i*(6.0_dp*cz_i*uz_i(1) - 2.0_dp*xhat) )
1190 >             dudy = dudy - 5.0_dp*sw*vterm*riji*yhat + sw*pref*ri4 * ( &
1191 >                  qxx_i*(6.0_dp*cx_i*ux_i(2) - 2.0_dp*yhat) + &
1192 >                  qyy_i*(6.0_dp*cy_i*uy_i(2) - 2.0_dp*yhat) + &
1193 >                  qzz_i*(6.0_dp*cz_i*uz_i(2) - 2.0_dp*yhat) )
1194 >             dudz = dudz - 5.0_dp*sw*vterm*riji*zhat + sw*pref*ri4 * ( &
1195 >                  qxx_i*(6.0_dp*cx_i*ux_i(3) - 2.0_dp*zhat) + &
1196 >                  qyy_i*(6.0_dp*cy_i*uy_i(3) - 2.0_dp*zhat) + &
1197 >                  qzz_i*(6.0_dp*cz_i*uz_i(3) - 2.0_dp*zhat) )
1198 >            
1199 >             dudux_i(1) = dudux_i(1) + sw*pref*ri3*(qxx_i*6.0_dp*cx_i*xhat)
1200 >             dudux_i(2) = dudux_i(2) + sw*pref*ri3*(qxx_i*6.0_dp*cx_i*yhat)
1201 >             dudux_i(3) = dudux_i(3) + sw*pref*ri3*(qxx_i*6.0_dp*cx_i*zhat)
1202 >            
1203 >             duduy_i(1) = duduy_i(1) + sw*pref*ri3*(qyy_i*6.0_dp*cy_i*xhat)
1204 >             duduy_i(2) = duduy_i(2) + sw*pref*ri3*(qyy_i*6.0_dp*cy_i*yhat)
1205 >             duduy_i(3) = duduy_i(3) + sw*pref*ri3*(qyy_i*6.0_dp*cy_i*zhat)
1206 >            
1207 >             duduz_i(1) = duduz_i(1) + sw*pref*ri3*(qzz_i*6.0_dp*cz_i*xhat)
1208 >             duduz_i(2) = duduz_i(2) + sw*pref*ri3*(qzz_i*6.0_dp*cz_i*yhat)
1209 >             duduz_i(3) = duduz_i(3) + sw*pref*ri3*(qzz_i*6.0_dp*cz_i*zhat)
1210 > !!$          endif
1211 >       endif
1212 >    endif
1213 >
1214 >
1215      if (do_pot) then
1216   #ifdef IS_MPI
1217 <       pot_row(atom1) = pot_row(atom1) + 0.5d0*epot
1218 <       pot_col(atom2) = pot_col(atom2) + 0.5d0*epot
1217 >       pot_row(ELECTROSTATIC_POT,atom1) = pot_row(ELECTROSTATIC_POT,atom1) + 0.5d0*epot
1218 >       pot_col(ELECTROSTATIC_POT,atom2) = pot_col(ELECTROSTATIC_POT,atom2) + 0.5d0*epot
1219   #else
1220         pot = pot + epot
1221   #endif
1222      endif
1223 <        
1223 >
1224   #ifdef IS_MPI
1225      f_Row(1,atom1) = f_Row(1,atom1) + dudx
1226      f_Row(2,atom1) = f_Row(2,atom1) + dudy
1227      f_Row(3,atom1) = f_Row(3,atom1) + dudz
1228 <    
1228 >
1229      f_Col(1,atom2) = f_Col(1,atom2) - dudx
1230      f_Col(2,atom2) = f_Col(2,atom2) - dudy
1231      f_Col(3,atom2) = f_Col(3,atom2) - dudz
1232 <    
1232 >
1233      if (i_is_Dipole .or. i_is_Quadrupole) then
1234 <       t_Row(1,atom1) = t_Row(1,atom1) - ul_i(2)*duduiz + ul_i(3)*duduiy
1235 <       t_Row(2,atom1) = t_Row(2,atom1) - ul_i(3)*duduix + ul_i(1)*duduiz
1236 <       t_Row(3,atom1) = t_Row(3,atom1) - ul_i(1)*duduiy + ul_i(2)*duduix
1234 >       t_Row(1,atom1)=t_Row(1,atom1) - uz_i(2)*duduz_i(3) + uz_i(3)*duduz_i(2)
1235 >       t_Row(2,atom1)=t_Row(2,atom1) - uz_i(3)*duduz_i(1) + uz_i(1)*duduz_i(3)
1236 >       t_Row(3,atom1)=t_Row(3,atom1) - uz_i(1)*duduz_i(2) + uz_i(2)*duduz_i(1)
1237      endif
1238 +    if (i_is_Quadrupole) then
1239 +       t_Row(1,atom1)=t_Row(1,atom1) - ux_i(2)*dudux_i(3) + ux_i(3)*dudux_i(2)
1240 +       t_Row(2,atom1)=t_Row(2,atom1) - ux_i(3)*dudux_i(1) + ux_i(1)*dudux_i(3)
1241 +       t_Row(3,atom1)=t_Row(3,atom1) - ux_i(1)*dudux_i(2) + ux_i(2)*dudux_i(1)
1242  
1243 +       t_Row(1,atom1)=t_Row(1,atom1) - uy_i(2)*duduy_i(3) + uy_i(3)*duduy_i(2)
1244 +       t_Row(2,atom1)=t_Row(2,atom1) - uy_i(3)*duduy_i(1) + uy_i(1)*duduy_i(3)
1245 +       t_Row(3,atom1)=t_Row(3,atom1) - uy_i(1)*duduy_i(2) + uy_i(2)*duduy_i(1)
1246 +    endif
1247 +
1248      if (j_is_Dipole .or. j_is_Quadrupole) then
1249 <       t_Col(1,atom2) = t_Col(1,atom2) - ul_j(2)*dudujz + ul_j(3)*dudujy
1250 <       t_Col(2,atom2) = t_Col(2,atom2) - ul_j(3)*dudujx + ul_j(1)*dudujz
1251 <       t_Col(3,atom2) = t_Col(3,atom2) - ul_j(1)*dudujy + ul_j(2)*dudujx
1249 >       t_Col(1,atom2)=t_Col(1,atom2) - uz_j(2)*duduz_j(3) + uz_j(3)*duduz_j(2)
1250 >       t_Col(2,atom2)=t_Col(2,atom2) - uz_j(3)*duduz_j(1) + uz_j(1)*duduz_j(3)
1251 >       t_Col(3,atom2)=t_Col(3,atom2) - uz_j(1)*duduz_j(2) + uz_j(2)*duduz_j(1)
1252      endif
1253 +    if (j_is_Quadrupole) then
1254 +       t_Col(1,atom2)=t_Col(1,atom2) - ux_j(2)*dudux_j(3) + ux_j(3)*dudux_j(2)
1255 +       t_Col(2,atom2)=t_Col(2,atom2) - ux_j(3)*dudux_j(1) + ux_j(1)*dudux_j(3)
1256 +       t_Col(3,atom2)=t_Col(3,atom2) - ux_j(1)*dudux_j(2) + ux_j(2)*dudux_j(1)
1257  
1258 +       t_Col(1,atom2)=t_Col(1,atom2) - uy_j(2)*duduy_j(3) + uy_j(3)*duduy_j(2)
1259 +       t_Col(2,atom2)=t_Col(2,atom2) - uy_j(3)*duduy_j(1) + uy_j(1)*duduy_j(3)
1260 +       t_Col(3,atom2)=t_Col(3,atom2) - uy_j(1)*duduy_j(2) + uy_j(2)*duduy_j(1)
1261 +    endif
1262 +
1263   #else
1264      f(1,atom1) = f(1,atom1) + dudx
1265      f(2,atom1) = f(2,atom1) + dudy
1266      f(3,atom1) = f(3,atom1) + dudz
1267 <    
1267 >
1268      f(1,atom2) = f(1,atom2) - dudx
1269      f(2,atom2) = f(2,atom2) - dudy
1270      f(3,atom2) = f(3,atom2) - dudz
1271 <    
1271 >
1272      if (i_is_Dipole .or. i_is_Quadrupole) then
1273 <       t(1,atom1) = t(1,atom1) - ul_i(2)*duduiz + ul_i(3)*duduiy
1274 <       t(2,atom1) = t(2,atom1) - ul_i(3)*duduix + ul_i(1)*duduiz
1275 <       t(3,atom1) = t(3,atom1) - ul_i(1)*duduiy + ul_i(2)*duduix
1273 >       t(1,atom1)=t(1,atom1) - uz_i(2)*duduz_i(3) + uz_i(3)*duduz_i(2)
1274 >       t(2,atom1)=t(2,atom1) - uz_i(3)*duduz_i(1) + uz_i(1)*duduz_i(3)
1275 >       t(3,atom1)=t(3,atom1) - uz_i(1)*duduz_i(2) + uz_i(2)*duduz_i(1)
1276      endif
1277 <      
1277 >    if (i_is_Quadrupole) then
1278 >       t(1,atom1)=t(1,atom1) - ux_i(2)*dudux_i(3) + ux_i(3)*dudux_i(2)
1279 >       t(2,atom1)=t(2,atom1) - ux_i(3)*dudux_i(1) + ux_i(1)*dudux_i(3)
1280 >       t(3,atom1)=t(3,atom1) - ux_i(1)*dudux_i(2) + ux_i(2)*dudux_i(1)
1281 >
1282 >       t(1,atom1)=t(1,atom1) - uy_i(2)*duduy_i(3) + uy_i(3)*duduy_i(2)
1283 >       t(2,atom1)=t(2,atom1) - uy_i(3)*duduy_i(1) + uy_i(1)*duduy_i(3)
1284 >       t(3,atom1)=t(3,atom1) - uy_i(1)*duduy_i(2) + uy_i(2)*duduy_i(1)
1285 >    endif
1286 >
1287      if (j_is_Dipole .or. j_is_Quadrupole) then
1288 <       t(1,atom2) = t(1,atom2) - ul_j(2)*dudujz + ul_j(3)*dudujy
1289 <       t(2,atom2) = t(2,atom2) - ul_j(3)*dudujx + ul_j(1)*dudujz
1290 <       t(3,atom2) = t(3,atom2) - ul_j(1)*dudujy + ul_j(2)*dudujx
1288 >       t(1,atom2)=t(1,atom2) - uz_j(2)*duduz_j(3) + uz_j(3)*duduz_j(2)
1289 >       t(2,atom2)=t(2,atom2) - uz_j(3)*duduz_j(1) + uz_j(1)*duduz_j(3)
1290 >       t(3,atom2)=t(3,atom2) - uz_j(1)*duduz_j(2) + uz_j(2)*duduz_j(1)
1291      endif
1292 +    if (j_is_Quadrupole) then
1293 +       t(1,atom2)=t(1,atom2) - ux_j(2)*dudux_j(3) + ux_j(3)*dudux_j(2)
1294 +       t(2,atom2)=t(2,atom2) - ux_j(3)*dudux_j(1) + ux_j(1)*dudux_j(3)
1295 +       t(3,atom2)=t(3,atom2) - ux_j(1)*dudux_j(2) + ux_j(2)*dudux_j(1)
1296 +
1297 +       t(1,atom2)=t(1,atom2) - uy_j(2)*duduy_j(3) + uy_j(3)*duduy_j(2)
1298 +       t(2,atom2)=t(2,atom2) - uy_j(3)*duduy_j(1) + uy_j(1)*duduy_j(3)
1299 +       t(3,atom2)=t(3,atom2) - uy_j(1)*duduy_j(2) + uy_j(2)*duduy_j(1)
1300 +    endif
1301 +
1302   #endif
1303 <    
1303 >
1304   #ifdef IS_MPI
1305      id1 = AtomRowToGlobal(atom1)
1306      id2 = AtomColToGlobal(atom2)
# Line 624 | Line 1310 | contains
1310   #endif
1311  
1312      if (molMembershipList(id1) .ne. molMembershipList(id2)) then
1313 <      
1313 >
1314         fpair(1) = fpair(1) + dudx
1315         fpair(2) = fpair(2) + dudy
1316         fpair(3) = fpair(3) + dudz
# Line 633 | Line 1319 | contains
1319  
1320      return
1321    end subroutine doElectrostaticPair
1322 <  
1322 >
1323 >  subroutine destroyElectrostaticTypes()
1324 >
1325 >    if(allocated(ElectrostaticMap)) deallocate(ElectrostaticMap)
1326 >
1327 >  end subroutine destroyElectrostaticTypes
1328 >
1329 >  subroutine self_self(atom1, eFrame, mypot, t, do_pot)
1330 >    logical, intent(in) :: do_pot
1331 >    integer, intent(in) :: atom1
1332 >    integer :: atid1
1333 >    real(kind=dp), dimension(9,nLocal) :: eFrame
1334 >    real(kind=dp), dimension(3,nLocal) :: t
1335 >    real(kind=dp) :: mu1, c1
1336 >    real(kind=dp) :: preVal, epot, mypot
1337 >    real(kind=dp) :: eix, eiy, eiz
1338 >
1339 >    ! this is a local only array, so we use the local atom type id's:
1340 >    atid1 = atid(atom1)
1341 >
1342 >    if (.not.summationMethodChecked) then
1343 >       call checkSummationMethod()
1344 >    endif
1345 >    
1346 >    if (summationMethod .eq. REACTION_FIELD) then
1347 >       if (ElectrostaticMap(atid1)%is_Dipole) then
1348 >          mu1 = getDipoleMoment(atid1)
1349 >          
1350 >          preVal = pre22 * preRF2 * mu1*mu1
1351 >          mypot = mypot - 0.5d0*preVal
1352 >          
1353 >          ! The self-correction term adds into the reaction field vector
1354 >          
1355 >          eix = preVal * eFrame(3,atom1)
1356 >          eiy = preVal * eFrame(6,atom1)
1357 >          eiz = preVal * eFrame(9,atom1)
1358 >          
1359 >          ! once again, this is self-self, so only the local arrays are needed
1360 >          ! even for MPI jobs:
1361 >          
1362 >          t(1,atom1)=t(1,atom1) - eFrame(6,atom1)*eiz + &
1363 >               eFrame(9,atom1)*eiy
1364 >          t(2,atom1)=t(2,atom1) - eFrame(9,atom1)*eix + &
1365 >               eFrame(3,atom1)*eiz
1366 >          t(3,atom1)=t(3,atom1) - eFrame(3,atom1)*eiy + &
1367 >               eFrame(6,atom1)*eix
1368 >          
1369 >       endif
1370 >
1371 >    elseif (summationMethod .eq. SHIFTED_FORCE) then
1372 >       if (ElectrostaticMap(atid1)%is_Charge) then
1373 >          c1 = getCharge(atid1)
1374 >          
1375 >          if (screeningMethod .eq. DAMPED) then
1376 >             mypot = mypot - (f0c * rcuti * 0.5_dp + &
1377 >                  dampingAlpha*invRootPi) * c1 * c1    
1378 >            
1379 >          else            
1380 >             mypot = mypot - (rcuti * 0.5_dp * c1 * c1)
1381 >            
1382 >          endif
1383 >       endif
1384 >    endif
1385 >    
1386 >    return
1387 >  end subroutine self_self
1388 >
1389 >  subroutine rf_self_excludes(atom1, atom2, sw, eFrame, d, rij, vpair, myPot, &
1390 >       f, t, do_pot)
1391 >    logical, intent(in) :: do_pot
1392 >    integer, intent(in) :: atom1
1393 >    integer, intent(in) :: atom2
1394 >    logical :: i_is_Charge, j_is_Charge
1395 >    logical :: i_is_Dipole, j_is_Dipole
1396 >    integer :: atid1
1397 >    integer :: atid2
1398 >    real(kind=dp), intent(in) :: rij
1399 >    real(kind=dp), intent(in) :: sw
1400 >    real(kind=dp), intent(in), dimension(3) :: d
1401 >    real(kind=dp), intent(inout) :: vpair
1402 >    real(kind=dp), dimension(9,nLocal) :: eFrame
1403 >    real(kind=dp), dimension(3,nLocal) :: f
1404 >    real(kind=dp), dimension(3,nLocal) :: t
1405 >    real (kind = dp), dimension(3) :: duduz_i
1406 >    real (kind = dp), dimension(3) :: duduz_j
1407 >    real (kind = dp), dimension(3) :: uz_i
1408 >    real (kind = dp), dimension(3) :: uz_j
1409 >    real(kind=dp) :: q_i, q_j, mu_i, mu_j
1410 >    real(kind=dp) :: xhat, yhat, zhat
1411 >    real(kind=dp) :: ct_i, ct_j
1412 >    real(kind=dp) :: ri2, ri3, riji, vterm
1413 >    real(kind=dp) :: pref, preVal, rfVal, myPot
1414 >    real(kind=dp) :: dudx, dudy, dudz, dudr
1415 >
1416 >    if (.not.summationMethodChecked) then
1417 >       call checkSummationMethod()
1418 >    endif
1419 >
1420 >    dudx = 0.0d0
1421 >    dudy = 0.0d0
1422 >    dudz = 0.0d0
1423 >
1424 >    riji = 1.0d0/rij
1425 >
1426 >    xhat = d(1) * riji
1427 >    yhat = d(2) * riji
1428 >    zhat = d(3) * riji
1429 >
1430 >    ! this is a local only array, so we use the local atom type id's:
1431 >    atid1 = atid(atom1)
1432 >    atid2 = atid(atom2)
1433 >    i_is_Charge = ElectrostaticMap(atid1)%is_Charge
1434 >    j_is_Charge = ElectrostaticMap(atid2)%is_Charge
1435 >    i_is_Dipole = ElectrostaticMap(atid1)%is_Dipole
1436 >    j_is_Dipole = ElectrostaticMap(atid2)%is_Dipole
1437 >
1438 >    if (i_is_Charge.and.j_is_Charge) then
1439 >       q_i = ElectrostaticMap(atid1)%charge
1440 >       q_j = ElectrostaticMap(atid2)%charge
1441 >      
1442 >       preVal = pre11 * q_i * q_j
1443 >       rfVal = preRF*rij*rij
1444 >       vterm = preVal * rfVal
1445 >      
1446 >       myPot = myPot + sw*vterm
1447 >      
1448 >       dudr  = sw*preVal * 2.0d0*rfVal*riji
1449 >      
1450 >       dudx = dudx + dudr * xhat
1451 >       dudy = dudy + dudr * yhat
1452 >       dudz = dudz + dudr * zhat
1453 >      
1454 >    elseif (i_is_Charge.and.j_is_Dipole) then
1455 >       q_i = ElectrostaticMap(atid1)%charge
1456 >       mu_j = ElectrostaticMap(atid2)%dipole_moment
1457 >       uz_j(1) = eFrame(3,atom2)
1458 >       uz_j(2) = eFrame(6,atom2)
1459 >       uz_j(3) = eFrame(9,atom2)
1460 >       ct_j = uz_j(1)*xhat + uz_j(2)*yhat + uz_j(3)*zhat
1461 >      
1462 >       ri2 = riji * riji
1463 >       ri3 = ri2 * riji
1464 >      
1465 >       pref = pre12 * q_i * mu_j
1466 >       vterm = - pref * ct_j * ( ri2 - preRF2*rij )
1467 >       myPot = myPot + sw*vterm
1468 >      
1469 >       dudx = dudx - sw*pref*( ri3*(uz_j(1)-3.0d0*ct_j*xhat) &
1470 >            - preRF2*uz_j(1) )
1471 >       dudy = dudy - sw*pref*( ri3*(uz_j(2)-3.0d0*ct_j*yhat) &
1472 >            - preRF2*uz_j(2) )
1473 >       dudz = dudz - sw*pref*( ri3*(uz_j(3)-3.0d0*ct_j*zhat) &
1474 >            - preRF2*uz_j(3) )
1475 >      
1476 >       duduz_j(1) = duduz_j(1) - sw * pref * xhat * ( ri2 - preRF2*rij )
1477 >       duduz_j(2) = duduz_j(2) - sw * pref * yhat * ( ri2 - preRF2*rij )
1478 >       duduz_j(3) = duduz_j(3) - sw * pref * zhat * ( ri2 - preRF2*rij )
1479 >      
1480 >    elseif (i_is_Dipole.and.j_is_Charge) then
1481 >       mu_i = ElectrostaticMap(atid1)%dipole_moment
1482 >       q_j = ElectrostaticMap(atid2)%charge
1483 >       uz_i(1) = eFrame(3,atom1)
1484 >       uz_i(2) = eFrame(6,atom1)
1485 >       uz_i(3) = eFrame(9,atom1)
1486 >       ct_i = uz_i(1)*xhat + uz_i(2)*yhat + uz_i(3)*zhat
1487 >      
1488 >       ri2 = riji * riji
1489 >       ri3 = ri2 * riji
1490 >      
1491 >       pref = pre12 * q_j * mu_i
1492 >       vterm = pref * ct_i * ( ri2 - preRF2*rij )
1493 >       myPot = myPot + sw*vterm
1494 >      
1495 >       dudx = dudx + sw*pref*( ri3*(uz_i(1)-3.0d0*ct_i*xhat) &
1496 >            - preRF2*uz_i(1) )
1497 >       dudy = dudy + sw*pref*( ri3*(uz_i(2)-3.0d0*ct_i*yhat) &
1498 >            - preRF2*uz_i(2) )
1499 >       dudz = dudz + sw*pref*( ri3*(uz_i(3)-3.0d0*ct_i*zhat) &
1500 >            - preRF2*uz_i(3) )
1501 >      
1502 >       duduz_i(1) = duduz_i(1) + sw * pref * xhat * ( ri2 - preRF2*rij )
1503 >       duduz_i(2) = duduz_i(2) + sw * pref * yhat * ( ri2 - preRF2*rij )
1504 >       duduz_i(3) = duduz_i(3) + sw * pref * zhat * ( ri2 - preRF2*rij )
1505 >      
1506 >    endif
1507 >      
1508 >
1509 >    ! accumulate the forces and torques resulting from the self term
1510 >    f(1,atom1) = f(1,atom1) + dudx
1511 >    f(2,atom1) = f(2,atom1) + dudy
1512 >    f(3,atom1) = f(3,atom1) + dudz
1513 >    
1514 >    f(1,atom2) = f(1,atom2) - dudx
1515 >    f(2,atom2) = f(2,atom2) - dudy
1516 >    f(3,atom2) = f(3,atom2) - dudz
1517 >    
1518 >    if (i_is_Dipole) then
1519 >       t(1,atom1)=t(1,atom1) - uz_i(2)*duduz_i(3) + uz_i(3)*duduz_i(2)
1520 >       t(2,atom1)=t(2,atom1) - uz_i(3)*duduz_i(1) + uz_i(1)*duduz_i(3)
1521 >       t(3,atom1)=t(3,atom1) - uz_i(1)*duduz_i(2) + uz_i(2)*duduz_i(1)
1522 >    elseif (j_is_Dipole) then
1523 >       t(1,atom2)=t(1,atom2) - uz_j(2)*duduz_j(3) + uz_j(3)*duduz_j(2)
1524 >       t(2,atom2)=t(2,atom2) - uz_j(3)*duduz_j(1) + uz_j(1)*duduz_j(3)
1525 >       t(3,atom2)=t(3,atom2) - uz_j(1)*duduz_j(2) + uz_j(2)*duduz_j(1)
1526 >    endif
1527 >
1528 >    return
1529 >  end subroutine rf_self_excludes
1530 >
1531   end module electrostatic_module

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines